ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (1,816)
  • 1990-1994  (1,816)
  • 1985-1989
  • 1994  (1,816)
Collection
Keywords
Publisher
Years
  • 1990-1994  (1,816)
  • 1985-1989
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rutgers van der Loeff, Michiel M (1994): 228Ra and 228Th in the Weddell Sea. In: Johannessen, O M; Muench, R D & Overland, J E (eds.), The polar oceans and their role in shaping the global environment. Geophysical Monograph Series, American Geophysical Union, 540 pages, ISBN 0-87590-042-9, 85, 177-186
    Publication Date: 2024-06-26
    Description: 228Ra and its granddaughter 228Th were measured on a N-S transect from 45's to the Antarctic continent across the Antarctic Circumpolar Current (ACC) and the Weddell Sea. The distributions of 230Th, 228Th and 228Ra show that southward transport across the ACC of Circumpolar Deep Water (CDW), the source of Warm Deep Water (WDW) in the Weddell Sea, occurs on a time scale between 8 and 30 years, in qualitative agreement with estimates of the upwelling rate of WDW. The distribution of 228Ra in deep waters is controlled by advection and isopycnal mixing rather than diapycnal mixing. In the Weddell Sea, deep-water 228Ra activities reach 15-20 dpm/m**3. Enrichment in deep water is controlled by the production in the deep-sea floor, favoured by low biogenic sediment accumulation rates and consequently high 232Th contents in the surface sediment (3 to 5 dpm/g). The highest 228Ra value (73 dpm/m**3) was observed near the sea floor in a channel where an eastern outflow of Weddell Sea Bottom Water (WSBW) is suspected. It is not yet known whether this value is produced in-situ by accumulation in the stratified bottom water, or contains a Signal of enrichment in shelf- and Ice Shelf Water. High 228Ra activities on the south-eastem shelf (22 dpm/m**3) and low activities offshore yield an estimated residente time of 1.5 years on this shelf and imply slow exchange with offshore waters.
    Keywords: Agulhas Basin; ANT-IX/3; ANT-VIII/3; ANT-X/6; Atlantic Ridge; AWI_MarGeoChem; AWI_Paleo; DIVERSE; Filchner Trough; Halley Bay; Lazarev Sea; Marine Geochemistry @ AWI; Maud Rise; Meteor Rise; MULT; Multiple investigations; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS16; PS16/267; PS16/281; PS16/294; PS16/311; PS16/321; PS16/342; PS16/362; PS16/370; PS1751-8; PS1755-2; PS1759-5; PS1768-2; PS1772-2; PS1777-8; PS1782-7; PS1785-1; PS18; PS18/126; PS18/127; PS18/141; PS18/153; PS18/163; PS18/196; PS18/199; PS18/200; PS18/202; PS18/227; PS1999; PS2011; PS2049; PS2051; PS2052; PS2054; PS2072; PS22; PS22/862; PS22/865; PS22/866; PS22/908; PS22/911; PS22/917; Sampling gear, diverse; Shona Ridge; South Atlantic Ocean; South Sandwich Basin; South Sandwich Trough; Water sample; Weddell Sea; WS
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: McCorkle, Daniel C; Keigwin, Lloyd D (1994): Depth profiles of d13C in bottom water and core top C. wuellerstorfi on the Ontong Java Plateau and Emperor Seamounts. Paleoceanography, 9(2), 197-208, https://doi.org/10.1029/93PA03271
    Publication Date: 2024-06-26
    Description: We have measured the carbon isotopic composition of dissolved inorganic carbon in bottom waters of the Ontong Java Plateau (western equatorial Pacific) and on the northern Emperor Seamounts (northwest Pacific). Each of these locations is several hundred miles from the nearest Geochemical Ocean Sections Study (GEOSECS) stations, and the observed delta13C values at each site differ substantially from regionally averaged GEOSECS delta13C profiles. We discuss the possible causes of these differences, including horizontal variability, near-bottom effects, and problems with the Pacific GEOSECS delta13C data. We also measured the isotopic composition (C and O) of core top C. wuellerstorfi from a depth transect of cores at each location. The delta18O data are used to verify that our samples are Holocene. Comparison of foraminiferal and bottom water delta13C values shows that this species faithfully records bottom water delta13C at both sites and demonstrates that there is no depth-related artifact in the dissolved inorganic carbon-C. wuellerstorfi delta13C relationship at these sites.
