ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2025-2025  (24)
  • 1990-1994  (1,577,931)
  • 1980-1984  (1,016,746)
Collection
Years
Year
  • 1
    Publication Date: 2024-07-01
    Description: Die untersuchten, feinkörnig-konglomeratischen, mäßig gut sortierten, lithischen Arenite, bilden zusammen mit Siltsteinen und untergeordnet Tonschiefern die Sao Khua Formation, die als Speichergestein der Uran-Vererzung Phu Wiang I in einem fluviatil-beherrschten Deltakomplex mit deutlich marinen Einflüssen im Zeitraum Ober-Jura bis Unter-Kreide sedimentiert wurde. Die in den Areniten der Sao Khua Formation aufgearbeiteten Klasten und der detritische Mineral bestand deuten auf sauer bis intermediäre Plutonite und Vulkanite, Phyllite, Quarzite und Cherts als Liefergesteine. Erosionsgebiete dieser Gesteinsserien sind wegen der rekonstruierten, unimodalen, hauptsächlich NE/SW verlaufenden Paläoströmungsrichtung in pratriassischen Formationen, nordöstlich des Untersuchungsgebietes, zu suchen. Zusammen mit diesen sind möglicherweise äolisch nach E verfrachtete Vulkanite, des westlich von Si Chiang Mai gelegenen Vulkanitgürtels, umgelagert und im Deltabereich sedimentiert worden. Die linsenförmige, penekonkordante Uran-Mineralisation ist an mittel- bis grobkörnige, teilweise konglomeratische Bereiche, des als “channelsequenz" interpretierten Sandsteins gebunden, die feinverteiltes, inkohltes Pflanzenmaterial enthalten und im Hangenden einer für (perkolierende) Porenwässer impermeablen Barriere aus feinkörnigen Sandsteinen, Siltsteinen und Tonschiefern liegen.
    Description: Fine grained to conglomeratic, moderateley well-sorted, lithic arenites combine with siltstones and minor amounts of shale to make the Sao Khua formation. The latter was deposited during the Upper Jurassic and Lower Cretaceous in a delta donimated by fluvial distributary channels but with distinct marine features and is the host roch for the uranium mineralization. The clasts and the detritic minerals of the arenites of the Sao Khua Formation indicate that acid to intermediate plutonios and volcanics, phyllites, quarzites and cherts were the source rocks. Possibly volcanics from the volcanic arc, situated to the west of Si Chiang Mai, were aeolianly transported to the east and after their first deposition carried together with the above cited detrital mineral assemblage by fluvial action into the delta area. The lenticular, peneconcordant uranium mineralization is restricted to these medium to coarse grained, partly conglomeratic intervals of the sandstone which together have been interpreted as channel - sequences. These intervals contain finely distributed carbonaceous matter of plant origin and are situated above a barrier. The latter is made up of fine-grained sandstone, siltstone and shale, which connot be permeated by (percolating) pore-water-solutions.
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:551 ; Thailand ; Sedimentgestein ; Uranlagerstätten
    Language: German
    Type: doc-type:book
    Format: 92
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Reimer
    In:  Herausgeberexemplar
    Publication Date: 2024-07-01
    Description: Über den paläozoischen Sedimenten im Dakhla-Becken folgen überwiegend fluvio-kontinentale Sedimente des Mesozoikums, die sich aufgrund ihrer gleichartigen Ausbildung innerhalb des Beckens in Ost-West-Erstreckung verfolgen lassen. Die pauschal als "Nubischer Sandstein" bezeichneten klastischen Sedimente konnten in sechs Formationen gegliedert und ihre strati graphische Stellung weitgehend gesichert werden. Die Einheiten der Nubischen Gruppe heißen von unten nach oben: Six Hills Formation (Basal Clastics), Abu Ballas Formation (Lingula Shale), Sabaya Formation (Desert Rose Beds), Maghrabi Formation (Plant Beds), Taref Formation (Taref Sandstein) und Mut Formation (Variegated Shales). Sie sind fast ausschließlich der Kreide bis zum Maastricht zugehörig. Der Sedimentationsraum gehört zu einem sich nach Nordwesten vertiefenden Becken zwischen der Calanscio-Uweinat-Schwelle im Westen und dem Kharga-Upl ift im Osten. Die Sandstein-Formationen bestehen in der Körnerfraktion ausschließlich aus Quarz, Zirkon, Turmalin, Rutil und Leukoxen und zeigen bei den Tonmineralen eine absolute Kaolinitvormacht. Die überwiegend tonigen Formationen, mit unterschiedlichen Tonmineral-Vergesellschaffungen, deuten auf eine Sedimentation in einem flachen Epikontinentalmeer hin. Die Sedimente der Nubischen Gruppe entstammen Gebieten mit lateritischer Verwitterung. Die Resedimentation erfolgte unter gleichen Klimabedingungen, wie synsedimentäre Bodenbildung und Sesquioxid-Krusten zeigen. Die Faktoren-Analyse ergab folgende Elementgruppen: Ti, Nb, Zr und Cr: Elemente, die überwiegend in Schwermineralen auftreten ; Mn, Co, Ni und Cu: adsorptiv an Mn gebunden und in manganreichen Krusten angereichert ; Y, SE; an Tonminerale angelagerte Elemente ; Ca, Sr, Rb und Pb: an Tonminerale gebundene Elemente. Eisen konnte keiner dieser Gruppen zugeordnet werden. Da die fünf Elementgruppen in den Formationen der Nubischen Gruppe charakteristisch verteilt sind, ist eine Unterscheidung der Formationen aufgrund der Elementverteilung möglich.
    Description: The Paleozoic sediments within the Dakhla Basin are overlain by fluvio-continental sediments of Mesozoic age which can be traced in the. basin in east-west extension caused by their similar development. The clastic sediments, generally called "Nubian Sandstone", could be subdivided into six formations and their: stratigraphic position could be more or less assured. The units of the Nubia Group are named from the bottom towards the top as follows: Six Hills Formation (Basal Clastic Unit), Abu Ballas Formation (Lingula Shale Unit), Sabaya Formation (Desert Rose Unit), Maghrabi Formation (Plant Bed Unit), Taref Formation (Taref Sandstone Unit), and Mut Formation (Variegated Shale Unit). Stratigraphically they are nearly exclusively of Cretaceous up to Maastrichtian age. The area of sedimentation is a basin between the Calanscio-Uweinat Uplift in the west and the Kharga Uplift in the east. The bottom of the basin dips towards the northwest. The more sandy units contain as grains exclusively quartz, zircone, turmaline, rutile and leocoxene. The same units show as a clay-mineral an absolute predominance of kaolinite. The chiefly clayey units with a different association of clayminerals point at a sedimentation in a shallow epicontinental sea. The sediments of the Nubia Group are descended from regions with a lateritic weathering. The resedimentation took place under the same climatic conditions as it is shown by syn sedimentary development of soil horizons and sesquioxide crusts. The factor analysis caused the following groups of elements: Ti, Nb, Zr and Cr: elements which occur mainly in heavy minerals ; Mn, Co, Ni and Cu: elements which are bound adsorptively at Mn and are concentrated in crusts with a high content of manganese ; Y and R.E.E.: elements which are attached to clayminerals ; Ca, Sr, Rb and Pb: elements which are bound at clayminerals. Iron could not be associated with one of these groups. As the five groups of elements are distributed characteristically in the units of the Nubia Group, a differentiation of the units is possible based on the dissamination of the elements.
