ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (6,873)
  • Aerodynamics
  • 1985-1989  (6,312)
  • 1935-1939  (596)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2019-10-31
    Description: The visualization of laminar to turbulent boundary layer transition plays an important role in flight and wind tunnel aerodynamic testing of aircraft wing and body surfaces. Visualization can help provide a more complete understanding of both transition location as well as transition modes; without visualization, the transition process can be very difficult to understand. In the past, the most valuable transition visualization methods for fight applications included sublimating chemicals and oil flows. Each method has advantages and limitations. In particular, sublimating chemicals are impractical to use in subsonic applications much above 20,000 feet because of the greatly reduced rates of sublimation at lower temperatures (less than -4 degrees Fahrenheit). Both oil flow and sublimating chemicals have the disadvantage of providing only one good data point per flight. Thus, for many important flight conditions, transition visualization has not been readily available. This paper discusses a new method for visualizing transition in fight by the use of liquid crystals. The new method overcomes the limitations of past techniques, and provides transition visualization capability throughout almost the entire altitude and speed ranges of virtually all subsonic aircraft flight envelopes. The method also has wide applicability for supersonic transition visualization in flight and for general use in wind tunnel research over wide subsonic and supersonic speed ranges.
    Keywords: Aerodynamics
    Type: NASA-TM-87666 , NAS 1.15:87666
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-27
    Description: An investigation was conducted in the N.A.C.A. 20-foot wind tunnel to determine the drag, the propulsive and net efficiencies, and the cooling characteristics of severa1 scale-model arrangements of air-cooled radial-engine nacelles and present-day propellers in front of an 18- percent-thick, 5- by 15-foot airfoil. This report deals with an investigation of wing-nacelle arrangements simulating the geometric proportions of airplanes in the 40,000- to 70,000- pound weight classification and having the nacelles located in the vicinity of the optimum location determined from the earlier tests.
    Keywords: Aerodynamics
    Type: NACA-SR-123
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-26
    Description: An investigation was made in the N.A.C.A. 7- by 10- foot wind tunnel to determine the aerodynamic section characteristics of an N. A. C. A. 23012 airfoil with a single main slotted flap equipped successively with auxiliary flaps of the plain, split, and slotted types. A test installation mas used in which an airfoil of 7-foot span was mounted vertically between the upper and the lower sides of the closed test section so that two-dimensional flow was approximated. On the basis of maximum lift coefficient, low drag at moderate and high lift coefficients, and high drag at high lift coefficients, the optimum combination of the arrangements was found to be the double slotted flap . All the auxiliary flaps tested, however, increased the magnitudes of the pitching moments over those of the main slotted flap alone.
    Keywords: Aerodynamics
    Type: NACA-SR-97
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-26
    Description: An investigation of the interference associated with tail surfaces added to wing-fuselage combinations was included in the interference program in progress in the NACA variable-density tunnel. The results indicate that, in aerodynamically clean combinations, the increment to the high-speed drag can be estimated from section characteristics within useful limits of accuracy. The interference appears mainly as effects on the downwash angel and as losses in the tail. An interference burble, which markedly increases the glide-path angle and the stability in pitch before the actual stall, may be considered a means of obtaining satisfactory stalling characteristics for a complete combination.
    Keywords: Aerodynamics
    Type: NACA-SR-98
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-26
    Description: The drag characteristics of eight radial-engine cowlings have been determined over a wide speed range in the N.A.C.A. 8-foot high-speed wind tunnel. The pressure distribution over all cowlings was measured, to and above the speed of the compressibility burble, as an aid in interpreting the force tests. One-fifth-scale models of radial-engine cowlings on a wing-nacelle combination mere used in the tests.