    Keywords: 6-TOW; 6-TOW-001GGC; 6-TOW-002GGC; 6-TOW-003GGC; 6-TOW-005GGC; 6-TOW-006GGC; 6-TOW-007GGC; 6-TOW-008GGC; 6-TOW-011GGC; 6-TOW-011PC; 6-TOW-012GGC; 6-TOW-013GGC; 6-TOW-014GGC; 6-TOW-015GGC; 6-TOW-016GGC; Akademik A. Vinogradov; AVI19-4; BC; Box corer; GGC; Giant gravity corer; Moana Wave; MW9109; MW9109-13BC; MW9109-16BC; MW9109-22BC; MW9109-33BC; MW9109-37BC; MW9109-3BC; MW9109-47BC; MW9109-53BC; MW9109-54BC; MW9109-58BC; MW9109-59BC; MW9109-63BC; MW9109-66BC; MW9109-70BC; MW9109-74BC; MW9109-7BC; Pacific; PC; Piston corer; RAMA; RAMA03WT; RAMA-44P; RNDB-11GGC; RNDB-11PC; RNDB-12GGC; RNDB-13GGC; RNDB-14GGC; RNDB-15GGC; RNDB-16GGC; RNDB-1GGC; RNDB-2GGC; RNDB-3GGC; RNDB-5GGC; RNDB-6GGC; RNDB-7GGC; RNDB-8GGC; Thomas Washington; Vi-26BC; Vi-35GC; Vi-37GC; VINO-26BC; VINO-35GGC; VINO-37GGC
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Usui, Akira; Ito, Takashi (1994): Fossil manganese deposits buried within DSDP/ODP cores, Legs 1-126. Marine Geology, 119(1-2), 111-136, https://doi.org/10.1016/0025-3227(94)90144-9
    Publication Date: 2024-06-26
    Description: Probable in-situ manganese deposits larger than 1 cm in diameter buried in ODP/DSDP cores were selected for study after examining previous descriptions of the manganese deposits in site reports and the ODP data base. Most of the selected samples from 11 cores occur at or just above sedimentary hiatuses or in slowly deposited sediments and are overlain by rapidly deposited sediments of biogenic, terrigenous or volcanogenic origin. The changes in sedimentation recorded in the lithostratigraphic sections around these deposits are closely related to changes in tectonic evolution, deep water circulation or biological productivity at the sites. The similarity in composition and structure of the buried deposits to those of the modern manganese nodules and crusts with no evidence of post-depositional change suggest that buried manganese deposits may be used as indicators of past sedimentary conditions during which they formed. Their major components are hydrogenetic and earlydiagenetic manganese minerals as well as detrital minerals. The characteristics of these manganese deposits suggests that similar processes of deposition have taken place since the Paleogene or older.
