ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Public Library of Science  (117,677)
  • 2025-2025
  • 2015-2019  (117,677)
  • 11
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS 11 (2016): e0150820, doi:10.1371/journal.pone.0150820.
    Description: Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8–13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09–0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world’s oceans.
    Description: This project was solely supported by a grant to TJM from the National Science Foundation (Award# CHE-OCE 1131415).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 11 (2016): e0160080, doi: 10.1371/journal.pone.0160080 .
    Description: Pilot whales are two cetacean species (Globicephala melas and G. macrorhynchus) whose distributions are correlated with water temperature and partially overlap in some areas like the North Atlantic Ocean. In the context of global warming, distribution range shifts are expected to occur in species affected by temperature. Consequently, a northward displacement of the tropical pilot whale G. macrorynchus is expected, eventually leading to increased secondary contact areas and opportunities for interspecific hybridization. Here, we describe genetic evidences of recurrent hybridization between pilot whales in northeast Atlantic Ocean. Based on mitochondrial DNA sequences and microsatellite loci, asymmetric introgression of G. macrorhynchus genes into G. melas was observed. For the latter species, a significant correlation was found between historical population growth rate estimates and paleotemperature oscillations. Introgressive hybridization, current temperature increases and lower genetic variation in G. melas suggest that this species could be at risk in its northern range. Under increasing environmental and human-mediated stressors in the North Atlantic Ocean, it seems recommendable to develop a conservation program for G. melas.
    Description: LM had a PCTI Grant from the Asturias Regional Government, referenced BP 10-004. MAS was supported by a 2013 FCT Investigator contract through POPH, QREN European Social Fund and the Portuguese Ministry for Science and Education. This study was also supported by a grant from the Principality of Asturias (reference: GRUPIN-2014-093).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zeigler, S. L., Gutierrez, B. T., Sturdivant, E. J., Catlin, D. H., Fraser, J. D., Hecht, A., Karpanty, S. M., Plant, N. G., & Thieler, E. R. Using a Bayesian network to understand the importance of coastal storms and undeveloped landscapes for the creation and maintenance of early successional habitat. Plos One, 14(7), (2019): e0209986, doi:10.1371/journal.pone.0209986.
    Description: Coastal storms have consequences for human lives and infrastructure but also create important early successional habitats for myriad species. For example, storm-induced overwash creates nesting habitat for shorebirds like piping plovers (Charadrius melodus). We examined how piping plover habitat extent and location changed on barrier islands in New York, New Jersey, and Virginia after Hurricane Sandy made landfall following the 2012 breeding season. We modeled nesting habitat using a nest presence/absence dataset that included characterizations of coastal morphology and vegetation. Using a Bayesian network, we predicted nesting habitat for each study site for the years 2010/2011, 2012, and 2014/2015 based on remotely sensed spatial datasets (e.g., lidar, orthophotos). We found that Hurricane Sandy increased piping plover habitat by 9 to 300% at 4 of 5 study sites but that one site saw a decrease in habitat by 27%. The amount, location, and longevity of new habitat appeared to be influenced by the level of human development at each site. At three of the five sites, the amount of habitat created and the time new habitat persisted were inversely related to the amount of development. Furthermore, the proportion of new habitat created in high-quality overwash was inversely related to the level of development on study areas, from 17% of all new habitat in overwash at one of the most densely developed sites to 80% of all new habitat at an undeveloped site. We also show that piping plovers exploited new habitat after the storm, with 14–57% of all nests located in newly created habitat in the 2013 breeding season. Our results quantify the importance of storms in creating and maintaining coastal habitats for beach-nesting species like piping plovers, and these results suggest a negative correlation between human development and beneficial ecological impacts of these natural disturbances.
    Description: Funding for this work was provided through a U.S. Geological Survey Mendenhall Post-Doctoral Fellowship awarded to S. Zeigler, with funding for this fellowship made through a grant to E.R. Thieler from the North Atlantic Landscape Conservation Cooperative. Funders did not play a role in study design, data collection or analysis, decision to publish, or preparation of the manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 12 (2017): e0184849, doi:10.1371/journal.pone.0184849.
    Description: Diatoms are important components of marine ecosystems and contribute greatly to the world's primary production. Despite their important roles in ecosystems, the molecular basis of how diatoms cope with oxidative stress caused by nutrient fluctuations remains largely unknown. Here, an isobaric tags for relative and absolute quantitation (iTRAQ) proteomic method was coupled with a series of physiological and biochemical techniques to explore oxidative stress- and cell fate decision-related cellular and metabolic responses of the diatom Thalassiosira pseudonana to nitrate (N) and inorganic phosphate (P) stresses. A total of 1151 proteins were detected; 122 and 56 were significantly differentially expressed from control under N- and P-limited conditions, respectively. In N-limited cells, responsive proteins were related to reactive oxygen species (ROS) accumulation, oxidative stress responses and cell death, corresponding to a significant decrease in photosynthetic efficiency, marked intracellular ROS accumulation, and caspase-mediated programmed cell death activation. None of these responses were identified in P-limited cells; however, a significant up-regulation of alkaline phosphatase proteins was observed, which could be the major contributor for P-limited cells to cope with ambient P deficiency. These findings demonstrate that fundamentally different metabolic responses and cellular regulations are employed by the diatom in response to different nutrient stresses and to keep the cells viable.
