ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (5,651)
  • Chinese  (4)
  • 2010-2014  (4,310)
  • 2000-2004  (1,350)
Collection
Keywords
Language
Years
Year
  • 1
    facet.materialart.12
    Cambridge : Cambridge University Press
    Call number: 9781107306189 (e-book)
    Description / Table of Contents: "The Earth is a dynamic system. Internal processes, together with external gravitational forces of the Sun, Moon and planets, displace the Earth's mass, impacting on its shape, rotation and gravitational field. Doug Smylie provides a rigorous overview of the dynamical behaviour of the solid Earth, explaining the theory and presenting methods for numerical implementation. Topics include advanced digital analysis, earthquake displacement fields, Free Core Nutations observed by the Very Long Baseline Interferometric technique, translational modes of the solid inner core observed by the superconducting gravimeters, and dynamics of the outer fluid core. This book is supported by freeware computer code, available online for students to implement the theory. Online materials also include a suite of graphics generated from the numerical analysis, combined with 100 graphic examples in the book to make this an ideal tool for researchers and graduate students in the fields of geodesy, seismology and solid earth geophysics"--
    Type of Medium: 12
    Pages: 1 Online-Ressource (XII, 543 Seiten) , Illustrationen
    Edition: Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
    ISBN: 9781107306189
    Language: English
    Note: Contents Preface and acknowledgments The book website www.cambridge.org/smylie 1 Introduction and theoretical background 1.1 Scalar, vector and tensor analysis 1.2 Separation of vector fields 1.3 Vector spherical harmonics 1.4 Elasticity theory 1.5 Linear algebraic systems 1.6 Interpolation and approximation 2 Time sequence and spectral analysis 2.1 Time domain analysis 2.2 Linear optimum Wiener filters 2.3 Frequency domain analysis 2.4 Fourier series and transforms 2.5 Power spectral density estimation 2.6 Maximum entropy spectral analysis 3 Earth deformations 3.1 Equilibrium equations 3.2 The reciprocal theorem of Betti 3.3 Radial equations: spheroidal and torsional 3.4 Dynamical equations 3.5 Solutions near the geocentre 3.6 Numerical integration of the radial equations 3.7 Fundamental, regular solutions in the inner core 4 Earth's rotation: observations and theory 4.1 Reference frames 4.2 Polar motion and wobble 4.3 The dynamics of polar motion and wobble 4.4 Nutation and motion of the celestial pole 5 Earth's figure and gravitation 5.1 Historical development 5.2 External gravity and figure 5.3 Equilibrium theory of the internal figure 5.4 Gravity coupling 6 Rotating fluids and the outer core 6.1 The inertial wave equation 6.2 Dynamics of the fluid outer core 6.3 Scaling of the core equations 6.4 Compressibility and density stratification 7 The subseisniic equation and boundary conditions 7.1 The subseismic wave equation 7.2 Deformation of the shell and inner core 8 Variational methods and core modes 8.1 A subseismic variational principle 8.2 Representation of the functional 8.3 Finite element support functions 8.4 Boundary conditions and constraints 8.5 Numerical implementation and results 8.6 Rotational splitting and viscosity 8.7 A viscosity profile for the outer core 9 Static deformations and dislocation theory 9.1 The elasticity theory of dislocations 9.2 The theory for realistic Earth models 9.3 Changes in the inertia tensor and the secular polar shift Appendix A Elementary results from vector analysis A.1 Vector identities A.2 Vector calculus identities A.3 Integral theorems Appendix B Properties of Legendre functions B.1 Recurrence relations B.2 Evaluation of Legendre functions Appendix C Numerical Earth models C.1 The Earth models References Fortran index Subject index
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Fachbereich Geowissenschaften, FU Berlin, Berlin
    In:  Herausgeberexemplar
    Publication Date: 2024-06-19