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:551 ; Nubischer Sandstein ; Stratigraphie ; Geochemie ; Sedimentologie
    Language: German
    Type: doc-type:book
    Format: 93
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-07-01
    Description: Die Magmatite des Indosinia-Orogens in NE-Thailand wurden auf Grund von petrographischen und petrochemischen Untersuchungen durch die Einführung geochemischer Indizes nach folgenden Gesteinstypen und Sippen klassifiziert, sowie den entsprechenden magmatischen Phasen im orogenen Zyklus zugerechnet. - Alkali-Rhyolithe, die als Ignimbrite und Tuffe auftreten, sowie Dacite, die der Kalk-Alkali-Reihe angehören (frühe Phase des finalen Magmatismus) im Pak Chom-Si Chiang Mai Gebiet und im Loei-Chum Phae Gebiet. Letztere zeigen auch eine Tendenz zu einer höheren Alkalini tat (finaler Magmatismus) im Saraburi -Gebiet bzw. Loei-Tha Li Gebiet. - Andesite, die als Tuffe und Agglomerate vorliegen und der Kalk-Alkali-Reihe mit einem mittelstark pazifischen Charakter angehören (früher subsequenter Magmatismus) im Chum Phae-Lom Sak Gebiet. - Lenco-Basalte mit einem ophitischen Gefüge, die sowohl der Kalk- Alkali -Reihe (früher subsequenter Magnetismus) im Chiang Khan Gebiet, als auch einer Obergangsphase zur Alkali-Reihe (finaler Magnetismus) im Petchabun und Saraburi Gebiet zuzurechnen sind. - Granite-Monzonite, die der Kalk-Alkali-Reihe angehören (synorogener Magnetismus) im Loei-Chiang Khan Gebiet. Petrographische und geochemische Untersuchungsergebnisse, sowie paläogeographische und quantitative Voraussetzungen zeichnen die alkali-rhyolithischen Ignimbrite und Tuffe des Pak Chom-Si Chiang Mai Gebietes als potentielle Uran-Lieferanten aus. Folgende Untersuchungsergebnisse können als Begründung herangezogen werden: - Die ober-triassischen bis unter-jurassischen Ignimbrite und Tuffe des Pak Chom-Si Chiang Mai Gebietes sind dicht verschweißt und ihre Grundmasse liegt zu einem großen Teil in einem vollständig devitrifizierten Zustand vor, im Gegensatz zu den der Saraburi und Loei-Tha Li Gebiete, in denen die holohyalinen Anteile in der Grundmasse z.T. überwiegen. -Die Alkali-Rhyol ithe des Pak Chom-Si Chiang Mai Gebietes sind am höchsten differenziert, wie dem numerischen +Differentiationsindex (bis 16,65) zu entnehmen ist. - Sie zeigen die größten Gehalte an lithophilen Spurenelementen (Ba: 415 - 969 ppm; Rb: 109 - 213 ppm; Sr: 35 - 124 ppm; Zr: 77 - 209 ppm;) innerhalb vergleichbarer Differentiationsgrade der Alkali-Rhyolithe des Loei-Tha Li und Saraburi Gebietes. - Die Uran- und Lithium-Gehalte sind dagegen ungewöhnlich niedrig und liegen im Bereich von 2,09 - 3,6 ppm U bei einem Th/U-Verhältnis von 2,2 - 8,5 und 2,5 - 61,3 ppm Li (mit einem Mittelwert von 15,60 ppm Li), im Gegensatz zu den U- und Li-Gehalten des Loei-Tha Li Gebietes (U = 3,1 - 7 ppm; Th/U = 1 - 2; Li = 6,0 - 210,0 ppm, mit einem Mittelwert von 79 ppm Li) und des Saraburi Gebietes (U = 3,6 - 5 ppm; Th/U = 3,2 - 4,0; Li = 10,90 - 43,00 ppm, mit einem Mittelwert von 27,9 ppm Li). - Der xOxidationsgrad (0x0 = 0,51 - 0,99) ist mit dem U-Gehalt negativ korrelierbar im Gegensatz zu dem der Alkali-Rhyolithe in den anderen Gebieten. Zu ähnlichen, sich scheinbar widersprechenden, Untersuchungsergebnissen in Ignimbriten und Tuffen gelangten ROSHOLT et al. (1969), SCHATKOV et al. (1970) und ZIELINSKI (1978). Die geringen U-Gehalte werden auf die größere Mobilationsbereitschaft der leichtflüchtigen Elemente (Uran, Lithium, Fluor und Chlor) und deren Verbindungen während des Devitrifikationsprozesses im Zuge der langen Abkühlungszeit mächtiger Ignimbrit- und Tuffdecken zurückgeführt. Das in mobiler Phase vorliegende Uran (U6+) kann entweder supergene Anreicherungen innerhalb der Ignimbrit-Tuff-Decken bilden, die bei einer einsetzenden Erosion in Form von Uran-angereichertem Detritus weiter transportiert werden, oder direkt in migrierende Grundwässer gelangen. Der so eingetretene Verlust von Uran kann bei den Pak Chom-Si Chiang Mai alkali-rhyolitischen Ignimbriten und Tuffen mit einer Größenordnung von 46 - 52 % angegeben werden. Zu den von SCHATKOV (1970) ermittelten prospektionssignifikanten Faktoren (Devitrifikationsgrad, Th/U und 0x0 in Abhängigkeit vom U-Gehalt) kann als ergänzende Prospektionshilfe für supergene U-Anreicherungen in Ignimbriten bzw. Tuffen die geochemische Inkongruenz des U-Li-Gehaltes und des Differentiationsindex erwähnt werden. Im Gegensatz zur normalerweise positiven Korrelation von Oxidationsgrad, Thorium-Uran-Lithium-Gehalt und Differentiationsindex nimmt bei den Pak Chom-Si Chiang Mai Ignimbriten und Tuffen der U-Li -Gehalt bei den höchsten Differentiationsgraden ab. +Differentiationsindex: 1/3 Si + K - Ca - Mg xOxidationsgrad (0x0) : Fe3+ / Fe2+ + Fe3+ + Mn