    Keywords: 108-661A; 114-699A; 122-760A; 1-5; 15-150; 32-303; 36-328; 5-37; 62-464; 81-554A; 86-578; 93-603B; Caribbean Sea/BASIN; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Joides Resolution; Leg1; Leg108; Leg114; Leg122; Leg15; Leg32; Leg36; Leg5; Leg62; Leg81; Leg86; Leg93; North Atlantic/BASIN; North Atlantic/PLATEAU; North Pacific; North Pacific/BASIN; North Pacific/CONT RISE; North Pacific/HILL; Ocean Drilling Program; ODP; South Atlantic/BASIN; South Atlantic Ocean; South Indian Ridge, South Indian Ocean
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Spielhagen, Robert F; Erlenkeuser, Helmut (1994): Stable oxygen and carbon isotopes in planktic foraminifers from Arctic Ocean surface sediments: Reflection of the low salinity surfac water layer. Marine Geology, 119(3-4), 227-250, https://doi.org/10.1016/0025-3227(94)90183-X
    Publication Date: 2024-06-26
    Description: Planktic foraminifers Neogloboquadrina pachyderma (sin.) from 87 eastern and central Arctic Ocean surface sediment samples were analyzed for stable oxygen and carbon isotope composition. Additional results from 52 stations were taken from the literature. The lateral distribution of delta18O (18O/16O) values in the Arctic Ocean reveals a pattern of roughly parallel, W-E stretching zones in the Eurasian Basin, each ~0.5 per mil wide on the delta18O scale. The low horizontal and vertical temperature variability in the Arctic halocline waters (0-100 m) suggests only little influence of temperature on the oxygen isotope distribution of N. pachyderma (sin.). The zone of maximum delta18O values of up to 3.8 per mil is situated in the southern Nansen Basin and relates to the tongue of saline (〉 33%.) Atlantic waters entering the Arctic Ocean through the Fram Strait. delta18O values decrease both to the Barents Shelf and to the North Pole, in accordance with the decreasing salinities of the halocline waters. In the Nansen Basin, a strong N-S delta18O gradient is in contrast with a relatively low salinity change and suggests contributions from different freshwater sources, i.e. salinity reduction from sea ice meltwater in the south and from light isotope waters (meteoric precipitation and river-runoff) in the northern part of the basin. North of the Gakkel Ridge, delta18O and salinity gradients are in good accordance and suggest less influence of sea ice melting processes. The delta13C (13C/12C) values of N. pachyderma (sin.) from Arctic Ocean surface sediment samples are generally high (0.75-0.95 per mil). Lower values in the southern Eurasian Basin appear to be related to the intrusion of Atlantic waters. The high delta13C values are evidence for well ventilated surface waters. Because the perennial Arctic sea ice cover largely prevents atmosphere-ocean gas exchange, ventilation on the seasonally open shelves must be of major importance. Lack of delta13C gradients along the main routes of the ice drift from the Siberian shelves to the Fram Strait suggests that primary production (i.e. CO2 consumption) does probably not change the CO2 budget of the Arctic Ocean significantly.