    Description: Dimitris Frydas & Helmut Keupp: Upper Cenozoic calcareous and siliceous phytoplankton stratigraphy for marine sediments in central Crete, Greece ...3 ; Dimitris Frydas & Helmut Keupp: The Miocene/Pliocene boundary in NW Crete by means of calcareous nannofossil assemblages ...27 ; Dimitris Frydas: Silicoflagellates of the Late Quaternary Sapropel S5 from the Southeastern Mediterranean Sea, „Meteor“-Cruise 40/4, Site 69 ...35 ; Joachim Gründel: Neritimorpha und weitere Caenogastropoda (Gastropoda) aus dem Dogger Norddeutschlands und des nordwestlichen Polens ...45 ; Rolf Kohring: Nonmarine trace fossils from the Bathonian (Middle Jurassic) of Msemrir (Central High Atlas, Morocco) ...101 ; Uwe Gloy: Bibliographie 2000 ...113 ; --- ❖ --- „Biologie und Paläobiologie der Cephalopoden: Bilanz und Ausblick“ Treffen deutschsprachiger Cephalopodenforscher vom 8. bis 9. März 2001 an der FU Berlin --- Helmut Keupp & Kerstin Warnke: Biologie und Paläobiologie der Cephalopoden: Bilanz und Ausblick ...119 ; Sigurd v. Boletzky: Paläobiologie der Cephalopoden - vom Petrefaktischen zur Frage: „Wie hat das Tier gelebt?“ ...121 ; Günter Schweigert & Gerd Dietl: Die Kieferelemente von Physodoceras (Ammonitina, Aspidoceratidae) im Nusplinger Plattenkalk (Oberjura, Schwäbische Alb) ...131 ; Christian Klug & Dieter Korn: Epizoa and post-mortem epicoles on cephalopod shells - Devonian and Carboniferous examples from Morocco ...145 ; Ute Richter: Spuren der Weichkörperverlagerung auf Pyritsteinkernen von Ammonoideen ...157 ; Kerstin Warnke, Jörg Plötner, José Ignacio Santana, Maria José Rueda & Octavio Llinas: Zur Phylogenie rezenter Cephalopoden - Erste Ergebnisse einer molekulargenetischen Analyse des 18S rRNA-Gens ...169 ; Dieter Korn & Christian Klug: Biometrie analyses of some Palaeozoic ammonoid conchs ...173 ; Gernot Arp: Fazies, Stratigraphie und Ammonitenfauna des Mittleren und Oberen Dogger bei Neumarkt i.d.Opf. (Bajocium-Oxfordium, Süddeutschland), ...189 ;
    Description: conference
    Description: DFG, SUB Göttingen
    Keywords: ddc:560 ; Paläobiologie ; Paläontologie
    Language: German , English
    Type: doc-type:book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-19
    Description: The Mid and Late Holocene environment of the Eastern Juyanze and Sogo Nur basins was reconstructed on the base of ostracod assemblages, shell chemistry, sedimentology, palynology and the occurrence of other fossils such as molluscs and a large diatom species in the course of the study. Their climatic implications were discussed in the context of other Holocene records from northwestern China and Central Asia. A brief synopsis is given in the following. The period of maximum moisture availability (China’s Hypsithermal or the Atlantic period in European usage), otherwise recorded roughly between 8000 and 6000 a BP (e.g. LISTER et al. 1991, GASSE et al. 1996, Liu et al. 1998), was neither registered at the site of the main section in the Eastern Juyanze basin nor in the Sogo Nor basin. Sediments at the Eastem-Juyanze-section-A, which was investigated most intensively, are not older than about 5400 cal. a BP and span a period up to about 2700 cal. a BP, whereas the record of the Sogo Nur sections covers a period from about 2500 up to about 400 cal. a BP. However, the subsequent cold and dry period about 5400 a BP, which was proposed earlier from a number of sites in eastern and western China, from Mongolia, India and even America (e.g. ZHOU et al. 1991a, DOROFEYUK & TARASOV 1998, PETIT-MAIRE 1994, MoUGUiART et al. 1998), was clearly recorded as a dry period at the Eastern Juyanze basin too. This study confirms, that this cold and dry Mid Holocene spell was in fact a far-reaching, probably global event. Between about 5000 and 4100 cal. a BP, warm and humid conditions prevailed at most sites in the north of the Tibetan Plateau (e.g. WÜNNEMANN et al. 1998b), supported by high lake levels of the Lake Eastern Juyanze during that period. Simultaneously, the conditions remained rather dry on the southern Tibetan Plateau (e.g. FONTES et al. 1996), probably resulting from the weakening of the Indian monsoon. Climate deterioration occurred all over Central Asia between about 4100 and 3000 cal. a BP. Lake levels are generally regarded as decreasing during that period, soil formation around Qinghai Lake ceased and pronounced cold and dry spells were recorded at about 4100, 3800 and 3400 cal. a BP at several sites of Central Asia and by corresponding regressive events of Lake Eastern Juyanze (e.g. YAO & THOMPSON 1992, SHI et al. 1993, VAN CAMPO et al. 1996). A dramatic shift from cold and dry to warm conditions and a return to cold and dry conditions again was recorded about 3000 cal. a BP by the Dunde ice core (YAO & THOMPSON 1992) and caused rapid