    Description: According to the results of petrographic and petrochemical investigations using geochemical indices, the magmatites of the Indos inia-orogeny in NE-Thailand have been classified in the following rock types and associations as well as attributed to the corresponding magmatic phases of the orogenic cycles. - alkalirhyolithic ignimbrites and tuffs as well as dacites belonging to the calc-alkaline series (early phase of the final magmatism) in the Pak Chom-Si Chiang Mai and Loei-Chum Phae area. Both rock types tend toward alkalinity (final magmatism) in the Saraburi, that is Loei-Tha Li area. - andesitic tuff and agglomerates »belonging to the calc-alkaline series with a medium to strong Pacific character (early subsequent magmatism) in the Chum Phae-Lom Sak area. - leuco-basalts with an ophitic texture, belonging partly to the calc-alkaline series (early subsequent magmatism) in the Chiang Khan area and partly to a transitions phase of the alkaline series (final magmatism) in the Pete ha bun and Saraburi province. - granite-monzonites, belonging to the calc-alkaline series (synorogenic magmatism) in the Loei-Chiang Khan area. The petrographic and goechemical investigations, as well as the palaeographic and quantitative conditions suggest that the alkalirhyol ithic ignimbrites and tuffs of the Pak Chom-Si Chiang Mai area are the potential uranium source-rocks in the area under investigation. The following results support this assuption: - the Upper Triassic - Lower Jurassic alkalirhyolithes of the Pak Chom-Si Chiang Mai area consist of densely welded and nearly completely devitrified ignimbrites and tuffs, in contrast to those of the Saraburi and Loei-Tha Li areas, which show a high amount of holohyaline groundmass. - the alkalirhyolithes of the Pak Chom-Si Chiang Mai area are the most differentiated of all those investigated, as shown by the high numerical differentiationindex+ (16,65). - the content of lithophile trace elements (Ba: 415 - 969 ppm; Rb: 109 - 213 ppm; Sr: 35 - 124 ppm; Zr: 77 - 209 ppm;) is higher than that of the alkalirhyolithes exhibiting the same degree of the differentiation
    Description: thesis
    Description: DFG, SUB Göttingen
    Language: German
    Type: doc-type:book
    Format: 107
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-07-01
    Description: Kernproben aus dem Bereich der Abu-Ballas-Formation (Lingula Shale, früher Teil des "Nubischen Sandsteins") in der Bohrung Mawhoub West 2 (Teufe 596 - 634 m) lieferten zwei praktisch ausschließlich kontinentale Palynomorphen-Assoziationen (vgl. Tab. 1). Beide Assoziationen sind charakterisiert durch einen hohen Anteil an Pollen von Ephedripites- (in der älteren Mikroflora ca. 22 %, in der jüngeren ca. 24 %) und Retimonocolpites-Arten (in der älteren Mikroflora ca. 24 %, in der jüngeren ca. 17 %). Unter den Sporen ist die Deltoidospora/Cyathidites- ruppz mit ca. 8 % vom Gesamtbestand der Mikrofloren am häufigsten. Die verschiedenen Retimonocolpites-Arten repräsentieren die aus Ägypten noch kaum dokumentierte frühe monosulcate, reticulate Phase der Angiospermen-Pollen-Evolution. Nach einem Vergleich mit der palynologischen Zonierung für die algerisch/tunesische Sahara (REYRE 1973) sowie unter Berücksichtigung des ebenfalls vorhandenen "Reticulatasporites" jardinus, der in S-Amerika und in Afrika auf das Intervall Apt/Cenoman beschränkt ist, können die Mawhoub-West-Mikrofloren ins Apt (bis unteres Alb?) gestellt werden.
    Description: Core samples from the borehole Mawhoub West 2 (depth 596 - 634 m) probably belonging to the Abu Ballas Formation (Lingula Shale, a part of the former "Nubian Sandstone") have yielded two nearly exclusively continental associations of palynomorphs (see Table 1). Both associations are characterized by a high percentage of Ephedripites (ca. 22 % in the lower microflora, ca. 24 % in the upper microflora) and Retimonocolpites (ca. 24 % in the lower microflora, ca. 17 % in the upper microflora). The Deltoidospora/Cythidites group is most frequent among the spores. It represents ca. 8 % of all spore/pollen grains found. The different species of Retimonocolpites represent the early monosulcate, reticulate phase of angiosperm pollen evolution hitherto hardly recorded from Egypt. After a comparison with the palynological zonation of the Algerian/Tunesi an Sahara (REYRE 1973) and taking into consideration the also occurring "Reticulatasporites" jardinus, which is restricted in South America and in Africa to the Aptian/Cenomani an , the Mawhoub West pollen and spores may be placed in the Aptian (until Lower Albian?).