    Keywords: 125SGC; 83-101; 83-104; 83-106; 83-109; 83-110; 83-201; 83-202; 83-203; 83-204; 83-205; Alpha Ridge, Arctic Ocean; Amerasian Basin; Amundsen Basin; Antarctic Ocean; Arctic Ocean; ARK-III/3; ARK-IV/3; ARK-IX/4; ARK-VIII/2; ARK-VIII/3; Barents Sea; CESAR; CESAR_83-101; CESAR_83-104; CESAR_83-106; CESAR_83-109; CESAR_83-110; CESAR_83-201; CESAR_83-202; CESAR_83-203; CESAR_83-204; CESAR_83-205; D.St.A.2; DEPTH, sediment/rock; Elevation of event; Event label; FL-433; FL-523; Fram-I; FramI/4; FramI/7; FramII/1; FramII/3; FramII/4; FramII/5; FramIII/1; FramIII/2; FramIII/3; FramIII/7; FramIII/8; FramIV/1; FramIV/7; FramIV/9; Fram Strait; Gakkel Ridge, Arctic Ocean; GC; GEOMAR; Giant box corer; GIK21308-3 PS07/601; GIK21310-4 PS07/603; GIK21312-3 PS07/606; GIK21314-3 PS07/608; GIK21319-2 PS07/617; GIK21513-9 PS11/276-9; GIK21515-10 PS11/280-10; GIK21519-11 PS11/296-11; GIK21520-10 PS11/310-10; GIK21522-19 PS11/358-19; GIK21523-15 PS11/362-15; GIK21524-1 PS11/364-1; GIK21525-2 PS11/365-2; GIK21527-10 PS11/371-10; GIK21528-7 PS11/372-7; GIK21529-7 PS11/376-7; GIK21533-3 PS11/412; GIK21534-6 PS11/423-6; GKG; Gravity corer; Gravity corer (Kiel type); Helmholtz Centre for Ocean Research Kiel; Ice drift station; Laptev Sea; Laptev Sea, Taymyr Island; Latitude of event; Lomonosov Ridge, Arctic Ocean; Longitude of event; LOREX; LOREX1; LOREX10; LOREX11; LOREX2; LOREX3; LOREX6; LOREX8; LOREX9; Makarov Basin; Mass spectrometer Finnigan MAT 251; MIC; MiniCorer; Morris Jesup Rise; MUC; MultiCorer; Nansen Basin; Neogloboquadrina pachyderma sinistral, δ13C; Neogloboquadrina pachyderma sinistral, δ18O; Polarstern; PS07; PS11; PS1308-3; PS1310-4; PS1312-3; PS1314-3; PS1319-2; PS1513-9; PS1515-10; PS1519-11; PS1520-10; PS1522-19; PS1523-15; PS1524-1; PS1525-2; PS1527-10; PS1528-7; PS1529-7; PS1533-3; PS1534-6; PS19/111; PS19/113; PS19/114; PS19/148; PS19/150; PS19/152; PS19/154; PS19/155; PS19/157; PS19/158; PS19/159; PS19/160; PS19/161; PS19/164; PS19/165; PS19/166; PS19/167; PS19/171; PS19/172; PS19/173; PS19/175; PS19/176; PS19/178; PS19/181; PS19/182; PS19/183; PS19/184; PS19/185; PS19/186; PS19/189; PS19/190; PS19/192; PS19/194; PS19/198; PS19/200; PS19/204; PS19/206; PS19/210; PS19/214; PS19/216; PS19/218; PS19/222; PS19/226; PS19/228; PS19/234; PS19/239; PS19/241; PS19/245; PS19/246; PS19/249; PS19 ARCTIC91; PS19 EPOS II; PS2137-1; PS2139-1; PS2140-1; PS2156-1; PS2157-4; PS2159-4; PS2161-4; PS2162-1; PS2163-2; PS2164-4; PS2165-3; PS2166-2; PS2167-2; PS2168-1; PS2170-1; PS2171-1; PS2172-1; PS2174-4; PS2175-3; PS2176-4; PS2177-1; PS2178-2; PS2179-1; PS2180-1; PS2181-1; PS2181-2; PS2182-1; PS2183-1; PS2183-2; PS2184-1; PS2185-1; PS2185-3; PS2186-5; PS2187-1; PS2189-1; PS2190-3; PS2192-1; PS2193-2; PS2194-1; PS2195-4; PS2196-2; PS2198-1; PS2199-4; PS2200-2; PS2202-2; PS2205-3; PS2206-4; PS2208-1; PS2209-1; PS2210-1; PS2212-1; PS2212-5; PS2213-1; PS2214-1; PS2441-3; PS2442-4; PS2443-2; PS2444-1; PS2445-3; PS2446-3; PS2447-4; PS2449-3; PS2455-3; PS2456-2; PS2458-3; PS2459-2; PS2464-2; PS2465-3; PS2466-3; PS2468-3; PS2469-3; PS2470-4; PS2471-3; PS2472-3; PS2473-3; PS2474-2; PS2475-1; PS2476-3; PS2482-3; PS2483-2; PS2484-2; PS27; PS27/007; PS27/014; PS27/016; PS27/017; PS27/019; PS27/020; PS27/024; PS27/027; PS27/033; PS27/034; PS27/038; PS27/039; PS27/046; PS27/047; PS27/048; PS27/050; PS27/052; PS27/053; PS27/054; PS27/056; PS27/058; PS27/059; PS27/060; PS27/062; PS27/069; PS27/070; PS27/071; Quaternary Environment of the Eurasian North; QUEEN; Reference/source; Sampling/drilling from ice; Sampling/drilling ice; SL; Svalbard; T-3; T3-66; T3-67-11; T3-67-5; Y80_125SGC; Yermak Plateau; Ymer; YMER-80
    Type: Dataset
