ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (11,291)
  • Organic Chemistry  (10,112)
  • Molecular Sequence Data  (1,179)
  • 1990-1994  (5,709)
  • 1965-1969  (3,129)
  • 1955-1959  (2,453)
Collection
  • Articles  (11,291)
Years
Year
  • 1
    Publication Date: 1994-12-23
    Description: The chloroplast outer envelope protein OEP86 functions as a receptor in precursor protein translocation into chloroplasts. Sequence analysis suggests that the precursor of OEP86 is directed to the chloroplast outer envelope by a cleavable, negatively charged, and unusually long amino-terminal peptide. This presequence is unlike other potential targeting signals and suggests the existence of another membrane insertion pathway. Insertion of precursor OEP86 required the hydrolysis of adenosine triphosphate and the existence of surface exposed chloroplast membrane components, and it was not competed by another precursor protein destined for the internal plastid compartments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirsch, S -- Muckel, E -- Heemeyer, F -- von Heijne, G -- Soll, J -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):1989-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Botanisches Institut, Universitat Kiel, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801125" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Chloroplast Proteins ; Chloroplasts/*metabolism ; *GTP-Binding Proteins ; Hydrogen-Ion Concentration ; Intracellular Membranes/metabolism ; Molecular Sequence Data ; Molecular Weight ; Peas ; Plant Proteins/chemistry/*metabolism ; Protein Precursors/chemistry/*metabolism ; Protein Processing, Post-Translational ; Ribulose-Bisphosphate Carboxylase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-12-23
    Description: HIV integrase is the enzyme responsible for inserting the viral DNA into the host chromosome; it is essential for HIV replication. The crystal structure of the catalytically active core domain (residues 50 to 212) of HIV-1 integrase was determined at 2.5 A resolution. The central feature of the structure is a five-stranded beta sheet flanked by helical regions. The overall topology reveals that this domain of integrase belongs to a superfamily of polynucleotidyl transferases that includes ribonuclease H and the Holliday junction resolvase RuvC. The active site region is identified by the position of two of the conserved carboxylate residues essential for catalysis, which are located at similar positions in ribonuclease H. In the crystal, two molecules form a dimer with a extensive solvent-inaccessible interface of 1300 A2 per monomer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dyda, F -- Hickman, A B -- Jenkins, T M -- Engelman, A -- Craigie, R -- Davies, D R -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):1981-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892-0560.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801124" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA Nucleotidyltransferases/*chemistry ; HIV-1/*enzymology ; Hydrogen Bonding ; Integrases ; Models, Molecular ; Molecular Sequence Data ; Protein Folding ; Protein Structure, Secondary ; Ribonuclease H/chemistry ; Solubility ; Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-12-23
    Description: Hemolysin of Escherichia coli is activated by fatty acylation of the protoxin, directed by the putative acyl transferase HlyC and by acyl carrier protein (ACP). Mass spectrometry and Edman degradation of proteolytic products from mature toxin activated in vitro with tritium-labeled acylACP revealed two fatty-acylated internal lysine residues, lysine 564 and lysine 690. Resistance of the acylation to chemical treatments suggested that fatty acid was amide linked. Substitution of the two lysines confirmed that they were the only sites of acylation and showed that although each was acylated in the absence of the other, both sites were required for in vivo toxin activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stanley, P -- Packman, L C -- Koronakis, V -- Hughes, C -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):1992-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Cambridge University, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801126" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/metabolism ; Acylation ; Acyltransferases/metabolism ; Amino Acid Sequence ; Animals ; Bacterial Proteins/chemistry/metabolism/*toxicity ; Bacterial Toxins/chemistry/metabolism/*toxicity ; *Escherichia coli ; *Escherichia coli Proteins ; Hemolysin Proteins/chemistry/metabolism/*toxicity ; Hemolysis ; Horses ; Lysine/metabolism ; Mass Spectrometry ; Molecular Sequence Data ; Protein Precursors/metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1994-12-23