environmental fluctuations in the Eastern Juyanze basin. Lake Eastern Juyanze experienced three short-term episodes of desiccation between about 3200 and 2900 cal. a BP, but was re-established in between and afterwards. Glaciers of Central Asia advanced and the lakes displayed a non-uniform response (e.g. ZHOU et al. 1991a), probably due to different hydrological conditions and the presence and different response of glaciers in the respective catchment area. After 3000 cal. a BP, climate is regarded as generally colder and drier than before (LISTER et al. 1991, PETIT-MAIRE1994). However, a return to slightly warmer and more humid conditions led to rising lake levels and a new period of soil formation on the Loess Plateau between about 2700 and 2000 cal. a BP (FANG 1991, SHI et al. 1993). The sediments of the Eastem-Juyanze-section-A are not younger than about 2700 cal. a BP and have therefore not recorded environmental changes after that time, but the record of the Sogo Nur sections starts at about 2500 cal. a BP and was used to trace the Late Holocene climate evolution. Intermediate lake levels of the Sogo Nur between 2500 and 2000 cal. a BP also point to relatively humid conditions, but very low lake levels were established at about 1700 cal. a BP. This coincides with colder and drier conditions between about 2000 and 1500 cal. a BP, indicated by lake records of eastern China, the Tibetan Plateau and the Dunde ice core (e.g. FENG et al. 1993, GASSE et al. 1996, Liu et al. 1998). Another period of relatively warm and humid conditions occurred between about 1400 and 700 cal. a BP (e.g. Liu et al. 1993), interrupted by a short-term regression of the Sogo Nur at about 1000 cal. a BP. This temporary drop of the water level of Sogo Nur corresponds to a drastic cooling event. Lowest temperatures for the last 4000 years were inferred from the Dunde ice core at that time (YAO & THOMPSON 1992). A short period of relatively warm and humid conditions was recorded about 800 cal. a BP (e.g. Liu et al. 1998) and caused high lake levels of the Sogo Nur again. Colder and drier conditions predominated afterwards in eastern China as well as in the continental interior between about 400 and 75 cal. a BP (1550-1875 AD, ZHOU et al. 1991a, FENG et al. 1993) and are related to the Little Ice Age, which was recorded at sites all over the northern hemisphere (LAMB 1977). In contrast, the last 100 years are characterised by relatively warm conditions in China. The environmental fluctuations of the Mid to Late Holocene Lake Eastern Juyanze were regarded as virtually unaffected by human activities and thus, entirely driven by climate. Nonetheless, rapid lake level fluctuations were recorded which gave rise to drastic changes of the lake area due to the flat morphology of the Eastern Juyanze basin. Surprisingly, short-term desiccation events were recorded about 3000 cal. a BP at the site of the main section. However, it was not possible to assess the environmental conditions of the neighbouring topographically-closed basin lakes at that time. Late Holocene environmental fluctuations of the Sogo Nur were relatively dramatic as well. Very shallow levels were recorded at about 1700 cal. a BP and attributed to cold and dry climatic conditions, reported from other sites of Central Asia (Gu et al. 1993, GASSE et al. 1996). At least sub-littoral conditions of the Sogo Nur (water depth 〉 10 m) prevailed in the subsequent period between 1500 and 400 cal. a BP, but it was not possible on the base of the investigations at the Sogo Nur, to prove or deny the merging of the lakes Sogo Nur and Gaxun Nur in Holocene times. The hydrological balance of Sogo Nur was probably not affected by withdrawal of water for irrigation purposes before the Tang Dynasty (618-906 AD, CHEN et a. 1999). The short-term regressive event at about 1000 cal. a BP (950 AD) coincides with a period of increased agricultural population in the catchment area (Chen et a. 1999) as well as a climate spell of cold and dry conditions (YAO & THOMPSON 1992). Similarly, the decrease of the lake level after 700 cal. a BP (1250 AD) may either reflect the simultaneous increase of the agricultural population in the catchment area or the gradual shift towards cooler ands drier conditions during that period or both. Thus, it was not possible to distinguish between climate-driven and man-made fluctuations of the environment of the Sogo Nur.
