ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (74,416)
  • Maps
  • Molecular Diversity Preservation International  (74,416)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (49,604)
  • Natural Sciences in General  (24,812)
Collection
  • Articles  (74,416)
  • Maps
Years
Journal
Topic
  • 1
    Publication Date: 2021-10-29
    Description: Due to their low density, magnesium alloys are very appealing for light-weight constructions. However, the use of the most common magnesium alloy, AZ91 (Mg 9 wt.% Al, 1 wt.% Zn), is limited to temperatures below 150 °C due to creep failure. Several alloys with an improved creep resistance have been developed in the past, for example the alloy MRI 230D or Ca-alloyed AZ91 variants. However, there is an ongoing discussion in the literature regarding the mechanisms of the improved creep resistance. One factor claimed to be responsible for the improved creep resistance is the intermetallic phases which form during casting. Another possible explanation is an increased creep resistance due to the formation of precipitates. To gain more insight into the improved creep resistance of MRI 230D, nanoindentation measurements have been performed on the different phases of as-cast, creep-deformed and heat-treated samples of MRI 230D and Ca-alloyed AZ91 variants. These nanoindentation measurements clearly show that the intermetallic phase (IP) of the alloy MRI 230D does not lose strength during creep deformation in contrast to the Ca-alloyed AZ91 variants. High-temperature nanoindentation measurements performed at 200 °C clearly show that the intermetallic phases of the MRI 230D alloy maintain their strength. This is in clear contrast to the Ca-alloyed AZ91 variants, where the IP is significantly softer at 200 °C than at room temperature. Atom probe measurements have been used to gain insight into the differences in terms of chemical composition between the IPs of MRI 230D and the Ca-alloyed AZ91 variants in order to understand the dissimilar behaviour in terms of strength loss with increasing temperature.
    Electronic ISSN: 2075-4701
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-28
    Description: Monitoring gait patterns in daily life will provide a lot of biological information related to human health. At present, common gait pressure analysis systems, such as pressure platforms and in-shoe systems, adopt rigid sensors and are wired and uncomfortable. In this paper, a biomimetic porous graphene–SBR (styrene-butadiene rubber) pressure sensor (PGSPS) with high flexibility, sensitivity (1.05 kPa−1), and a wide measuring range (0–150 kPa) is designed and integrated into an insole system to collect, process, transmit, and display plantar pressure data for gait analysis in real-time via a smartphone. The system consists of 16 PGSPSs that were used to analyze different gait signals, including walking, running, and jumping, to verify its daily application range. After comparing the test results with a high-precision digital multimeter, the system is proven to be more portable and suitable for daily use, and the accuracy of the waveform meets the judgment requirements. The system can play an important role in monitoring the safety of the elderly, which is very helpful in today’s society with an increasingly aging population. Furthermore, an intelligent gait diagnosis algorithm can be added to realize a smart gait monitoring system.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-28
    Description: In the past few decades, ZrN thin films have been identified as wear resistant coatings for tribological applications. The mechanical and tribological properties of ZrN thin layers depend on internal stress induced by the adopted deposition techniques and deposition parameters such as pressure, temperature, and growth rate. In sputtering deposition processes, the selected target voltage waveform and the plasma characteristics also play a crucial influence on physical properties of produced coatings. In present work, ZrN thin films, obtained setting different values of duty cycle in a reactive bipolar pulsed dual magnetron sputtering plant, were investigated to evaluate their residual stress through the substrate curvature method. A considerable progressive increase of residual stress values was measured at decreasing duty cycle, attesting the significant role of voltage waveform in stress development. An evident correlation was also highlighted between the values of the duty cycle and those of wear factor. The performed analysis attested an advantageous effect of internal stress, having the samples with high compressive stress, higher wear resistance. A downward trend for wear rate with the increase of internal residual stress was observed. The choice of suitable values of duty cycle allowed to produce ceramic coatings with improved tribological performance.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-28
    Description: One of the challenges in the future of food production, amidst increasing population and decreasing resources, is developing a sustainable food production system. It is anticipated that robotics will play a significant role in maintaining the food production system, specifically in labor-intensive operations. Therefore, the main goal of this project is to develop a robotic fruit harvesting system, initially focused on the harvesting of apples. The robotic harvesting system is composed of a six-degrees-of-freedom (DOF) robotic manipulator, a two-fingered gripper, a color camera, a depth sensor, and a personal computer. This paper details the development and performance of a visual servo system that can be used for fruit harvesting. Initial test evaluations were conducted in an indoor laboratory using plastic fruit and artificial trees. Subsequently, the system was tested outdoors in a commercial fruit orchard. Evaluation parameters included fruit detection performance, response time of the visual servo, and physical time to harvest a fruit. Results of the evaluation showed that the developed visual servo system has the potential to guide the robot for fruit harvesting.
