ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7,799)
  • Maps
  • American Meteorological Society  (7,799)
  • 2000-2004  (6,607)
  • 1955-1959  (1,192)
  • Geography  (7,799)
Collection
  • Articles  (7,799)
  • Maps
Years
Year
Journal
Topic
  • 1
    Publication Date: 2004-12-15
    Description: A 4-yr climatology (1997–2000) of warm boundary layer cloud properties is developed for the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site. Parameters in the climatology include cloud liquid water path, cloud-base height, and surface solar flux. These parameters are retrieved from measurements produced by a dual-channel microwave radiometer, a millimeter-wave cloud radar, a micropulse lidar, a Belfort ceilometer, shortwave radiometers, and atmospheric temperature profiles amalgamated from multiple sources, including radiosondes. While no significant interannual differences are observed in the datasets, there are diurnal variations with nighttime liquid water paths consistently higher than daytime values. The summer months of June, July, and August have the lowest liquid water paths and the highest cloud-base heights. Model outputs of cloud liquid water paths from the European Centre for Medium-Range Weather Forecasts (ECMWF) model and the Eta Model for 104 model output location time series (MOLTS) stations in the environs of the SGP central facility are compared to observations. The ECMWF and MOLTS median liquid water paths are greater than 3 times the observed values. The MOLTS data show lower liquid water paths in summer, which is consistent with observations, while the ECMWF data exhibit the opposite tendency. A parameterization of normalized cloud forcing that requires only cloud liquid water path and solar zenith angle is developed from the observations. The parameterization, which has a correlation coefficient of 0.81 with the observations, provides estimates of surface solar flux that are comparable to values obtained from explicit radiative transfer calculations based on plane-parallel theory. This parameterization is used to estimate the impact on the surface solar flux of differences in the liquid water paths between models and observations. Overall, there is a low bias of 50% in modeled normalized cloud forcing resulting from the excess liquid water paths in the two models. Splitting the liquid water path into two components, cloud thickness and liquid water content, shows that the higher liquid water paths in the model outputs are primarily a result of higher liquid water contents, although cloud thickness may a play a role, especially for the ECMWF model results.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-15
    Description: An ice core from Mt. Logan, Yukon, Canada, presents an opportunity to evaluate the degree to which ice core accumulation records can be interpreted as meaningful measures of interannual climate variability. Statistical analyses and comparisons with synoptic station data are used to identify the physical relationships between Mt. Logan ice core accumulation data and large-scale atmospheric circulation. These analyses demonstrate that only the winters of high accumulation years have a robust connection with atmospheric circulation. There are no consistent relationships during anomalously low and average accumulation years. The wintertime of high accumulation years is associated with an enhanced trough–ridge structure at 500 hPa and in sea level pressure over the northeast Pacific and western Canada, consistent with increased southerly flow bringing in warmer, moister air to the region. While both storm (i.e., 2–6 days) and blocking (i.e., 15–20 days) events project onto the same climate pattern, only the big storm events give rise to the dynamical moisture convergence necessary for anomalous accumulation. Taken together, these results suggest that while the Mt. Logan accumulation record is not a simple record of Pacific climate variability, anomalously high accumulation years are a reliable indicator of wintertime circulation and, in particular, of northeast Pacific storms.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-15
    Description: Retrievals of tropospheric temperature trends from data of the Microwave Sounding Unit (MSU) are subject to biases related to the strong cooling of the stratosphere during the past few decades. The magnitude of this stratospheric contamination in various retrievals is estimated using stratospheric temperature trend profiles based on observations. It is found that from 1979 to 2001 the stratospheric contribution to the trend of MSU channel-2 brightness temperature is about −0.08 K decade−1, which is consistent with the findings of Fu et al. In the retrieval method developed by Fu et al. based on a linear combination of MSU channels 2 and 4, the stratospheric influence is largely removed, leaving a residual influence of less than ±0.01 K decade−1. This method is also found to be more accurate than the angular scanning retrieval technique of Spencer and Christy to remove the stratospheric contamination.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-15
    Description: Wave and zonal mean features of the downward dynamic coupling between the stratosphere and troposphere are compared by applying a time-lagged singular value decomposition analysis to Northern Hemisphere height fields decomposed into zonal mean and its deviations. It is found that both zonal and wave components contribute to the downward interaction, with zonal wave 1 (due to reflection) dominating on the short time scale (up to 12 days) and the zonal mean (due to wave–mean-flow interaction) dominating on the longer time scale. It is further shown that the two processes dominate during different years, depending on the state of the stratosphere. Winters characterized by a basic state that is reflective for wave 1 show a strong relationship between stratospheric and tropospheric wave-1 fields when the stratosphere is leading and show no significant correlations in the zonal mean fields. On the other hand, winters characterized by a stratospheric state that does not reflect waves show a strong relationship only between stratospheric and tropospheric zonal mean fields. This study suggests that there are two types of stratospheric winter states, characterized by different downward dynamic interaction. In one state, most of the wave activity gets deposited in the stratosphere, resulting in strong wave–mean-flow interaction, while in the other state, wave activity is reflected back down to the troposphere, primarily affecting the structure of tropospheric planetary waves.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-15