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:561.13 ; Sporomorphae ; Kreide ; Nubischer Sandstein ; Palynologie
    Language: German
    Type: doc-type:book
    Format: 40
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-07-01
    Keywords: Coverage; Date/Time of event; Deposit type; DEPTH, sediment/rock; DOMES Site A, Pacific Ocean; DOMES Site B, Pacific Ocean; DOMES Site C, Pacific Ocean; Elevation of event; Event label; Latitude of event; Longitude of event; Mn-74-02 IDOE DOMES; Moana Wave; MW7402; MW7402D-C01; MW7402D-C02; MW7402D-C03; MW7402D-C04; MW7402D-C05; MW7402D-C06; MW7402D-C07; MW7402D-C08; MW7402D-C09; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Nodules, mass abundance; Oceanographer; Pacific Ocean; Photo/Video; PV; RP6OC75; RP6OC75-10-8C; RP6OC75-1-7C; RP6OC75-2-1C; RP6OC75-4-2C; RP6OC75-5-3C; RP6OC75-6-6C; RP6OC75-8-4C; RP6OC75-9-5C; RP-8-OC-75; RP8OC7503; RP8OC75-46-1C; RP8OC75-47-2C; RP8OC75-48-3C; RP8OC75-52-4C; RP8OC75-53-5C; RP8OC75-54-6C; RP8OC76; RP-8-OC-76; RP8OC76-13-3C; RP8OC76-18-4C; RP8OC76-3-1C; RP8OC76-5A-2C; Sample ID
    Type: Dataset
    Format: text/tab-separated-values, 96 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schlüter, Michael (1990): Zur Frühdiagenese von organischem Kohlenstoff und Opal in Sedimenten des südlichen und östlichen Weddellmeeres. Geochemische Analyse und Modellierung (Early diagenesis of organic carbon and opal in sediments of the southern and eastern Weddell Sea. Geochemical analysis and modelling). Berichte zur Polarforschung = Reports on Polar Research, 73, 156 pp, https://doi.org/10.2312/BzP_0073_1990
    Publication Date: 2024-07-01
    Description: During the ANT V14 (1986187) and ANT V113 (1987188) cruises of R.V. Polarstern sedirnents from the eastern, southern and central Weddell Sea were sarnpled with a boxcorer andlor a multicorer. The 24 sampling locations are distributed over the whole depth range, from shelf to pelagic environments. Porewater concentrations of aluminium, fluoride, manganese, nitrate, nitrite, oxygen and silicate, the pH and the alkalinity were measured. Of the sediment the opal, calcium carbonate and organic carbon content were quantified. The 210Pb-profile was measured for three sedirnent cores. This investigation deals with the estimation of the amounts of opal and organic carbon (Corg) that are transported into the sediment, the regional distribution of these flux rates and the early diagenetic processes that control the preservation of organic carbon and opal in the sediment. The flux and degradation rates of organic carbon were determined by modelling the rneasured oxygen and nitrate profiles. The highest flux and degradation rates were found in the eastern shelf sediments. Due to the high Corg-flux (〉500 mmol C m**-2 a-1) in this area the oxic environment is restricted to the upper 3 cm of the sediment. In contrast to this, the oxic Zone in the pelagic sedirnents of the Weddell Sea has probably an extension of a few meters. The Corg-flux here, computed from the flux of nitrate throug h the sedimentlwater-interface, is less than 50 mmol C m**-2 a**-1. The flux of organic carbon into the sediments of the continental slope area is usually intermediate between the values computed for the shelf and pelagic sediments. Exceptions are the continental slope region north of Halley Bay. In these sediments the measured oxygen and nitrate profiles indicate a relatively high organic carbon flux. This could be a result of the recurrent development of a coastal polynia in this area. The bioturbation rate determined in this region by a 210Pb-profile is 0,019 cm**2 a**-1. In the Weddell Sea the opal content at the sediment surface (0-1 cm depth) varies between 0,1 and 7 %-wt. These opal concentrations are rnuch lower than the opal contents determined for the sediments of the ROSS Sea by Ledford-Hoffmann et al. (1986 doi:10.1016/0016-7037(86)90263-2). Therefore the importance of the Antarctic shelf regions for the global silica cycle as stated by Ledford-Hoffmann et al. (1986) has to be reconsidered. The regional distribution of the opal content and the computed opal flux rates are correlated with the organic carbon flux rates. The processes controlling the preservation of opal are discussed based On the measured aluminium and silicate concentrations in the Pore water and the opal content of the sediment.The depth distribution of the Si- and Al-concentration of the porewater indicates that the reconstitution of clay minerals takes place in the immediate vicinity of the sediment-water nterface. A characterization of these minerals e.g. the estimation of the Si/AI-ratio (Mackin and Aller, 1984 a doi:10.1016/0016-7037(84)90251-5, 1984 b doi:10.1016/0016-7037(84)90252-7) is not possible. With the program WATEQ2 saturation indices are computed to estimate which minerals could reconstitute. In this context the applicability of programs like WATEQ2 for computations of the species distribution and saturation indices in solutions with the ionic strength of sea water is investigated.
    Keywords: ANT-V/4; ANT-VI/3; Atka Bay; AWI_Paleo; Barents Sea; Camp Norway; Eastern Weddell Sea, Southern Ocean; Filchner Trough; Giant box corer; GKG; Halley Bay; Kapp Norvegia; Lyddan Island; Maud Rise; MG; ms_opal; MUC; Multiboxcorer; MultiCorer; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS10; PS10/672; PS10/673; PS10/675; PS10/678; PS10/684; PS10/686; PS10/690; PS10/699; PS10/701; PS10/703; PS10/707; PS10/711; PS10/719; PS10/725; PS10/738; PS10/748; PS10/757; PS10/766; PS10/778; PS10/782; PS10/784; PS10/804; PS10/818; PS10/820; PS10/824; PS12; PS12/289; PS12/300; PS12/302; PS12/305; PS12/310; PS12/312; PS12/319; PS12/336; PS12/338; PS12/340; PS12/344; PS12/348; PS12/352; PS12/366; PS12/368; PS12/374; PS12/380; PS12/382; PS12/458; PS12/465; PS12/472; PS12/486; PS12/490; PS12/510; PS12/526; PS1472-4; PS1473-1; PS1474-1; PS1475-1; PS1477-1; PS1478-1; PS1480-2; PS1483-2; PS1484-2; PS1485-1; PS1486-2; PS1487-1; PS1488-2; PS1489-3; PS1490-2; PS1492-1; PS1493-2; PS1496-2; PS1498-1; PS1499-2; PS1500-2; PS1502-1; PS1507-2; PS1508-2; PS1509-2; PS1587-1; PS1590-1; PS1591-2; PS1593-1; PS1595-2; PS1596-1; PS1596-2; PS1599-1; PS1599-2; PS1605-2; PS1605-3; PS1606-1; PS1606-2; PS1607-1; PS1607-2; PS1609-2; PS1611-1; PS1611-4; PS1613-2; PS1613-3; PS1619-1; PS1620-2; PS1622-1; PS1622-2; PS1625-1; PS1625-2; PS1626-1; PS1635-2; PS1635-3; PS1636-1; PS1636-2; PS1637-2; PS1638-1; PS1638-2; PS1638-3; PS1639-1; PS1639-2; PS1643-3; PS1645-1; PS1645-2; Silicon Cycling in the World Ocean; SINOPS; van Veen Grab; Vestkapp; VGRAB; Weddell Sea; Wegener Canyon
    Type: Dataset
    Format: application/zip, 106 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Olbers, Dirk; Gouretski, Viktor V; Seiß, Guntram; Schröter, Jens (1992): The Hydrographic Atlas of the Southern Ocean. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, 17 pages, 82 plates, hdl:10013/epic.12913
    Publication Date: 2024-07-01
    Description: The general knowledge of the hydrographic structure of the Southern Ocean is still rather incomplete since observations particularly in the ice covered regions are cumbersome to be carried out. But we know from the available information that thermohaline processes have large amplitudes and cover a wide range of scales in this part of the world ocean. The modification of water masses around Antarctica have indeed a worldwide impact, these processes ultimately determine the cold state of the present climate in the world ocean. We have converted efforts of the German and Russian polar research institutions to collect and validate the presently available temperature, salinity and oxygen data of the ocean south of 30°S latitude. We have carried out this work in spite of the fact that the hydrographic programme of the World Ocean Circulation Experiment (WOCE) will provide more new information in due time, but its contribution to the high latitudes of the Southern Ocean is quite sparse. The modified picture of the hydrographic structure of the Southern Ocean presented in this atlas may serve the oceanographic community in many ways and help to unravel the role of this ocean in the global climate system. This atlas could only be prepared with the altruistic assistance of many colleagues from various institutions worldwide who have provided us with their data and their advice. Their generous help is gratefully acknowledged. During two years scientists from the Arctic and Antarctic Research Institute in St. Petersburg and the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven have cooperated in a fruitful way to establish the atlas and the archive of about 38749 validated hydrographic stations. We hope that both sources of information will be widely applied for future ocean studies and will serve as a reference state for global change considerations.