    Description: Die Umweltverhältnisse des östlichen Juyanze- und des Sogo-Nur-Beckens im mittleren und späten Holozän wurden anhand der Ostracoden- Vergesellschaftung, des Schalen-Chemismus, anhand sedimentologischer und palynologischer Befunde und anhand des Auftretens weiterer Fossilien (z.B. von Mollusken und einer großen Diatomeen- Art) rekonstruiert. Die darüber hinaus abgeleiteten Klimaverhältnisse wurden im Vergleich zu anderen, bereits existierenden Klima-Rekonstruktionen aus NW-China und Zentralasien diskutiert. Eine kurze Zusammenfassung wird im Folgenden gegeben. Die Periode maximaler Feuchtigkeit (das chinesische Hypsithermal bzw. das Atlantikum in Europa), an anderen Lokalitäten etwa zwischen 8000 und 6000 J.v.h. belegt (u.a. LISTER et al. 1991, GASSE et al. 1996, Liu et al. 1998), wurde weder durch das Haupt-Profil im östlichen Juyanze-Becken noch im Sogo-Nur-Becken erfasst. Die Sedimente des am detailliertesten untersuchten Profiles (Eastern-Juyanze-section-A) decken den Zeitraum zwischen 5400 und 2700 Jahren vor heute (J.v.h. = kalibrierte 14C-Jahre vor 1950 bzw. Kalenderjahre vor 1950) ab, während die untersuchten Profile am Sogo Nur den Zeitraum von 2500 bis ca. 400 J.v.h. umfassen. Die an die Periode maximaler Feuchtigkeit anschließende, trocken-kalte Klimaphase vor etwa 5400 J.v.h., die an vielen Lokalitäten Ost- und Westchinas, der Mongolei, Indiens und selbst Amerikas abgeleitet wurde (u.a. ZHOU et al. 1991a, DOROFEYUK & TARASOV 1998, PETIT-MAIRE 1994, MOUGUIART et al. 1998), konnte als trockene Periode im östlichen Juyanze-Becken eindeutig ermittelt werden. Die vorliegenden Untersuchungen stützen die Auffassung, dass diese trocken-kalte Klimaperiode im mittleren Holozän ein einschneidendes Klima-Ereignis von möglicherweise globaler Tragweite war. Für den Zeitraum zwischen etwa 5000 und 4100 J.v.h. wurden warme und humide Verhältnisse an den meisten Lokalitäten nördlich des Tibet-Plateaus rekonstruiert (z.B. WÜNNEMANN et al. 1998b). Diese Annahme wird durch die Rekonstruktion hoher Seespiegel des östlichen Juyanze-Sees für den entsprechenden Abschnitt des Holozäns gestützt. Aufgrund der vermutlich schon deutlichen Abschwächung des indischen Monsuns waren die Umweltbedingungen im südlichen Tibet während dieser Zeit relativ trocken. Eine Klimaverschlechterung wurde für Zentralasien zwischen etwa 4100 und 3000 J.v.h. festgestellt. Die Seespiegel gingen im allgemeinen zurück, die Bodenbildung am Qinghai-See setzte aus und besonders ausgeprägte, trocken-kalte Verhältnisse wurden um 4100, 3800 und 3400 J.v.h. an verschiedenen Lokalitäten Zentralasiens dokumentiert (u.a. SHI et al. 1993, YAO & THOMPSON 1992, VAN CAMPO et al. 1996), die zeitgleich mit Seespiegelabsenkungen des östlichen Juyanze-Sees auftraten. Ein dramatischer Klimawechsel von trocken-kalten zu warmen Verhältnissen und wieder zu trocken-kalten Bedingungen wurde vor etwa 3000 J.v.h. im Eis des Dunde-Gletschers aufgezeichnet (YAO & THOMPSON 1992), der erhebliche Umweltveränderungen im östlichen Juyanze-Becken auslöste. Dort erfolgte ein dreimaliges Austrocknen des östlichen Juyanze-Sees mit zwischenzeitlichem und nachfolgendem Seespiegelanstieg zwischen etwa 3200 und 2900 J.v.h. Gletschervorstöße traten in den zentralasiatischen Gebirgen auf, und die Seen dieser Region reagierten vermutlich aufgrund unterschiedlicher hydrologischer Verhältnisse, in Abhängigkeit vom Vorhandensein und der Dynamik der Gletscher in den jeweiligen Einzugsgebieten, uneinheitlich (z.B. ZHOU et al. 1991a). Ab dem Zeitpunkt 3000 J.v.h. wird das Klima im allgemeinen als kälter und trockener als zuvor aufgefasst (LiSTER et al. 1991, PETIT-MAIRE 1994). Ein Klima-Umschwung zu etwas wärmeren und feuchteren Bedingungen führte jedoch zu steigenden Seespiegeln und einsetztender Bodenbildung auf dem Löss-Plateau zwischen etwa 2700 und 2000 J.v.h. (FANG 1991, SHI et al. 1993). Da die Sedimente des Profils , Eastern-Juyanze-section-A ‘ nicht jünger als etwa 2700 J.v.h. sind, lassen sich diese Verhältnisse nicht mehr aufgrund der Befunde vom östlichen Juyanze-Becken