    Electronic ISSN: 2624-7402
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-28
    Description: The cross-flow rotating packed bed (RPB) has attracted wide attention in recent years because of its advantages of large gas capacity, low pressure drop and lack of flooding limitation. However, the complex structure of the packing makes it difficult to obtain the gas flow characteristics in the cross-flow RPB by experiments. In this study, the dry pressure drop in the cross-flow RPB was investigated by computational fluid dynamics (CFD). The packing was modeled by the porous media model and the rotation of the packing was simulated by the sliding mesh model. The simulation results obtained by three turbulence models were compared with experimental results, and the RNG k-ε model was found to best describe the turbulence behaviors in the cross-flow RPB. Then, the effects of gas flow rate and rotating speed on dry pressure drop in different parts of the cross-flow RPB were analyzed. The results of this study can provide important insights into the design and scale-up of cross-flow RPB.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-28
    Description: Textile-reinforced mortar (TRM) is a strengthening material in which textiles are attached to reinforced concrete (RC) structures using an inorganic matrix. Although many studies on structural behavior, various factors that affect TRM behavior could not be determined clearly. Especially, the uncertainty in bonds due to inorganic materials was not considered. In this study, the flexural behavior of TRM-strengthened beams was determined considering intermediate crack debonding occurred. The TRM beam strengthening limit and TRM coefficients were defined considering the possibility of premature failure and experimental results of four other research on 22 specimens. Therefore, it is expected that a conservative design would be possible when the suggested strengthening limit coefficient is applied.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-28
    Description: We report that polymerization makes a robust, practically applicable multifunctional optical device with a continuous wavelength tunable over 500 nm spectral range using UV-polymerizable cholesteric liquid crystals (CLCs). It can be used as a circular polarizer generating an extremely high degree of circularly polarized light with |g| = 1.85~2.00. It can also be used for optical notch filters, bandwidth-variable (from ~28 nm to ~93 nm) bandpass filters, mirrors, and intensity-variable beam splitters. Furthermore, this CLC device shows excellent stability owing to the polymerization of CLC cells. Its performance remains constant for a long time (~2 years) after a high-temperature exposure (170 °C for 1 h) and an extremely high laser beam intensity exposure (~143 W/cm2 of CW 532 nm diode laser and ~2.98 MW/cm2 of Nd: YAG pulse laser operation for two hours, respectively). The optical properties of polymerized CLC were theoretically analyzed by Berreman’s 4 × 4 matrix method. The characteristics of this device were significantly improved by introducing an anti-reflection layer on the device. This wavelength-tunable and multifunctional device could dramatically increase optical research efficiency in various spectroscopic works. It could be applied to many instruments using visible and near-infrared wavelengths.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-28
    Description: As more and more fields utilize deep learning, there is an increasing demand to make suitable training data for each field. The existing interactive object segmentation models can easily make the mask label data because these can accurately segment the area of the target object through user interaction. However, it is difficult to accurately segment the target part in the object using the existing models. We propose a method to increase the accuracy of part segmentation by using the proposed interactive object segmentation model trained only with edge images instead of color images. The results evaluated with the PASCAL VOC Part dataset show that the proposed method can accurately segment the target part compared to the existing interactive object segmentation model and the semantic part-segmentation model.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-28
    Description: To explore the effects of thermal actions on the pore structural features of granite, scanning electron microscope (SEM) and mercury injection experiments were carried out on granite after thermal treatment (25 °C to 400 °C). The pore structure was investigated from various perspectives, including the capillary pressure curve, the pore–throat ratio, the median saturation pressure, the median pore–throat radius, the porosity, the pore volume, and the pore size distribution. Based on mercury intrusion test data, the Winland model of permeability prediction was modified for a high-temperature tight granite reservoir. The results showed that: (1) As the temperature rose, the mercury injection curve was gradually flattened, and the mercury ejection efficiency gradually increased. Meanwhile, the pore–throat ratio and the median saturation pressure decreased exponentially, and the pore connectivity was enhanced. (2) The median pore–throat radius and the porosity of granite increased exponentially as the temperature increased. Above 200 °C, the median pore–throat radius and the porosity increased substantially. (3) The pore volumes of the transitional pores, mesopores and macropores, and the total pore volume inside the granite, increased as the temperature rose. Especially above 200 °C, the transitional pores and the mesopores were prominently developed, and the pore volumes of the transitional pores and the mesopores took up a significantly greater proportion of the total pore volume. (4) As the temperature rose, the pore size distribution of granite became more extensive, the pore–throat structure was obviously developed, and the pore–throat connectivity was enhanced. (5) The relationship between the micropores’ characteristic parameters and the macro-permeability in engineering was established though a modified Winland model, and the modified Winland model had a better prediction effect. The findings provide a solid basis for rock geothermal mining projects and related geotechnical engineering.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-28
    Description: In Europe, the qualification of injection anchors in masonry under static and quasi-static actions is based on an assessment of tests performed in undamaged masonry. Nevertheless, in seismic prone countries like Italy the influences deriving from earthquake actions cannot be disregarded. Masonry elements are very sensitive to cyclic/seismic action and research on the behavior of anchors in damaged masonry is rather limited. The paper presents the results of an experimental campaign aimed at evaluating the residual tensile strength of adhesive anchors installed into undamaged walls that were subsequently subjected to cyclic in-plane loading to simulate seismic actions before. Consequently, the anchors experienced different stresses depending on their location within the walls. Overall, 29 tests were performed with anchors placed both, in undamaged and damaged areas. The results showed that there is a correlation between residual tensile strength and masonry initial conditions, and therefore the installation of anchors in masonry elements should be carefully planned avoiding areas that could be heavily damaged during seismic events or considering redundant connections in critical areas. In particular, it seems that the width of the crack (created by cyclic actions) that passes nearby/into the anchor borehole is the main parameter that affects the ultimate resistance of the anchors.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...