    Keywords: 06MT11_5; ABERG_1970-1979_USSR; ABR_1963-1966_USA; Admiral Vladimirskiy; AEL_1982_USSR; Aelita; AFE_1989_USSR; Afeliy; AFEO_1988_USSR; AFII_1951-1969_RSA; Africana (1950); AIOH_1976-1989_USSR; Akademik Berg; Akademik Fedorov; Akademik Knipovich; Akademik Korolev; Akademik Krylov; Akademik Kurchatov; Akademik Mstislav Keldysh; Akademik Shirshov; Akademik Vernadsky; AKN_1965-1981_USSR; AKO_1970-1982_USSR; AKR_1979_USSR; AKU_1971_USSR; AKU_1980-89; AKU_1982_USSR; AKU11; Alba; ALBA_1974_USSR; ALBAC_1979_Portugal; Albacora; ALBAT_1963; Albatross IV (1963); Alferez Mackinlay; ALM_1965_Portugal; Almirante; Almirante Saldanha; AMAC_1928_Argentina; AMK_1982_USSR; ANC_1989_USSR; Anchar; Andrus Iohann; ANT_1961_USSR; ANT_1967_USSR; ANT_1971_USSR; Antares; ANT-II/3; ANT-III/3; Anton Bruun; ANT-V/1; ANT-V/2; ANT-V/3; ANT-VII/4; ANT-VIII/2; AO_1989_USSR; Argo; ARGO_1960-1967_USA; Argus; ARGUS_1971-1984_USSR; ARI_1968_USSR; ARI_1976_USSR; Ariel; AS_1970-1980_USSR; ASA_1958-1977_Brazil; ATII_1967-1980_USA; ATK_1955-1964_USA; Atka; Atlant; ATLANT_1969-1980_USSR; Atlantis II (1963); Atlantniro; AUS_1977_Argentina; AUS_1978_Argentina; AUS_1982_Argentina; Austral; AV_1975_USSR; AV10; AVL_1983_USSR; BAE_1962_Brazil; Baependi; BAHC_1970_USSR; BAHC_1971_USSR; BAHC_1976_USSR; Bahchisarai; Bahia Blanca; Baird_1957-1964_USA; BBL_1957-1983_Argentina; BELO_1965-1967_USSR; Belogorsk; BENTHOS; BER_Brazil; Bertioga; BIS_1958-1968_USA; BLE_1975_USSR; BLE_1976_USSR; Blesk; Bottle, Niskin; BOU_1939_France; Bougenville; BRA_1947_Norway; Brategg; Burton Island; C.H. Davis; CA_1963_France; CAL_1963_Argentina; Cape Torrell; Capitan Armand; Capitan Canepa; CARN_1928_USA; Carnegie; CCA_1957-1986_Argentina; CDAG_1972-1979_USSR; CHA_1951_UK; Challenger; CHAR_1989_USSR; Charoit; Chatyr-Dag; CHD_1969_USA; CHER_1976_USSR; Chernomor; CHI_1960_Chile; CHUM_1965_USSR; Chumikan; Commander Robert Giraud; Comodoro Augusto Las; CORI_1978_France; CORI_1979_France; Coriolis; Cosmonauts Sea; CRG_1960_France; CT; CTO_Australia; D_1928-1930_Denmark; DAE2_1911/12; Dana; DAV_1968_USSR; Davydov; DEG_1966_Australia; Degei; DEU_1911_Germany; Deutschland; DH_1981_Argentina; DH_1982_Argentina; DH_1983_Argentina; DIA_1958_Argentina; Diaguita; DIAM_1959-1967; DIAM_1959-1967_Australia; Diamantina; DIS_1926-1951_UK; Discovery II (1929); DISII_1929-1987_UK; DM_1974_USSR; Dmitry Mendeleev; Doctor Holmberg; Drake Passage; E. Krivosheyev; EAS_USA; Eastwind; EDI_1956-1970_USA; Edisto; EKL_1972_USSR; EKL_1989_USSR; Ekliptika; EKR_1980-1984_USSR; EKV_1971_USSR; Ekvator; EL_1962-1972_USA; ELD_1962_USA; Eldorado; Eltanin; ERN_1977_USSR; Ernest Krenkel; EST_1965_Australia; Estelle Star; ESTO_1970_USSR; Estonia; EVR_1972-1981_USSR; Evrica; EX_UK; EXCEL_1959_France; Excellent; Explorer; Faddey Bellingshausen; FBE_1968-1983_USSR; FIO_1972-1979_USSR; Fiolent; FOT_1974_USSR; FOT_1978_USSR; Foton; FRAI_1970_France; France I; FUJ_1974-1983; Fuji-Maru; GAL_1950-1952_Denmark; Galathea; GAS_1960-1965_Australia; Gascoyne; GEM_1974_USSR; Gemma; General San-Martin; General Zapiola; GERO_1979_USSR; Geroyevka; GID_1980_USSR; Gidrolog; GIZ_1966-1978_USSR; Gizhiga; GL_1956-1976_USA; Glacier; GLE_1967_USA; Glennon; GOY_1970_Argentina; GOY_1972_Argentina; GOY_1973_Argentina; GOY_1974_Argentina; Goyena; Great Australian Bight; GSM_1954-1988_Argentina; GZ_1962_Argentina; GZ_1963_Argentina; GZ_1964_Argentina; GZ_1966_Argentina; HAC_1966_DDR; Hackel; Hakuho-Maru; HAM_1968-1976; Helland Hansen; Hewaibarragi-Maru; HH_1927_Norway; HMA_1973; HUD_1969_Canada; HUD_1970_Canada; HUD69_Canada; HUD70_Canada; Hudson; Idaho Standard; Indian Ocean; INV_1962_Australia; INV_1963_Australia; INV_1964_Australia; Investigator; IO_1975_Argentina; IO_1976_Argentina; IO_1977_Argentina; IO_1978_Argentina; IO_1979_Argentina; ISK_1975_USA; ISKA_1967_USSR; Iskatel; Islas Orcadas; J.D. Gilchrist; Jan Wellem; JDG_1959_RSA; JDG_1960_RSA; JSH_1961-1979_USSR; JUBI_1967_USSR; Jubileyniy; Juliy Shokalskiy; JW_1937_Germany; JW_1938_Germany; Kaiyo-Maru; Kara-Dag; KDA_1971-1981_USSR; KIA_1956_Nigeria; Kiara; KN_1972-1983_USA; Knorr; KOR_1968_USSR; Korifey; KOY_1969; KOY_1972; KOY_1979; Koyo-Maru; KRU_1988_USSR; Krusenstern; KYM_1976; LAN_1966_USSR; LAN_1967_USSR; LAN_1968_USSR; LAN_1969_USSR; LAN_1972_USSR; Langust; LAP_1949_France; LAP_1956_France; Laperouse; La Rochelle; Lena; LENA_1957_USSR; LES_1963-1976_USSR; Lesnoi; LR_1959_France; LYR_1967_USSR; Lyra; M_1924_FRG; M_1925_FRG; M_1926_FRG; M. Uritskiy; M11/5; M11/5-track; MADR_1957-1986_Argentina; Madryn; MAL_1982_USSR; Malta; Maltsevo; MAR_1963_Australia; Marelda; MARI_1979_USA; Marion; Marion