    Description: Evidence is presented, based on an ensemble of climate change scenarios performed with a global general circulation model of the atmosphere with high horizontal resolution over Europe, to suggest that the end-of-century anthropogenic climate change over the North Atlantic–European region strongly projects onto the positive phase of the North Atlantic Oscillation during wintertime. It is reflected in a doubling of the residence frequency of the climate system in the associated circulation regime, in agreement with the nonlinear climate perspective. The strong increase in the amplitude of the response, compared to coarse-resolution coupled model studies, suggests that improved model representation of regional climate is needed to achieve more reliable projections of anthropogenic climate change on European climate.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-15
    Description: Prospects for forecasting Indian dipole mode (IDM) events with lead times of a season or more are examined using the NASA Seasonal-to-Interannual Prediction Project (NSIPP) coupled-model forecast system. The mean climatology of the system over the sector is reasonable, as determined from an almost-century-long run without data assimilation. However, the system presents biases, for example, too cool sea surface temperatures (SSTs), too shallow thermocline, and too strong southeasterlies along the Sumatra–Java coast in the east, and too warm SSTs, too deep thermocline, and too weak extension of the southeast trades into the Findlater jet in the west. These suggest coupling between the ocean and atmosphere is stronger, and the SST–clouds–shortwave radiation negative feedback less effective, than observed in the east with the opposite holding true in the west. Also, the negative zonal gradient in SST in the eastern equatorial basin, in contrast with the positive observed, suggests that equatorial Kelvin and Rossby coupled modes may have a different character from observed. Biases identified in the seasonal cycle, which may affect the strength and timing of IDM events, include a delayed onset of the boreal summer monsoon in the west, and a prolonged boreal summer monsoon in the east. Eight major positive IDM events occur during the almost-century-long run over a range of El Niño–Southern Oscillation phases with a tendency to occur post–El Niño/pre–La Niña. Consistent with the identified air–sea interaction biases, the cold (warm) anomaly at the east (west) pole tends to be stronger (weaker) than observed. Also, the cold anomaly extends much farther westward and is more equatorially trapped than observed; its slow westward propagation and the structure of the associated fields is reminiscent of an unstable, coupled Rossby mode with SST governed by lateral advection due to the westward displacement of the convective anomaly from the heat source. Otherwise, the life cycle of the eight-event composite is similar in seasonal phase locking and mechanisms of evolution and decay to the canonical event. For the decade from 1993 to the present, there were major positive IDM events in 1994 and 1997/98. Monthly mean SST anomalies over the western pole are well hindcast by the ocean component of the NSIPP system forced by observed surface fluxes with SST damped to observed values, and in which subsurface temperature data available in real time are assimilated; these data are very sparse over the Indian Ocean. Over the eastern pole, the SST anomalies are well hindcast except for the 1997/98 event, when it is too cool. The ensemble mean hindcast of the zonal surface wind anomaly of the central basin by the atmosphere component of the NSIPP system forced by observed SST is too weak during both events. These hindcasts provide initial conditions for the coupled system forecasts. Forecast ensembles for the decade 1993 onward, generated by the coupled system, give monthly mean SST anomalies averaged over the east and west poles of the IDM in agreement with observations at lead times of three months. The cool anomaly at the eastern pole is slightly too large in 1997/98, and the onset of the warm anomaly in 1997 is delayed by a month or so; its peak and decay are correctly timed. At lead times of six months, there is a significant deterioration in the forecast at the eastern pole with either false positive or negative alarms generated annually in boreal fall; that at the western pole remains good. These results are very encouraging and suggest that major IDM events have the potential to be forecast a season or more in advance.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-15