    Format: text/tab-separated-values, 330 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mackensen, Andreas; Grobe, Hannes; Hubberten, Hans-Wolfgang; Kuhn, Gerhard (1994): Benthic foraminiferal assemblages and the d13C-signal in the atlantic sector of the Southern Ocean: glacial-to-interglacial contrasts. In: Zahn, R; Pederson, T F; Kaminiski, M A & Labeyrie, L (eds.), Carbon cycling in the glacial ocean: constraints on the ocean's role in global change, Springer-Verlag, Berlin, Heidelberg, NATO ASI Series I17, 105-144
    Publication Date: 2024-06-26
    Description: We used benthic foraminiferal assemblages and the stable carbon isotopic composition of benthic foraminiferal tests to interpret glacial-to-interglacial contrasts in two gravity cores from the lower bathyal Antarctic continental margin at 69°S, and the abyssal Agulhas Basin at 43°S. As a Recent analogue, sediment surface samples from an eastern Atlantic Ocean and Weddell Sea transect between 20° and 70°S were discussed. In the investigated area, the benthic foraminiferal assemblages reflect both the ocean circulation and surface productivity. Also at most stations from a belt with seasonally high surface productivity between 48°S and 55°S, the d13C values of epibenthic Cibicidoides, including F. wuellerstorfi are depleted relative to the d13CsumCO2 of the bottom water and hence do not follow the 1:1 relationship established from more northern areas. This bears implications for the interpretation of large glacial/interglacial d13C shifts from the Southern Ocean: Significant parts of this shift can be caused by a northward migration of high productivity belts associated with the Polar Front and the winter sea-ice limit rather than indicating nutrient-rich glacial Southern Ocean deep and bottom water. During interglacial climatic optima, seasonally open surface water accompanied by relatively high opal and very low carbonate accumulation characterizes the Antarctic continental margin environment. The Recent benthic foraminiferal fauna indicates moderate productivity, but during peak warm periods (18O stages: 11, 9, 7.5, 7.3, 5.5 and 1.1) very low numbers of benthic foraminifera are inferred to represent maximum organic matter fluxes with severe calcite dissolution on the sea floor. Equally high d13C values in surface and bottom water as inferred from planktic and benthic foraminifera, may indicate deep convection and bottom water formation during interglacials. In contrast, during glacials, very low opal accumulation, moderate carbonate accumulation, a benthic fauna that is presently associated with low productivity, as well as different benthic and planktic d13C values are consistent with both a reduced primary productivity and a stratified water column, suggesting suppressed bottom water generation. In the Agulhas Basin high carbonate and low organic carbon accumulation reflect the late Holocene position of the site investigated well north of the present-day Polar Front. Low Holocene d13C values of 0.3 per mil and a benthic foraminiferal fauna that indicates a southern calcite corrosive bottom water mass is in agreement with the injection of North Atlantic Deep Water into Circumpolar Deep Water at intermediate depths, which does not affect bottom waters of this basin. During glacial periods, a specific southern fauna, associated with high productivity today, low carbonate, high sediment and organic carbon accumulation, and by 1.1 per mil lower d13C values indicate a bottom water mass of southern origin, a northward shift of the high productivity belt by 7° latitude, and strongly diminished injection of NADW into the Southern Ocean.