Dufresne (1972); Mariya Ulyanova; MARL_1957-1977_USSR; Marlin; Mavel Taylor; MD_1976_France; MD_1981_France; MD_1985; MD_1985_France; MD_1986_France; MD_1987_France; MD_1987a_France; MD08; Meiring Naude; MEL_1972-1983_USA; Melville; Meteor_1924_FRG; Meteor_1925_FRG; Meteor_1926_FRG; Meteor (1924); Meteor (1986); Mihail Kalinin; Mihail Krupskiy; Mihail Somov; Mikhail Lomonosov; MK_1989_USSR; MKAL_1972_USSR; MKR_1980_USSR; MLO_1961-1976_USSR; MLxx; MNA_RSA; MOE_1912_Germany; MOE_1913_Germany; Monokristall; MOS_1974-1980_USSR; MSO_1975_USSR; MSO_1978_USSR; MSO_1981_USSR; MT_1972-1977_USA; MTS_1988_USSR; MUK_1960_USSR; MUK_1964_USSR; Muksun; MULY_1971_USSR; MUR_1969_USSR; MUS_1975_USSR; Musson; MYS_1978_USSR; Myslitel; Mys Ostrovskogo; N. Kuropatkin; NAT_1958-1963_RSA; Natal; NAU_1966-1968_USSR; Nauka; NDA_1981_Australia; NDA_1982_Australia; NDA_1985_Australia; NDA_1987_Australia; NEK_1974_USSR; Nekton; Nella Dan; New Liscard; NIS; NKU_1987_USSR; NLI_1962_Canada; No_ship_1901-1980_no_country; No_ship_1950-1956_France; No_ship_1955-1962_NewZealand; No_ship_1958-1986_Argentina; No_ship_1961_USA; No_ship_1964_USSR; No_ship_1975_USSR; No_ship_1980_Ireland; NORL_1973-1977_USA; Northland; Northwind; NORV_1927-1930_Norway; Norvegia; NOVOC_1980_USSR; NOVOC_1981_USSR; NOVOC_1982_USSR; NOVOC_1989_USSR; Novocheboksarsk; NOVOU_1980_USSR; NOVOU_1981_USSR; NOVOU_1982_USSR; Novoukrainka; NW_1957-1972_USA; Ob; Ob_1956-1973_USSR; OBD_1965_USSR; Obdorsk; Oceanographer; OCG_1967_USA; OCH_1989_USSR; Ocher; OKE_1970_USSR; Okean; OLO_1965_USSR; OLO_1967_USSR; Olonets; ORE_1962_USSR; ORE_1964_USSR; ORE_1965_USSR; Orehovo; ORL_1965_USSR; Orlik; OSM_1981_USSR; Otto Smidt; PAT_1981-1989_USSR; Patriot; Pavel Kaikov; PDE_1984_Argentina; PDERY_1968_USSR; Petr Lebedev; Pioner Latvii; PK_1982_USSR; PL_Germany; PLA_1988_USSR; PLA_1989_USSR; Planet II (1967-2004); PLEBE_1961_USSR; PME_1974_USSR; PME_1976_USSR; PME_1979_USSR; PO_1971_USSR; POI_1972_USSR; POI_1979_USSR; Poisk; Polarnoye Siyaniye; Polarstern; PR_1970_USSR; PR_1979_USSR; PRI_1970_USSR; PRI_1971_USSR; PRI_1981_USSR; Priboy; Priliv; PRO_1966_USSR; PRO_1972_USSR; PRO_1984_USSR; Professor Deryugin; Professor Mesyatsev; Professor Vize; Professor Vodyanitskiy; Professor Zubov; Prognoz; Prydz Bay; PS04; PS04/3-track; PS06/3-track; PS06 SIBEX; PS09/1-track; PS09 WWSP86 SIBEX; PS10/2-track; PS10/3-track; PS10 WWSP86; PS14/4-track; PS14 EPOS I; PS16/2-track; PS16 06AQANTVIII_2; PSI_1981_USSR; PSI_1983_USSR; Puerto Deseado; PV5; PV5_482-2; PVI_1967-1988_USSR; PYR_1973_France; Pyrrhus; PZ_1968-1989_USSR; QUA_1977_USSR; Quantum; RAD_1966_USSR; Raduga; RAN_1958_Argentina; RAN_1966_Argentina; Ranquel; RC_1965-1987_USA; Research station; RET_1963_USSR; Retiviy; Riiser-Larsen Sea; Robert Conrad; Ross Sea; SAG_1963_Australia; Saga; SAL_1971-1989_USSR; Salehard; San Juan; San Luis; Sardinops; SARI_1959-1965_RSA; SAU_1989_USSR; Saulkrasty; Scotia Sea, southwest Atlantic; SES_1966_USSR; Seskar; SEV_1950-1955_USSR; Sevastopol; Sevastopolskiy Rybak; Shirase; Shoyo-Maru; SHR_1981-1987; SIS_1956-1965_USA; SJU_1928_Argentina; SJU_1929_Argentina; Skif; SKIF_1969-1980_USSR; SLA_1951-1959_USSR; Slava; SLU_1928_Argentina; SMAR_1965; SOLI_1956_Brazil; Solimoes; South Atlantic Ocean; Southern Ocean; South Pacific Ocean; SPE_1980_USSR; Spectrum; Spencer F. Baird; SRY_1980_USSR; Staten Island; STV_1975_USSR; Stvor; SUC_1968_USSR; Suchan; Sula;
    Type: Dataset
    Format: application/zip, 334 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Marsaglia, Kathleen M; Ingersoll, Raymond V (1992): Compositional trends in arc-related, deep-marine sand and sandstone: A reassessment of magmatic-arc provenance. Geological Society of America Bulletin, 104(12), 1637-1649, https://doi.org/10.1130/0016-7606(1992)104%3C1637:CTIARD%3E2.3.CO;2
    Publication Date: 2024-07-01
    Description: Detrital modes for 524 deep-marine sand and sandstone samples recovered on circum-Pacific, Caribbean, and Mediterranean legs of the Deep Sea Drilling Project and the Ocean Drilling Program form the basis for an actualistic model for arc-related provenance. This model refines the Dickinson and Suczek (1979) and Dickinson and others (1983) models and can be used to interpret the provenance/tectonic history of ancient arc-related sedimentary sequences. Four provenance groups are defined using QFL, QmKP, LmLvLs, and LvfLvmiLvl ternary plots of site means: (1) intraoceanic arc and remnant arc, (2) continental arc, (3) triple junction, and (4) strike-slip-continental arc. Intraoceanic- and remnant-arc