    Description: RNA polymerase I and II transcription factors SL1 and TFIID, respectively, are composed of the TATA-binding protein (TBP) and a set of TBP-associated factors (TAFs) responsible for promoter recognition. How the universal transcription factor TBP becomes committed to a TFIID or SL1 complex has not been known. Complementary DNAs encoding each of the three TAFIs that are integral components of SL1 have not been isolated. Analysis of subunit interactions indicated that the three TAFIs can bind individually and specifically to TBP. In addition, these TAFIs interact with each other to form a stable TBP-TAF complex. When TBP was bound first by either TAFI110, 63, or 48, subunits of TFIID such as TAFII250 and 150 did not bind TBP. Conversely, if TBP first formed a complex with TAFII250 or 150, the subunits of SL1 did not bind TBP. These results suggest that a mutually exclusive binding specificity for TBP intrinsic to SL1 and TFIID subunits directs the formation of promoter- and RNA polymerase-selective TBP-TAF complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Comai, L -- Zomerdijk, J C -- Beckmann, H -- Zhou, S -- Admon, A -- Tjian, R -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):1966-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley 94720-3204.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801123" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding, Competitive ; Cloning, Molecular ; DNA, Complementary/genetics ; DNA-Binding Proteins/chemistry/genetics/isolation & purification/*metabolism ; HeLa Cells ; Humans ; Molecular Sequence Data ; *Pol1 Transcription Initiation Complex Proteins ; Promoter Regions, Genetic ; Protein Binding ; RNA Polymerase I/metabolism ; TATA Box ; *TATA-Binding Protein Associated Factors ; TATA-Box Binding Protein ; Transcription Factor TFIID ; Transcription Factors/chemistry/genetics/isolation & purification/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1994-12-23
    Description: Pattern formation in Drosophila depends initially on the translational activation of maternal messenger RNAs (mRNAs) whose protein products determine cell fate. Three mRNAs that dictate anterior, dorsoventral, and terminal specification--bicoid, Toll, and torso, respectively--showed increases in polyadenylate [poly(A)] tail length concomitant with translation. In contrast, posteriorly localized nanos mRNA, although also translationally activated, was not regulated by poly(A) status. These results implicate at least two mechanisms of mRNA activation in flies. Studies with bicoid mRNA showed that cytoplasmic polyadenylation is necessary for translation, establishing this pathway as essential for embryogenesis. Combined, these experiments identify a regulatory pathway that can coordinate initiation of maternal pattern formation systems in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Salles, F J -- Lieberfarb, M E -- Wreden, C -- Gergen, J P -- Strickland, S -- GM51584/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):1996-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University Medical Center at Stony Brook, NY 11794-8651.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801127" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cytoplasm/metabolism ; Drosophila/*embryology/genetics ; *Drosophila Proteins ; Embryonic Development ; Female ; *Homeodomain Proteins ; Insect Hormones/genetics ; Membrane Glycoproteins/genetics ; Molecular Sequence Data ; Morphogenesis ; Ovary/metabolism ; Poly A/*metabolism ; *Protein Biosynthesis ; Protein-Tyrosine Kinases/genetics ; RNA, Messenger/genetics/*metabolism ; *RNA-Binding Proteins ; *Receptor Protein-Tyrosine Kinases ; *Receptors, Cell Surface ; Toll-Like Receptors ; *Trans-Activators
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1994-12-23
    Description: The rolA gene encoded on the Ri plasmid A4 of Agrobacterium rhizogenes is one of the transferred (TL-DNA) genes involved in the pathogenesis of hairy-root disease in plants. The function of the 100-amino acid protein product of rolA is unknown, although its expression causes physiological and developmental alterations in transgenic plants. The rolA gene of A. rhizogenes contains an intron in its untranslated leader region that has features typical of plant pre-messenger RNA introns. Transcription and splicing of the rolA pre-messenger RNA occur in the plant cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Magrelli, A -- Langenkemper, K -- Dehio, C -- Schell, J -- Spena, A -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):1986-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Plank-Institut fur Zuchtungsforschung, Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7528444" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/microbiology ; Base Sequence ; Cloning, Molecular ; DNA, Bacterial/genetics ; Genes, Bacterial ; Introns ; Molecular Sequence Data ; Mutation ; Plants, Genetically Modified ; *Plasmids ; RNA Precursors/*genetics ; *RNA Splicing ; RNA, Bacterial/*genetics ; Rhizobium/*genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-12-23
