ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (4)
  • GFZ German Research Center for Geosciences  (3)
  • Zenodo  (1)
  • 2020-2024  (4)
  • 1985-1989
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2024-01-19
    Description: Abstract
    Description: The Atacama Desert in Chile is known to be one of the driest deserts on Earth, with dominating hyperaridity at least since the Miocene. During recent times, however, especially the southern part of the Atacama repeatedly experienced exceptional precipitation events, like in 2015 and 2017. Locally, these events with high rainfall rates caused catastrophic floods with significant destruction and human fatalities. Although the meteorological drivers of these heavy rains are widely understood, only little is known about the frequency and amplitude of similar events on geological timescales. Here we present the results of a study on an endorheic clay pan at the southern edge of the hyperarid core of the Atacama, an area with a mean precipitation of ap-prox. 5 mm per year. A modern ground-truthing approach combining sediment data, remote-sensing and meteorological data as well as climate-modelling was applied. Our observations indicate that the clay pan reacted very sensitively to local precipitation during the past 30 years, with four events 〉20 mm total rain causing sufficient surface run-off in the catchment to partially flood the basin. Comparative analyses of the four events illustrate that the amount of run-off is dependent on the maximum rain rate during the events rather than the total rain sum. A 1.88-m long sediment core recovered from the centre of the clay pan records the local hydrological and -environmental history since the Late Pleistocene. Sedimentological, mineralogical, geochemical, and biological core analyses imply strong variations in the ampli-tude of the recorded rainfall, with a clear shift from enhanced alluvial activity caused by higher-amplitude rain events during the Late Pleistocene to lower-amplitude Holocene events. The Holocene background sedimentation is superimposed by seven severe “Millennial-scale rain events”, which imply precipitation maxima on sub-orbital timescales that are potentially driven by changes in the El Niño Southern Oscillation (ENSO). The results of the study shed new light on the glacial-interglacial but also the sub-orbital precipitation variability in the Coastal Cordil-lera of the Atacama Desert and its potential driving mechanisms, and provide perspectives of the future precipitation development in the region under progressive global warming.
    Keywords: Climatology/Meteorology/Atmosphere ; Paleoclimate Proxies ; Climate Models
    Type: DataPaper , Paper Preprint
    Format: PDF
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GFZ German Research Center for Geosciences
    Publication Date: 2023-12-04
    Description: Abstract
    Description: The 3D geomechanical-numerical modelling aims at a continuous description of the stress state in a subsurface volume. The model is fitted to the model-independent stress data records by adaptation of the displacement boundary conditions. This process is herein referred to as model calibration. Depending on the amount of available stress data records and the complexity of the model the calibration can be a lengthy process of trial-and-error to estimate the best-fit boundary conditions. The tool FAST Calibration (Fast Automatic Stress Tensor Calibration) is a Matlab script that facilitates and speeds up this calibration process. By using a linear regression it requires only three test model scenarios with different displacement boundary conditions to calibrate a geomechanical-numerical model on available stress data records. The differences between the modelled and observed stresses are used for the linear regression that allows to compute the displacement boundary conditions required for the best-fit estimation. The influence of observed stress data records on the best-fit displacement boundary conditions can be weighted. Furthermore, FAST Calibration provides a cross checking of the best-fit estimate against indirect stress information that cannot be used for the calibration process, such as the observation of borehole breakouts or drilling induced fractures.
    Description: Other
    Description: GNU General Public License, Version 3, 29 June 2007 Copyright © 2021 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany FAST Calibration is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. FAST Calibration is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.
    Keywords: geomechanical-numerical model ; stress ; in-situ stress ; model calibration ; stress tensor calibration ; modelling tool ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 NEOTECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION 〉 CRUSTAL MOTION DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GFZ German Research Center for Geosciences
    Publication Date: 2023-12-04
    Description: Abstract
    Description: The 3D geomechanical-numerical modelling aims at a continuous description of the stress state in a subsurface volume. The model is fitted to the model-independent stress data records by adaptation of the displacement boundary conditions. This process is herein referred to as model calibration. Depending on the amount of available stress data records and the complexity of the model the calibration can be a lengthy process of trial-and-error to estimate the best-fit boundary conditions. The tool FAST Calibration (Fast Automatic Stress Tensor Calibration) is a Matlab script that facilitates and speeds up this calibration process. By using a linear regression it requires only three test model scenarios with different displacement boundary conditions to calibrate a geomechanical-numerical model on available stress data records. The differences between the modelled and observed stresses are used for the linear regression that allows to compute the displacement boundary conditions required for the best-fit estimation. The influence of observed stress data records on the best-fit displacement boundary conditions can be weighted. Furthermore, FAST Calibration provides a cross checking of the best-fit estimate against indirect stress information that cannot be used for the calibration process, such as the observation of borehole breakouts or drilling induced fractures. In order to bridge the scale gap between a regional stress model and a local reservoir model, the multistage calibration procedure is applied where a local model is calibrated solely on the stress state provided by a regional model. FAST Calibration provides the necessary tools and guidelines.
    Keywords: geomechanical-numerical model ; stress ; in-situ stress ; model calibration ; stress tensor calibration ; modelling tool ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 NEOTECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION 〉 CRUSTAL MOTION DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-28
    Description: Abstract
    Description: This catalogue is the extended version of “The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium” (Grünthal and Wahlstrom, 2012, 2012a). It is an earthquake catalogue for tectonic events in the broader European Mediterranean area. It reached from the Azores (Mid-Atlantic Ridge) in the west, to Africa north of the Sahara in the south, the Arctic Sea in the north, and the regions of Levant, eastern Turkey, and the Caucasus in the west. This areal coverage gave the name to the catalogue: EMEC—The European-Mediterranean Earthquake Catalogue. It extends the previous version (Grünsthal and Wahlström, 2012), by the years 2007 to 2021 and thus contains tectonic events for the period AD 1000 to 2021 with a uniform magnitude Mw from the threshold of 3.5. The dataset contains 71271 entries.
    Keywords: earthquake catalogue ; magnitude harmonization ; europe ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE MAGNITUDE/INTENSITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 CATALOGING ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 DATA DELIVERY ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 TRANSFORMATION/CONVERSION
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...