sands are poor in quartz (mean QFL%Q 〈 5) and rich in lithics (QFL%L 〉 75); they are predominantly composed of plagioclase feldspar and volcanic lithic fragments. Continental-arc sand can be more quartzofeldspathic than the intraoceanic- and remnant-arc sand (mean QFL%Q values as much as 10, mean QFL%F values as much as 65, and mean QmKP%Qm as much as 20) and has more variable lithic populations, with minor metamorphic and sedimentary components. The triple-junction and strike-slip-continental groups compositionally overlap; both are more quartzofeldspathic than the other groups and show highly variable lithic proportions, but the strike-slip-continental group is more quartzose. Modal compositions of the triple junction group roughly correlate with the QFL transitional-arc field of Dickinson and others (1983), whereas the strike-slip-continental group approximately correlates with their dissected-arc field.
    Keywords: 110-671; 110-671B; 110-672; 110-672A; 110-674; 110-674A; 13-127; 13-128; 15-148; 15-154; 18-173; 18-174; 18-177; 18-178; 18-179; 18-180; 18-181; 18-182; 19-184; 19-185; 19-186; 19-188; 19-190; 19-191; 21-203; 30-286; 31-290; 31-293; 31-296; 31-297; 31-298; 31-299; 5-32; 5-34; 56-434; 56-435; 57-438; 57-439; 57-440; 58-442; 58-442A; 58-444; 58-444A; 58-445; 58-446; 59-447; 59-448; 59-450; 59-451; 60-453; 60-455; 60-457; 60-458; 60-459; 66-486; 66-488; 66-489; 66-489A; 66-490; 66-491; 66-492; 66-493; 67-494; 67-497; 67-498; 67-498A; 67-499; 67-500; 84-565; 84-566; 84-566C; 84-567; 84-568; 84-569; 84-570; 87-582; 87-583; 87-584; 90-593; Caribbean Sea/RIDGE; COMPCORE; Composite Core; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Joides Resolution; Leg110; Leg13; Leg15; Leg18; Leg19; Leg21; Leg30; Leg31; Leg5; Leg56; Leg57; Leg58; Leg59; Leg60; Leg66; Leg67; Leg84; Leg87; Leg90; Mediterranean Sea/TRENCH; North Pacific; North Pacific/BASIN; North Pacific/Bering Strait/BASIN; North Pacific/Bering Strait/PLATEAU; North Pacific/Bering Strait/RIDGE; North Pacific/Bering Strait/SPUR; North Pacific/CREST; North Pacific/FAN; North Pacific/Japan Sea; North Pacific/Philippine Sea/BASIN; North Pacific/Philippine Sea/RIDGE; North Pacific/Philippine Sea/TROUGH; North Pacific/PLAIN; North Pacific/RIDGE; North Pacific/SEDIMENT POND; North Pacific/SLOPE; North Pacific/TRANSITION ZONE; North Pacific/TRENCH; South Atlantic Ocean; South Pacific; South Pacific/BASIN; South Pacific/Tasman Sea/PLATEAU
    Type: Dataset
    Format: application/zip, 39 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Eisenhauer, Anton; Spielhagen, Robert F; Frank, Martin; Hentzschel, Günter; Mangini, Augusto; Kubik, Peter W; Dittrich-Hannen, Beate; Billen, T (1994): 10Be records of sediment cores from high northern latitudes: Implications for environmental and climatic changes. Earth and Planetary Science Letters, 124(1-4), 171-184, https://doi.org/10.1016/0012-821X(94)00069-7
    Publication Date: 2024-07-01
    Description: The 10Be records of four sediment cores forming a transect from the Norwegian Sea at 70°N (core 23059) via the Fram Strait (core 23235) to the Arctic Ocean at 86°N (cores 1533 and 1524) were measured at a high depth resolution. Although the material in all the cores was controlled by different sedimentological regimes, the 10Be records of these cores were superimposed by glacial/interglacial changes in the sedimentary environment. Core sections with high 10Be concentrations ( 〉1 * 10**9 at/g) are related to interglacial stages and core sections with low10Be concentrations ( 〈0.5 * 10**9 at/g) are related to glacial stages. Climatic transitions (e.g., Termination II, 5/6) are marked by drastic changes in the 10Be concentrations of up to one order of magnitude. The average 10Be concentrations for each climatic stage show an inverse relationship to their corresponding sedimentation rates, indicating that the 10Be records are the result of dilution with more or less terrigenous ice-rafted material. However, there are strong changes in the 10Be fluxes (e.g., Termination II) into the sediments which may also account for the observed oscillations. Most likely, both processes affected the 10Be records equally, amplifying the contrast between lower (glacials) and higher (interglacials) 10Be concentrations. The sharp contrast of high and low 10Be concentrations at climatic stage boundaries are an independent proxy for climatic and sedimentary change in the Nordic Seas and can be applied for stratigraphic dating (10Be stratigraphy) of sediment cores from the northern North Atlantic and the Arctic Ocean.