belegen. Das Profil vom Sogo Nur setzt dagegen mit etwa 2500 J.v.h. ein, so dass im Folgenden die Ergebnisse vom Sogo Nur für die Rekonstruktion des Klimas im späten Holozän herangezogen werden. Mittlere Seespiegel des Sogo Nur wurden für den Zeitraum von 2500 bis 2000 J.v.h. rekonstruiert und deuten ebenfalls auf relativ humide Verhältnisse hin, jedoch kam es bald darauf zur Ausbildung eines sehr flachen Sees um etwa 1700 J.v.h. Diese Phase eines sehr niedrigen Seespiegels korreliert mit trocken-kalten Klimabedingungen zwischen etwa 2000 und 1500 J.v.h., die sich anhand von See-Rekonstruktionen in Ost-China, vom Tibet-Plateau und anhand des Dunde-Eiskems nachweisen ließen (u.a. FENG et al. 1993, GASSE et al. 1996, Liu et al. 1998). Eine weitere Periode relativ warmer und feuchter Verhältnisse schloss sich etwa zwischen 1400 und 700 J.v.h. an (z.B. Liu et al. 1993), die durch eine Regression des Sogo Nur um 1000 J.v.h. unterbrochen wurde. Diese zeitweilige Seespiegelabsenkung fällt mit einem drastischen Abkühlungsereignis zusammen, für das aufgrund der Untersuchungen des Dunde-Eiskems die niedrigsten Temperaturen während der letzten 4000 Jahre angenommen werden müssen (YAO & THOMPSON 1992). Eine kurze Periode warmer und humider Verhältnisse (z.B. Liu et al. 1998) führte zur Ausbildung hoher Seespiegel am Sogo Nur vor etwa 800 J.v.h. Kalte, trockene Bedingungen beherrschten Ost-China und das Landesinnere während der nachfolgenden Periode von etwa 400 und 75 J.v.h. (1550-1875 AD, ZHOU et al. 1991a, FENG et al. 1993) die der auf der gesamten Nordhalbkugel nachgewiesenen ,Kleinen Eiszeit’ entspricht (LAMB 1977). Die letzten 100 Jahre in China waren im Gegensatz dazu durch warme Verhältnisse gekennzeichnet. Die Umweltveränderungen des östlichen Juyanze-Sees im mittleren bis späten Holozän wurden ausschließlich klimatisch gesteuert, der menschliche Einfluss kann für diesen Zeitraum vernachlässigt werden. Trotzdem traten drastische Seespiegelfluktuationen auf, die im flachen östlichen Juyanze-Becken zu enormen Schwankungen der Seefläche geführt haben müssen. Erstaunlicherweise wurden an der Lokalität des Profils ,Eastern- Juyanze-section-A‘ auch Trockenfall-Perioden des östlichen Juyanze-Sees um etwa 3000 J.v.h. nachgewiesen. Im Zuge der vorliegenden Arbeiten war es jedoch nicht möglich, die Umweltbedingungen der benachbarten Seebecken des Hei Flusses zu diesem Zeitpunkt zu untersuchen. Die Umweitveränderungen des Sogo Nur im späten Holozän waren ebenfalls beträchtlich. Ein sehr flacher Seespiegel existierte vor etwa 1700 J.v.h., zu einem Zeitpunkt, zu dem trocken-kalte Bedingungen für Zentralasien nachgewiesen wurden (Gu et al. 1993, GASSE et al. 1996). Sublitorale Bedingungen (Wassertiefe 〉10 m) herrschten im gesamten nachfolgenden Zeitabschnitt von 1500 bis 400 J.v.h. vor, jedoch war es nicht möglich, anhand der vorliegenden Befunde auf den Zusammenschluss von Gaxun Nur und Sogo Nur im Holozän zu schließen bzw. diesen auszuschließen. Ein erheblicher Eingriff in das hydrologische Gleichgewicht des Sogo Nur erfolgte vermutlich erst durch die Ableitung von Wasser für Bewässerungszwecke während der Tang-Dynastie (618-906 AD, CHEN et a. 1999). Die Seespiegelabsenkung des Sogo Nur um etwa 1000 J.v.h. (950 AD) könnte demnach einerseits durch die Zunahme der agrarischen Bevölkerung im Einzugsgebiet hervorgerufen worden sein (Chen et a. 1999), andererseits jedoch auch auf die Ausbildung trocken-kalter Klimabedingungen zu diesem Zeitpunkt zurückgeführt werden (Yao & Thompson 1992). In ähnlicher Weise könnte der Rückgang des Seespiegels nach etwa 700 J.v.h. (1250 AD) auf den festgestellten Anstieg der Landwirtschaft betreibenden Bevölkerung hindeuten, in gleicher Weise jedoch auch im Zusammenhang mit der allgemeinen Klimaverschlechterung, hin zu kühleren, trockneren Bedingungen, stehen. Aufgrund des möglichen Zusammenwirkens klimatischer und anthropogener Trends war es nicht möglich, den Einfluss beider Faktoren auf die Umweltveränderungen des Sogo Nur in den vergangenen 1000 Jahren voneinander getrennt zu beurteilen.