    Description: A comparison is made between a new operational NOAA Advanced Very High Resolution Radiometer (AVHRR) global cloud amount product to those from established satellite-derived cloud climatologies. The new operational NOAA AVHRR cloud amount is derived using the cloud detection scheme in the extended Clouds from AVHRR (CLAVR-x) system. The cloud mask within CLAVR-x is a replacement for the Clouds from AVHRR phase 1 (CLAVR-1) cloud mask. Previous analysis of the CLAVR-1 cloud climatologies reveals that its utility for climate studies is reduced by poor high-latitude performance and the inability to include data from the morning orbiting satellites. This study demonstrates, through comparison with established satellite-derived cloud climatologies, the ability of CLAVR-x to overcome the two main shortcomings of the CLAVR-1-derived cloud climatologies. While systematic differences remain in the cloud amounts from CLAVR-x and other climatologies, no evidence is seen that these differences represent a failure of the CLAVR-x cloud detection scheme. Comparisons for July 1995 and January 1996 indicate that for most latitude zones, CLAVR-x produces less cloud than the International Satellite Cloud Climatology Project (ISCCP) and the University of Wisconsin High Resolution Infrared Radiation Sounder (UW HIRS). Comparisons to the Moderate Resolution Imaging Spectroradiometer (MODIS) for 1–8 April 2003 also reveal that CLAVR-x tends to produce less cloud. Comparison of the seasonal cycle (July–January) of cloud difference with ISCCP, however, indicates close agreement. It is argued that these differences may be due to the methodology used to construct a cloud amount from the individual pixel-level cloud detection results. Overall, the global cloud amounts from CLAVR-x appear to be an improvement over those from CLAVR-1 and compare well to those from established satellite cloud climatologies. The CLAVR-x cloud detection results have been operational since late 2003 and are available in real time from NOAA.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-15
    Description: A systematic modular approach to investigate the respective roles of the ocean and atmosphere in setting El Niño characteristics in coupled general circulation models is presented. Several state-of-the-art coupled models sharing either the same atmosphere or the same ocean are compared. Major results include 1) the dominant role of the atmosphere model in setting El Niño characteristics (periodicity and base amplitude) and errors (regularity) and 2) the considerable improvement of simulated El Niño power spectra—toward lower frequency—when the atmosphere resolution is significantly increased. Likely reasons for such behavior are briefly discussed. It is argued that this new modular strategy represents a generic approach to identifying the source of both coupled mechanisms and model error and will provide a methodology for guiding model improvement.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-15
    Description: River discharge across the Mediterranean catchment basin is investigated by means of an extensive dataset of historical monthly time series to represent at-best discharge into the sea. Results give an annual mean river discharge into the Mediterranean of 8.1 × 103 m3 s−1, or at most a value that should not exceed 10.4 × 103 m3 s−1. The seasonal cycle has an amplitude of 5 × 103 m3 s−1, with a dry season in midsummer and a peak flow in early spring. Dominant contributions are from Europe with a climatological annual mean of 5.7 × 103 m3 s−1. Discharge in the Adriatic Sea, the Gulf of Lion, and the Aegean Sea together account for 62% of Mediterranean discharge, which mostly occurs in the Adriatic (2.7 × 103 m3 s−1). The North Atlantic Oscillation (NAO) impacts Mediterranean discharge primarily in winter, with most river discharges across the Mediterranean catchment being anticorrelated with the NAO. Related winter anomalies are about 10%–20% of the winter means. During the period 1960–90, Mediterranean winter discharge as a whole may have undergone year-to-year NAO-related variations of up to 26% of the seasonal mean, while about 17% on decadal time scales. These variations are expected to have occurred mostly in the Gulf of Lion and the Adriatic Sea, together with the Balearic Sea, where the impact of the NAO is greatest.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-15
    Description: A set of simulated high-resolution infrared (IR) emission spectra of synthetic cirrus clouds is used to perform a sensitivity analysis of top-of-atmosphere (TOA) radiance to cloud parameters. Principal component analysis (PCA) is applied to assess the variability of radiance across the spectrum with respect to microphysical and bulk cloud quantities. These quantities include particle shape, effective radius (reff), ice water path (IWP), cloud height Zcld and thickness ΔZcld, and vertical profiles of temperature T(z) and water vapor mixing ratio w(z). It is shown that IWP variations in simulated cloud cover dominate TOA radiance variability. Cloud height and thickness, as well as T(z) variations, also contribute to considerable TOA radiance variability. The empirical orthogonal functions (EOFs) of radiance variability show both similarities and differences in spectral shape and magnitude of variability when one physical quantity or another is being modified. In certain cases, it is possible to identify the EOF that represents variability with respect to one or more physical quantities. In other instances, similar EOFs result from different sets of physical quantities, emphasizing the need for multiple, independent data sources to retrieve cloud parameters. When analyzing a set of simulated spectra that include joint variations of IWP, reff, and w(z) across a realistic range of values, the first two EOFs capture approximately 92%–97% and 2%–6% of the total variance, respectively; they reflect the combined effect of IWP and reff. The third EOF accounts for only 1%–2% of the variance and resembles the EOF from analysis of spectra where only w(z) changes. Sensitivity with respect to particle size increases significantly for reff several tens of microns or less. For small-particle reff, the sensitivity with respect to the joint variation of IWP, reff, and w(z) is well approximated by the sum of the sensitivities with respect to variations in each of three quantities separately.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...