    Keywords: Aerodynamics
    Type: NACA-SR-109
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-14
    Description: An investigation was made to determine the spinning characteristics of Clark Y monoplane wings with different plan forms. A rectangular wing and a wing tapered 5:2, both with rounded tips, were tested on the N.A.C.A. spinning balance in the 5-foot vertical wind tunnel. The aerodynamic characteristics of the models and a prediction of the angles of sideslip for steady spins are given. Also included is an estimate of the yawning moment that must be furnished by the parts of the airplane to balance the inertia couples and wing yawing moment for spinning equilibrium. The effects on the spin of changes in plan form and of variations of some of the important parameters are discussed and the results are compared with those for a rectangular wing with square tips. It is concluded that for a conventional monoplane using Clark Y wing the sideslip will be algebraically larger for the wing with the rounded tip than for the wing with the square tip and will be largest for the tapered wing. The effect of plan form on the spin will vary with the type of airplane; and the provision of a yawing-moment coefficient of -0.025 (i.e., opposing the spin) by the tail, fuselage, and interference effects will insure against the attainment of equilibrium on a steady spin for any of the plan forms tested and for any of the parameters used in the analysis.
    Keywords: Aerodynamics
    Type: NACA-TN-612
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: A wind-tunnel investigation was conducted in which aerodynamic loads were measured on a small-scale helicopter rotor and a body of revolution located close to it as an idealized model of a fuselage. The objective was to study the aerodynamic interactions as a function of forward speed, rotor thrust, and rotor/body position. Results show that body loads, normalized by rotor thrust, are functions of the ratio between free-stream velocity and the hover-induced velocity predicted by momentum theory.
    Keywords: Aerodynamics
    Type: May 01, 1983; Saint Louis, MO; United States|Journal of the American Helicopters; 29-36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A new rotor blade tip design called the free-tip has been proposed as a means to improve forward flight performance characteristics and reduce oscillatory loads. The free-tip design incorporates a tip that is free to pitch independently of the rest of the blade. Pitching about an axis forward of the quarter-chord, the tip weathervanes into its local wind, thus reducing angle of attack perturbations and the resulting oscillatory lift loadings. A nearly constant nose-up pitching moment is applied mechanically to the tip so that the tip, to maintain pitching equilibrium, produces nearly steady positive lift around the azimuth. A wind-tunnel test of a small-scale, 5.1 m diameter model rotor was conducted to obtain comparative forward flight performance and oscillatory loads data with the tips free and fixed. The free-up was shown to reduce power in trimmed flight over a wide range of advance ratio and thrust; at an advance ratio of 0.3 and C(sub L)/sigma of 0.08 the reduction is 12%. Oscillatory flapwise bending-moments and oscillatory pitch link loads are also reduced, but the oscillatory in-plane bending moments increase.
    Keywords: Aerodynamics
    Type: May 01, 1985; Fort Worth, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Small blade-to-blade property differences are investigated to determine how they affect the behavior of a simple rotor-body system. An analytical approach is used which emphasizes the significance of these effects from the experimental point of view. It is found that the primary effect of blade-to-blade dissimilarities is the appearance of additional peaks in the frequency spectrum which are separated from the conventional response peaks by multiples of the rotor speed. These additional responses are potential experimental problems because when they occur near a mode of interest they act as contaminant frequencies which can make damping measurements difficult. Increased rotor-body coupling and a rotor shaft degree of freedom act to improve the situation by altering the frequency separation of the modes.
    Keywords: Aerodynamics
    Type: European Rotorcraft; Sep 01, 1985; London; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main- rotor helicopter using both a comprehensive rotorcraft analysis (CAMRAD) and night test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from both a rigid blade analysis and an elastic blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack, such as elastic blade twist, blade nap rate, blade slope velocity, and inflow, are examined as a function of blade mode. Elastic blade motion affects the blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. The modal analysis of the predicted blade structural loads suggested that five elastic bending deg of freedom (four flap and one lag) and three elastic torsion deg of freedom contributed to calculations of the blade structural loads. However, when structural bending load predictions from several elastic blade analyses were compared with flight test data, an elastic blade model consisting of only three elastic bending modes (first and second flap, and first lag), and two elastic torsion modes was found to be sufficient for maximum correlation.
    Keywords: Aerodynamics
    Type: Dynamics Specialists; Apr 10, 1987 - Apr 12, 1987; Monterey, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...