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:560 ; Palökologie ; Holozän ; Paläoklima ; Ostracoda ; Stabile Isotope ; China ; Spurenelemente
    Language: English
    Type: doc-type:book
    Format: 136
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Fachbereich Geowiss., FU, Berlin
    In:  Herausgeberexemplar
    Publication Date: 2024-06-17
    Description: Tertiär-Block [:] Helmut Keupp & Spyridon M. Bellas (in Zusammenarbeit mit Jan Bartholdy und Dimitris Frydas): Neogene development of the sedimentary basins of NW Crete island, Chania Prefecture, South Aegean Arc System (Greece) …3 ; Dimitris Frydas & Helmut Keupp: Biostratigraphical and paleoecological research of Lower Pliocene diatoms and silicoflagellates from northwestern Crete, Greece …119 ; Wilfried Krutzsch: Stratigraphische Tabelle Oberoligozän und Neogen (marin - kontinental) ...153 ; Glenn Fechner: Eine Dinoflagellaten-Zysten-Flora aus der ehern. Ziegeleitongrube bei Welsow (nordöstl. Mark Brandenburg) ...167 ; Rolf Kohring & Thomas Schlüter: Über ein fossiles Harz aus einer Braunkohle (?Eozän) von Gibbsland und Anglesey (Victoria, S-Australien) ...177 ; Mollusken-Block [:] Joachim Gründel, Thierry Pélissié & Michel Guérin: Brackwasser-Gastropoden des mittleren Doggers von la Balme (Causses du Quercy, Südfrankreich) ...185 ; Joachim Gründel: Archaeogastropoda aus dem Dogger Norddeutschlands und des nordwestlichen Polens ...205 ; Joachim Gründel: Gordenellidae n. fam., eine neue Gastropoden-Familie aus dem Dogger und Malm Europas ...255 ; Steffen Kiel & Klaus Bandel: New slit-bearing Archaeogastropoda from the Late Cretaceous of Spain ...269 ; Helmut Keupp: Anomale Muskelleisten bei Ammoniten ...279 ; Thomas Küchler: Nostoceras (Euskadiceras) euskadiense a new ammonite subgenus and species from the higher Upper Campanian (Upper Cretaceous) of northern Spain ...291 ; []
    Description: research
    Description: DFG, SUB Göttingen
    Keywords: ddc:560 ; Paläobiologie ; Paläontologie
    Language: German , English
    Type: doc-type:book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.12
    Chichester, [England] : Wiley
    Call number: 9781444328479 (e-book)
    Type of Medium: 12
    Pages: 1 Online-Ressource (XIII, 768 Seiten) , Illustrationen
    Edition: Second edition
    ISBN: 9781444328479 (e-book) , 978-1-4443-2847-9
    Language: English
    Note: Contents Contents Preface Acknowledgements Part 1: Making Sediment Introduction Clastic sediment as a chemical and physical breakdown product 1.1 Introduction: clastic sediments—'accidents' of weathering 1.2 Silicate minerals and chemical weathering 1.3 Solute flux: rates and mechanisms of silicate chemical weathering 1.4 Physical weathering 1.5 Soils as valves and filters for the natural landscape 1.6 Links between soil age, chemical weathering and weathered-rock removal 1.7 Provenance: siliciclastic sediment-sourcing Further reading 2 Carbonate, siliceous, iron-rich and evaporite sediments 2.1 Marine vs. freshwater chemical composition and fluxes 2.2 The calcium carbonate system in the oceans 2.3 Ooid carbonate grains 2.4 Carbonate grains from marine plants and animals 2.5 Carbonate muds, oozes and chalks 2.6 Other carbonate grains of biological origins 2.7 Organic productivity, sea-level and atmospheric controls of biogenic CaCO3 deposition rates 2.8 CaCO3 dissolution in the deep ocean and the oceanic CaCO3 compensation mechanism 2.9 The carbonate system on land 2.10 Evaporite salts and their inorganic precipitation as sediment 2.11 Silica and pelagic plankton 2.12 Iron minerals and biomineralizers 2.13 Desert varnish 2.14 Phosphates 2.15 Primary microbial-induced sediments: algal mats and stromatolites Further reading 3 Sediment grain properties 3.1 General 3.2 Grain size 3.3 Grain-size distributions 3.4 Grain shape and form 3.5 Bulk properties of grain aggregates Further reading Part 2: Moving Fluid Introduction 4 Fluid basics 4.1 Material properties of fluids 4.2 Fluid kinematics 4.3 Fluid continuity with constant density 4.4 Fluid dynamics 4.5 Energy, mechanical work and power Further reading 5 Types of fluid motion 5.1 Osborne Reynolds and flow types 5.2 The distribution of velocity in viscous flows: the boundary layer 5.3 Turbulent flows 5.4 The structure of turbulent shear flows 5.5 Shear flow instabilities, flow separation and secondary currents 5.6 Subcritical and supercritical flows: the Froude number and hydraulic jumps 5.7 Stratified flow generally 5.8 Water waves 5.9 Tidal flow—long-period waves Further reading Part 3: Transporting Sediment Introduction 6 Sediment in fluid and fluid flow—general 6.1 Fall of grains through stationary fluids 6.2 Natural flows carrying particulate material are complex 6.3 Fluids as transporting machines 6.4 Initiation of grain motion 6.5 Paths of grain motion 6.6 Categories of transported sediment 6.7 Some contrasts between wind and water flows 6.8 Cohesive sediment transport and erosion 6.9 A warning: nonequilibrium effects dominate natural sediment transport systems 6.10 Steady state, deposition or erosion: the sediment continuity equation and competence vs. capacity Further reading 7 Bedforms and sedimentary structures in flows and under waves 7.1 Trinity of interaction: turbulent flow, sediment transport and bedform development 7.2 Water-flow bedforms 7.3 