    Keywords: Agulhas Basin; ANT-IX/4; ANT-V/4; AWI_Paleo; Eastern Weddell Sea, Southern Ocean; Gravity corer (Kiel type); Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS10; PS10/816; PS1506-1; PS18; PS18/238; PS2082-1; SFB261; SL; South Atlantic in Late Quaternary: Reconstruction of Budget and Currents
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-26
    Keywords: Aluminium; Angola Basin; Barium; Calcium; DEPTH, sediment/rock; Event label; GeoB; GeoB1008-4; GeoB1008-6; Geosciences, University of Bremen; Giant box corer; GKG; Gravity corer (Kiel type); Inductively coupled plasma atomic emission spectroscope (ICP-AES); M6/6; Magnesium; Manganese; Meteor (1986); Potassium; SL; Sodium; Strontium; Walvis Ridge
    Type: Dataset
    Format: text/tab-separated-values, 112 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-26
    Keywords: Aluminium; Angola Basin; Barium; Calcium; DEPTH, sediment/rock; Event label; GeoB; GeoB1041-1; GeoB1041-4; Geosciences, University of Bremen; Giant box corer; GKG; Gravity corer (Kiel type); Inductively coupled plasma atomic emission spectroscope (ICP-AES); M6/6; Magnesium; Manganese; Meteor (1986); Potassium; SL; Sodium; Strontium; Walvis Ridge
    Type: Dataset
    Format: text/tab-separated-values, 180 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-06-26
    Description: Over the past decade an increasing body of evidence has accumulated indicating that much, perhaps most, of the deep sea floor is an environment of substantial temporal variability (Smith and Baldwin, 1984 doi:10.1038/307624a0; Smith, 1987; Deuser and Ross, 1980 doi:10.1038/283364a0; Thiel et al., 1988). This variability is driven largely by seasonal changes of processes occurring in the surface waters (Smith, 1987; Deuser and Ross, 1980; Billett et al., 1983 doi:10.1038/302520a0). The coupling of the deep sea floor environment to the surface waters is the result of rapid vertical transport of particulate matter through the water column (Honjo, 1982 doi:10.1126/science.218.4575.883; Deuser et al., 1986 doi:10.1016/0198-0149(86)90120-2; Lampitt, 1985 doi:10.1016/0198-0149(85)90034-2), affording only limited time for degradation before arrival at the sea floor. Studies in the Pacific Ocean have indicated that temporal variations in particulate organic carbon fluxes to the sea floor are accompanied by temporal variability in sediment oxygen demand by as much as a factor of four (Smith and Baldwin, 1984; Smith, 1987). We report here time-series studies of oxygen fluxes into the sediments of the oligotrophic Atlantic near Bermuda which contrast sharply with these previous reports. At the Bermuda site, despite large seasonal variations in particulate organic carbon fluxes, in situ measured sediment oxygen consumption does not vary significantly. These results imply that large areas of the sea floor may be characterized by seasonally invariant sediment oxygen demand.
    Keywords: -; ADEPD; ADEPDCruises; Atlantic Data Base for Exchange Processes at the Deep Sea Floor; Benthic flux chamber; BFC; Date/Time of event; DEPTH, sediment/rock; Duration, number of days; Event label; In situ benthic flux chamber; ISBFC; Latitude of event; Longitude of event; Oxygen, flux, sediment oxygen demand; Oxygen, flux, standard deviation; S_BATS-12; S_BATS-14; S_BATS-15; S_BATS-16; S_BATS-17; S_BATS-18; S_BATS-3; S_BATS-4; S_BATS-5
    Type: Dataset
    Format: text/tab-separated-values, 35 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Eisenhauer, Anton; Spielhagen, Robert F; Frank, Martin; Hentzschel, Günter; Mangini, Augusto; Kubik, Peter W; Dittrich-Hannen, Beate; Billen, T (1994): 10Be records of sediment cores from high northern latitudes: Implications for environmental and climatic changes. Earth and Planetary Science Letters, 124(1-4), 171-184, https://doi.org/10.1016/0012-821X(94)00069-7
    Publication Date: 2024-06-26
    Description: The 10Be records of four sediment cores forming a transect from the Norwegian Sea at 70°N (core 23059) via the Fram Strait (core 23235) to the Arctic Ocean at 86°N (cores 1533 and 1524) were measured at a high depth resolution. Although the material in all the cores was controlled by different sedimentological regimes, the 10Be records of these cores were superimposed by glacial/interglacial changes in the sedimentary environment. Core sections with high 10Be concentrations ( 〉1 * 10**9 at/g) are related to interglacial stages and core sections with low10Be concentrations ( 〈0.5 * 10**9 at/g) are related to glacial stages. Climatic transitions (e.g., Termination II, 5/6) are marked by drastic changes in the 10Be concentrations of up to one order of magnitude. The average 10Be concentrations for each climatic stage show an inverse relationship to their corresponding sedimentation rates, indicating that the 10Be records are the result of dilution with more or less terrigenous ice-rafted material. However, there are strong changes in the 10Be fluxes (e.g., Termination II) into the sediments which may also account for the observed oscillations. Most likely, both processes affected the 10Be records equally, amplifying the contrast between lower (glacials) and higher (interglacials) 10Be concentrations. The sharp contrast of high and low 10Be concentrations at climatic stage boundaries are an independent proxy for climatic and sedimentary change in the Nordic Seas and can be applied for stratigraphic dating (10Be stratigraphy) of sediment cores from the northern North Atlantic and the Arctic Ocean.