    Keywords: Antarctic Ocean; ARK-II/4; ARK-IV/3; AWI_Paleo; Fram Strait; Giant box corer; GIK21524-2 PS11/364-2; GIK21533-3 PS11/412; GIK23059-1; GIK23235-1 PS05/422; GKG; Gravity corer (Kiel type); KAL; Kasten corer; M2/2; Meteor (1986); Norwegian Sea; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS05; PS11; PS1235-1; PS1524-2; PS1533-3; Quaternary Environment of the Eurasian North; QUEEN; SL; Svalbard
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stein, Ruediger; Grobe, Hannes; Wahsner, Monika (1994): Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments. Marine Geology, 119(3-4), 269-285, https://doi.org/10.1016/0025-3227(94)90185-6
    Publication Date: 2024-07-01
    Description: Results from a detailed sedimentological investigation of surface sediments from the eastern Arctic Ocean indicate that the distribution of different types of sediment facies is controlled by different environmental processes such as sea-ice distribution, terrigenous sediment supply, oceanic currents, and surface-water productivity. In comparison to other open-ocean environments, total organic carbon contents are high, with maximum values in some deep-basin areas as well as west and north of Svalbard. In general, the organic carbon fraction is dominated by terrigenous material as indicated by low hydrogen index values and high C/N ratios, probably transported by currents and/or sea ice from the Eurasian Shelf areas. The amount of marine organic carbon is of secondary importance reflecting the low-productivity environment described for the modern ice-covered Arctic Ocean. In the area north of Svalbard, some higher amounts of marine organic matter may indicate increased surface-water productivity controlled by the inflow of the warm Westspitsbergen Current (WSC) into the Arctic Ocean and reduced sea-ice cover. This influence of the WSC is also supported by the high content of biogenic carbonate recorded in the Yermak Plateau area. The clay mineral distribution gives information about different source areas and transport mechanisms. Illite, the dominant clay mineral in the eastern central Arctic Ocean sediments, reaches maximum values in the Morris-Jesup-Rise area and around Svalbard, indicating North Greenland and Svalbard to be most probable source areas. Kaolinite reaches maximum values in the Nansen Basin, east of Svalbard, and in the Barents Sea. Possible source areas are Mesozoic sediments in the Barents Sea (and Franz-Josef-Land). In contrast to the high smectite values determined in sea-ice samples, smectite contents are generally very low in the underlying surface sediments suggesting that the supply by sea ice is not the dominant mechanism for clay accumulation in the studied area of the modern central Arctic Ocean.
    Keywords: Amundsen Basin; ARK-VIII/2; ARK-VIII/3; AWI_Paleo; Barents Sea; Gakkel Ridge, Arctic Ocean; Giant box corer; GKG; KAL; Kasten corer; Lomonosov Ridge, Arctic Ocean; Makarov Basin; Morris Jesup Rise; MUC; MultiCorer; Nansen Basin; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS19/040; PS19/045; PS19/050; PS19/055; PS19/070; PS19/078; PS19/080; PS19/081; PS19/082; PS19/084; PS19/086; PS19/090; PS19/091; PS19/094; PS19/098; PS19/100; PS19/101; PS19/102; PS19/104; PS19/105; PS19/108; PS19/110; PS19/111; PS19/112; PS19/116; PS19/117; PS19/119; PS19/124; PS19/126; PS19/132; PS19/134; PS19/136; PS19/143; PS19/148; PS19/150; PS19/151; PS19/152; PS19/153; PS19/154; PS19/155; PS19/157; PS19/158; PS19/159; PS19/160; PS19/161; PS19/164; PS19/165; PS19/166; PS19/167; PS19/171; PS19/172; PS19/173; PS19/175; PS19/176; PS19/178; PS19/181; PS19/182; PS19/183; PS19/184; PS19/185; PS19/186; PS19/189; PS19/190; PS19/192; PS19/194; PS19/196; PS19/198; PS19/200; PS19/204; PS19/206; PS19/210; PS19/214; PS19/216; PS19/218; PS19/222; PS19/224; PS19/226; PS19/228; PS19/234; PS19/239; PS19/241; PS19/245; PS19/246; PS19/249; PS19/252; PS19 ARCTIC91; PS19 EPOS II; PS2111-2; PS2113-1; PS2114-1; PS2115-1; PS2116-1; PS2117-1; PS2119-2; PS2120-1; PS2121-1; PS2122-1; PS2123-3; PS2124-1; PS2125-2; PS2127-1; PS2128-1; PS2129-2; PS2130-2; PS2131-1; PS2132-3; PS2133-1; PS2134-1; PS2136-3; PS2137-4; PS2138-2; PS2142-3; PS2143-1; PS2144-3; PS2147-3; PS2148-1; PS2149-1; PS2150-1; PS2151-1; PS2153-1; PS2156-1; PS2157-3; PS2157-4; PS2158-1; PS2159-3; PS2159-4; PS2160-3; PS2161-2; PS2161-4; PS2162-1; PS2163-1; PS2163-2; PS2164-1; PS2164-4; PS2165-3; PS2165-5; PS2166-1; PS2166-2; PS2167-2; PS2167-3; PS2168-1; PS2168-3; PS2170-1; PS2170-2; PS2171-1; PS2171-2; PS2172-1; PS2172-3; PS2174-2; PS2174-4; PS2175-3; PS2175-4; PS2176-2; PS2176-4; PS2177-1; PS2177-3; PS2178-2; PS2178-4; PS2179-1; PS2179-3; PS2180-1; PS2181-3; PS2182-1; PS2182-4; PS2183-2; PS2183-3; PS2184-1; PS2184-3; PS2185-3; PS2185-4; PS2186-1; PS2186-3; PS2187-1; PS2187-5; PS2189-1; PS2189-3; PS2190-3; PS2190-5; PS2191-1; PS2192-1; PS2192-2; PS2193-2; PS2193-3; PS2194-1; PS2195-4; PS2196-2; PS2196-3; PS2198-1; PS2198-4; PS2199-4; PS2200-2; PS2200-4; PS2202-2; PS2202-4; PS2204-1; PS2204-3; PS2205-3; PS2206-1; PS2206-4; PS2208-1; PS2209-1; PS2210-1; PS2210-3; PS2212-5; PS2213-1; PS2213-4; PS2214-1; PS2214-4; PS2215-1; PS2215-2; Quaternary Environment of the Eurasian North; QUEEN; Svalbard; Yermak Plateau
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...