    Description: Upon entry into a host cell, retroviruses direct the reverse transcription of the viral RNA genome and the establishment of an integrated proviral DNA. The retroviral integrase protein (IN) is responsible for the insertion of the viral DNA into host chromosomal targets. The two-hybrid system was used to identify a human gene product that binds tightly to the human immunodeficiency virus-type 1 (HIV-1) integrase in vitro and stimulates its DNA-joining activity. The sequence of the gene suggests that the protein is a human homolog of yeast SNF5, a transcriptional activator required for high-level expression of many genes. The gene, termed INI1 (for integrase interactor 1), may encode a nuclear factor that promotes integration and targets incoming viral DNA to active genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kalpana, G V -- Marmon, S -- Wang, W -- Crabtree, G R -- Goff, S P -- U01 AI 24845/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):2002-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801128" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Chromosomal Proteins, Non-Histone ; DNA Nucleotidyltransferases/*metabolism ; DNA, Complementary/genetics ; DNA, Viral/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; HIV-1/*enzymology/genetics ; Humans ; Integrases ; Molecular Sequence Data ; Molecular Weight ; Oligodeoxyribonucleotides/metabolism ; Open Reading Frames ; Sequence Alignment ; Transcription Factors/chemistry/*metabolism ; Tumor Cells, Cultured ; Virus Integration ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-12-23
    Description: A synthetic combinatorial library containing 52,128,400 D-amino acid hexapeptides was used to identify a ligand for the mu opioid receptor. The peptide, Ac-rfwink-NH2, bears no resemblance to any known opioid peptide. Simulations using molecular dynamics, however, showed that three amino acid moieties have the same spatial orientation as the corresponding pharmacophoric groups of the opioid peptide PLO17. Ac-rfwink-NH2 was shown to be a potent agonist at the mu receptor and induced long-lasting analgesia in mice. Analgesia produced by intraperitoneally administered Ac-rfwink-NH2 was blocked by intracerebroventricular administration of naloxone, demonstrating that this peptide may cross the blood-brain barrier.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dooley, C T -- Chung, N N -- Wilkes, B C -- Schiller, P W -- Bidlack, J M -- Pasternak, G W -- Houghten, R A -- DA-000138/DA/NIDA NIH HHS/ -- DA-02615/DA/NIDA NIH HHS/ -- DA-03742/DA/NIDA NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):2019-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Torrey Pines Institute for Molecular Studies, San Diego, CA 92121.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801131" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Analgesics/chemistry/metabolism/*pharmacology ; Animals ; Brain/metabolism ; Dose-Response Relationship, Drug ; Endorphins/pharmacology ; Enkephalin, Ala(2)-MePhe(4)-Gly(5)- ; Enkephalin, D-Penicillamine (2,5)- ; Enkephalins/metabolism ; Guinea Pigs ; Injections, Intraventricular ; Male ; Mice ; Models, Molecular ; Molecular Sequence Data ; Naloxone/administration & dosage/pharmacology ; Opioid Peptides/chemistry/metabolism/*pharmacology ; Pain Measurement ; Protein Conformation ; Rats ; Receptors, Opioid, mu/agonists/metabolism ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-12-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steitz, T A -- Smerdon, S J -- Jager, J -- Joyce, C M -- GM28550/GM/NIGMS NIH HHS/ -- GM39546/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):2022-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7528445" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA Polymerase I/*chemistry/metabolism ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; HIV Reverse Transcriptase ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; RNA-Directed DNA Polymerase/*chemistry/metabolism ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-12-23
    Description: Synthesis of DNA at chromosome ends by telomerase may be necessary for indefinite proliferation of human cells. A highly sensitive assay for measuring telomerase activity was developed. In cultured cells representing 18 different human tissues, 98 of 100 immortal and none of 22 mortal populations were positive for telomerase. Similarly, 90 of 101 biopsies representing 12 human tumor types and none of 50 normal somatic tissues were positive. Normal ovaries and testes were positive, but benign tumors such as fibroids were negative. Thus, telomerase appears to be stringently repressed in normal human somatic tissues but reactivated in cancer, where immortal cells are likely required to maintain tumor growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, N W -- Piatyszek, M A -- Prowse, K R -- Harley, C B -- West, M D -- Ho, P L -- Coviello, G M -- Wright, W E -- Weinrich, S L -- Shay, J W -- AG07992/AG/NIA NIH HHS/ -- CA50195/CA/NCI NIH HHS/ -- CA65178/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):2011-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geron Corporation, Menlo Park, CA 94025.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7605428" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Division ; Cell Line ; Cell Line, Transformed/enzymology ; DNA Nucleotidylexotransferase/*metabolism ; Enzyme Activation ; Enzyme Repression ; Female ; Humans ; Male ; Molecular Sequence Data ; Neoplasms/*enzymology ; Ovary/enzymology ; Polymerase Chain Reaction ; Testis/enzymology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...