Bedform phase diagrams for water flows 7.4 Water flow erosional bedforms on cohesive beds 7.5 Water wave bedforms 7.6 Combined flows: wave-current ripples and hummocky cross-stratification 7.7 Bedforms and structures formed by atmospheric flows Further reading 8 Sediment gravity flows and their deposits 8.1 Introduction 8.2 Granular flows 8.3 Debris flows 8.4 Turbidity flows 8.5 Turbidite evidence for downslope transformation from turbidity to debris flows Further reading 9 Liquefaction, fluidization and sliding sediment deformation 9.1 Liquefaction 9.2 Sedimentary structures formed by and during liquefaction 9.3 Submarine landslides, growth faults and slumps 9.4 Desiccation and synaeresis shrinkage structures Further reading Part 4: Major External Controls on Sedimentation and Sedimentary Environments Introduction 10 Major external controls on sedimentation 10.1 Climate 10.2 Global climates: a summary 10.3 Sea-level changes 10.4 Tectonics 10.5 Sediment yield, denudation rate and the sedimentary record Further reading Part 5: Continental Sedimentary Environments Introduction 11 Rivers 11.1 Introduction 11.2 River networks, hydrographs,patterns and long profiles 11.3 Channel form 11.4 Channel sediment transport processes, bedforms and internal structures 11.5 The floodplain 11.6 Channel belts, alluvial ridges and avulsion 11.7 River channel changes, adjustable variables and equilibrium 11.8 Alluvial architecture: product of complex responses 11.9 Alluvial architecture: scale, controls and time Further reading 12 Subaerial Fans: Alluvial and Colluvial 12.1 Introduction 12.2 Controls on the size (area) and gradient of fans 12.3 Physical processes on alluvial fans 12.4 Debris-flow-dominated alluvial fans 12.5 Stream-flow-dominated alluvial fans 12.6 Recognition of ancient alluvial fans and talus cones Further reading 13 Aeolian Sediments in Low-Latitude Deserts 13.1 Introduction 13.2 Aeolian system state 13.3 Physical processes and erg formation 13.4 Erg margins and interbedform areas 13.5 Erg and draa evolution and sedimentary architecture 13.6 Erg construction, stasis and destruction: climate and sea-level controls 13.7 Ancient desert facies Further reading 14 Lakes 14.1 Introduction 14.2 Lake stratification 14.3 Clastic input by rivers and the effect of turbidity currents 14.4 Wind-forced physical processes 14.5 Temperate lake chemical processes and cycles 14.6 Saline lake chemical processes and cycles 14.7 Biological processes and cycles 14.8 Modern temperate lakes and their sedimentary facies 14.9 Lakes in the East African rifts 14.10 Lake Baikal 14.11 The succession of facies as lakes evolve 14.12 Ancient lake facies Further reading 15 Ice 15.1 Introduction 15.2 Physical processes of ice flow 15.3 Glacier flow, basal lubrication and surges 15.4 Sediment transport, erosion and deposition by flowing ice 15.5 Glacigenic sediment: nomenclature and classification 15.6 Quaternary and modern glacial environments and facies 15.7 Ice-produced glacigenic erosion and depositional facies on land and in the periglacial realm 15.8 Glaciofluvial processes on land at and within the ice-front 15.9 Glacimarine environments 15.10 Glacilacustrine environments 15.11 Glacial facies in the pre-Quaternary geological record: case of Cenozoic Antarctica Further reading Part 6: Marine Sedimentary Environments Introduction 16. Estuaries 16.1 Introduction 16.2 Estuarine dynamics 16.3 Modern estuarine morphology and sedimentary environments 16.4 Estuaries and sequence stratigraphy Further reading 17. River and Fan Deltas 17.1 Introduction to river deltas 17.2 Basic physical processes and sedimentation at the river delta front 17.3 Mass movements and slope failure on the subaqueous delta 17.4 Organic deposition in river deltas 17.5 River delta case histories 17.6 River deltas and sea-level change 17.7 Ancient river delta deposits 17.8 Fan deltas Further reading 18. Linear Siliciclastic Shorelines 18.1 Introduction 18.2 Beach processes and sedimentation 18.3 Barrier-inlet-spit systems and their deposits 18.4 Tidal flats, salt marsh and chenier ridges 18.5 Ancient clastic shoreline facies Further reading 19 Siliciclastic Shelves 19.1 Introduction: shelf sinks and lowstand bypass 19.2 Shelf water dynamics 19.3 Holocene highstand shelf sediments: general 19.4 Tide-dominated, low river input, highstand shelves 19.5 Tide-dominated, high river input, highstand shelves 19.6 Weather-dominated highstand shelves Further reading 20 Calcium-carbonate-evaporite Shorelines, Shelves and Basins 20.1 Introduction: calcium carbonate 'nurseries' and their consequences 20.2 Arid carbonate tidal flats, lagoons and evaporite sabkhas 20.3 Humid carbonate tidal flats and marshes 20.4 Lagoons and bays 20.5 Tidal delta and margin-spillover carbonate tidal sands 20.6 Open-shelf carbonate ramps 20.7 Platform margin reefs and carbonate build-ups 20.8 Platform margin slopes and basins 20.9 Carbonate sediments, cycles and sea-level change 20.10 Displacement and destruction of carbonate environments: silicicl
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-21