    Keywords: Antarctic Ocean; ARK-II/4; ARK-IV/3; AWI_Paleo; Fram Strait; Giant box corer; GIK21524-2 PS11/364-2; GIK21533-3 PS11/412; GIK23059-1; GIK23235-1 PS05/422; GKG; Gravity corer (Kiel type); KAL; Kasten corer; M2/2; Meteor (1986); Norwegian Sea; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS05; PS11; PS1235-1; PS1524-2; PS1533-3; Quaternary Environment of the Eurasian North; QUEEN; SL; Svalbard
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Anderson, Robert F; Rowe, Gilbert T; Kemp, P F; Trumbore, S; Biscaye, Pierre Eginton (1994): Carbon budget for the mid-slope depocenter of the Middle Atlantic Bight. Deep Sea Research Part II: Topical Studies in Oceanography, 41(2-3), 669-703, https://doi.org/10.1016/0967-0645(94)90040-X
    Publication Date: 2024-06-26
    Description: A mass budget was constructed for organic carbon on the upper slope of the Middle Atlantic Bight, a region thought to serve as a depocenter for fine-grained material exported from the adjacent shelf. Various components of the budget are internally consistent, and observed differences can be attributed to natural spatial variability or to the different time scales over which measurements were made. The flux of organic carbon to the sediments in the core of the depocenter zone, at a water depth of 1000 m, was measured with sediment traps to be 65 mg C m**-2 day**-1, of which 6-24 mg C m**-2 day**-1 is buried. Oxygen fluxes into the sediments, measured with incubation chambers attached to a free vehicle lander, correspond to total carbon remineralization rates of 49-70 mg C m**-2 day**-1. Carbon remineralization rates estimated from gradients of Corg within the mixed layer, and from gradients of dissolved ammonia and phosphate in pore waters, sum to only 4-6 mg C m**-2 day**-1. Most of the Corg remineralization in slope sediments is mediated by bacteria and takes place within a few mm of the sediment-water interface. Most of the Corg deposited on the upper slope sediments is supplied by lateral transport from other regions, but even if all of this material were derived from the adjacent shelf, it represents 〈2% of the mean annual shelf productivity. This value is further lowered by recognizing that as much as half of the Corg deposited on the slope is refractory, having originated by reworking from older deposits. Refractory Corg arrives at the sea bed with an average 14C age 600-900 years older than the pre-bomb 14C age of DIC in seawater, and has a mean life in the sediments with respect to biological remineralization of at least 1000 years. Labile carbon supplied to the slope, on the other hand, is rapidly and (virtually) completely remineralized, with a mean life of 〈 1 year. Carbon-14 ages of fine-grained carbonate and organic carbon present within the interstices of shelf sands are consistent with this material acting as a source for the old carbon supplied to the slope. Winnowing and export of reworked carbon may contribute to the often-described relationship between organic carbon preservation and accumulation rate of marine sediments.
    Keywords: A_EN179-BC1; A_EN179-BC2; A_EN179-BC3; A_EN179-BC4; A_EN179-BC5; A_EN179-BC7; A_EN187-BC1; A_EN187-BC10; A_EN187-BC11; A_EN187-BC3; A_EN187-BC4; A_EN187-BC5; A_EN187-BC6; A_EN187-BC8; A_EN187-BC9; ADEPD; ADEPDCruises; Atlantic Data Base for Exchange Processes at the Deep Sea Floor; BC; Box corer
    Type: Dataset
    Format: application/zip, 15 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...