    Description: As network infrastructures with 10 Gb/s bandwidth and beyond have become pervasive and as cost advantages of large commodity-machine clusters continue to increase, research and industry strive to exploit the available processing performance for large-scale database processing tasks. In this work we look at the use of high-speed networks for distributed join processing. We propose Data Roundabout as alight weight transport layer that uses Remote Direct Memory Access (RDMA) to gain access to the throughput opportunities in modern networks. The essence of Data Roundabout is a ring shaped network in which each host stores one portion of a large database instance. We leverage the available bandwidth to (continuously) pump data through the high-speed network. Based on Data Roundabout, we demonstrate cyclo-join, which exploits the cycling flow of data to execute distributed joins. The study uses different join algorithms (hash join and sort-merge join) to expose the pitfalls and the advantages of each algorithm in the data cycling arena. The experiments show the potential of a large distributed main-memory cache glued together with RDMA into a novel distributed database architecture.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  ACM Transactions on Database Systems
    Publication Date: 2024-02-21
    Description: A grand challenge of distributed query processing is to devise a self-organizing architecture which exploits all hardware resources optimally to manage the database hot set, minimize query response time, and maximize throughput without single point global coordination. The Data Cyclotron architecture [Goncalves and Kersten 2010] addresses this challenge using turbulent data movement through a storage ring built from distributed main memory and capitalizing on the functionality offered by modern remote-DMA network facilities. Queries assigned to individual nodes interact with the storage ring by picking up data fragments, which are continuously flowing around, that is, the hot set. The storage ring is steered by the Level Of Interest (LOI) attached to each data fragment, which represents the cumulative query interest as it passes around the ring multiple times. A fragment with LOI below a given threshold, inversely proportional to the ring load, is pulled out to free up resources. This threshold is dynamically adjusted in a fully distributed manner based on ring characteristics and locally observed query behavior. It optimizes resource utilization by keeping the average data access latency low. The approach is illustrated using an extensive and validated simulation study. The results underpin the fragment hot set management robustness in turbulent workload scenarios. A fully functional prototype of the proposed architecture has been implemented using modest extensions to MonetDB and runs within a multirack cluster equipped with Infiniband. Extensive experimentation using both microbenchmarks and high-volume workloads based on TPC-H demonstrates its feasibility. The Data Cyclotron architecture and experiments open a new vista for modern distributed database architectures with a plethora of new research challenges.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  ACM Transactions on Database Systems
    Publication Date: 2024-02-21
    Description: Automatic recycling of intermediate results to improve both query response time and throughput is a grand challenge for state-of-the-art databases. Tuples are loaded and streamed through a tuple-at-a-time processing pipeline, avoiding materialization of intermediates as much as possible. This limits the opportunities for reuse of overlapping computations to DBA-defined materialized views and function/result cache tuning. In contrast, the operator-at-a-time execution paradigm produces fully materialized results in each step of the query plan. To avoid resource contention, these intermediates are evicted as soon as possible. In this article we study an architecture that harvests the byproducts of the operator-at-a-time paradigm in a column-store system using a lightweight mechanism, the recycler. The key challenge then becomes the selection of the policies to admit intermediates to the resource pool, to determine their retention period, and devise the eviction strategy when facing resource limitations. The proposed recycling architecture has been implemented in an open-source system. An experimental analysis against the TPC-H ad-hoc decision support benchmark and a complex, real-world application (SkyServer) demonstrates its effectiveness in terms of self-organizing behavior and its significant performance gains. The results indicate the potentials of recycling intermediates and charts a route for further development of database kernels.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: PIK 24-95568
    Type of Medium: Monograph available for loan
    Pages: XV, 296 S. , graph. Darst.
    Edition: Repr.
    ISBN: 0521424658 , 0521373980
    Series Statement: Historical perspectives on modern economics
    Language: English
    Note: Literaturverz. S. 265 - 280
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Monograph available for loan
    Monograph available for loan
    Cambridge, Mass. : Belknap Press
    Call number: RIFS 23.95556
    Type of Medium: Monograph available for loan
    Pages: XVI, 622 Seiten , Ill.
    Edition: 1st paperback ed.
    ISBN: 9780674292130
    Uniform Title: Chute du ciel
    Language: English
    Branch Library: RIFS Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...