    Description: This study was funded by the National Natural Science Foundation of China (41576138, 41076080, 41576138) to Dr. Jun-Rong Liang; the Woods Hole Center for Oceans and Human Health, National Science Foundation (OCE-1314642) to Dr. DonaldM Anderson; the National Institute of Environmental Health Sciences (1-P01-ES021923- 01) to Dr. DonaldM Anderson; and the ERC Advanced Award Diatomite and ANR project DiaDomOil to Dr. Chris Bowler.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 11 (2016): e0155049, doi:10.1371/journal.pone.0155049.
    Description: Many reefs have shifted from coral and fish dominated habitats to less productive macroalgal dominated habitats, and current research is investigating means of reversing this phase shift. In the tropical Pacific, overfished reefs with inadequate herbivory can become dominated by the brown alga Sargassum polycystum. This alga suppresses recruitment and survival of corals and fishes, thus limiting the potential for reef recovery. Here we investigate the mechanisms that reinforce S. polycystum dominance and show that in addition to negatively affecting other species, this species acts in a self-reinforcing manner, positively promoting survival and growth of conspecifics. We found that survival and growth of both recruit-sized and mature S. polycystum fronds were higher within Sargassum beds than outside the beds and these results were found in both protected and fished reefs. Much of this benefit resulted from reduced herbivory within the Sargassum beds, but adult fronds also grew ~50% more within the beds even when herbivory did not appear to be occurring, suggesting some physiological advantage despite the intraspecific crowding. Thus via positive feedbacks, S. polycystum enhances its own growth and resistance to herbivores, facilitating its dominance (perhaps also expansion) and thus its resilience on degraded reefs. This may be a key feedback mechanism suppressing the recovery of coral communities in reefs dominated by macroalgal beds.
    Description: Financial support came to MEH from the National Science Foundation (OCE 0929119), the National Institutes of Health (2 U19 TW007401-10), and the Teasley Endowment to the Georgia Institute of Technology.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 12 (2017): e0188257, doi:10.1371/journal.pone.0188257.
    Description: Preservation of three-dimensional structure in the gut is necessary in order to analyze the spatial organization of the gut microbiota and gut luminal contents. In this study, we evaluated preparation methods for mouse gut with the goal of preserving micron-scale spatial structure while performing fluorescence imaging assays. Our evaluation of embedding methods showed that commonly used media such as Tissue-Tek Optimal Cutting Temperature (OCT) compound, paraffin, and polyester waxes resulted in redistribution of luminal contents. By contrast, a hydrophilic methacrylate resin, Technovit H8100, preserved three-dimensional organization. Our mouse intestinal preparation protocol optimized using the Technovit H8100 embedding method was compatible with microbial fluorescence in situ hybridization (FISH) and other labeling techniques, including immunostaining and staining with both wheat germ agglutinin (WGA) and 4', 6-diamidino-2-phenylindole (DAPI). Mucus could be visualized whether the sample was fixed with paraformaldehyde (PFA) or with Carnoy’s fixative. The protocol optimized in this study enabled simultaneous visualization of micron-scale spatial patterns formed by microbial cells in the mouse intestines along with biogeographical landmarks such as host-derived mucus and food particles.
    Description: Funding provided by National Science Foundation (www.nsf.gov) grant 1650141 to J.L.M.W. and National Institutes of Health National Institute of Dental and Craniofacial Research (www.nidcr.nih.gov) grant DE022586 to G.G.B.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 12 (2017): e0188601, doi:10.1371/journal.pone.0188601.
    Description: Many animals go through one or more metamorphoses during their lives, however, the molecular underpinnings of metamorphosis across diverse species are not well understood. Medusozoa (Cnidaria) is a clade of animals with complex life cycles, these life cycles can include a polyp stage that metamorphoses into a medusa (jellyfish). Medusae are produced through a variety of different developmental mechanisms—in some species polyps bud medusae (Hydrozoa), in others medusae are formed through polyp fission (Scyphozoa), while in others medusae are formed through direct transformation of the polyp (Cubozoa). To better understand the molecular mechanisms that may coordinate these different forms of metamorphosis, we tested two compounds first identified to induce metamorphosis in the moon jellyfish Aurelia aurita (indomethacin and 5-methoxy-2-methylindole) on a broad diversity of medusozoan polyps. We discovered that indole-containing compounds trigger metamorphosis across a broad diversity of species. All tested discomedusan polyps metamorphosed in the presence of both compounds, including species representatives of several major lineages within the clade (Pelagiidae, Cyaneidae, both clades of Rhizostomeae). In a cubozoan, low levels of 5-methoxy-2-methylindole reliably induced complete and healthy metamorphosis. In contrast, neither compound induced medusa metamorphosis in a coronate scyphozoan, or medusa production in either hydrozoan tested. Our results support the hypothesis that metamorphosis is mediated by a conserved induction pathway within discomedusan scyphozoans, and possibly cubozoans. However, failure of these compounds to induce metamorphosis in a coronate suggests this induction mechanism may have been lost in this clade, or is convergent between Scyphozoa and Cubozoa.
    Description: National Science Foundation Graduate Research Fellowship (DGE - 1058262; https://www.nsfgrfp.org/general_resources/about) to RRH. Evo-Devo-Eco Network (IOS # 0955517; http://edenrcn.com/) Research Exchange Funds, awarded to RRH. National Science Foundation Rhode Island Established Program to Stimulate Competitive Graduate Research Fellowship to RRH (DEB-1256695; http://web.uri.edu/rinsfepscor/grad-fellowships/). Brown University Ecology and Evolutionary Biology Dissertation Development Grant from the Bushnell Research and Education Fund awarded to RRH.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 13 (2018): e0191509, doi:10.1371/journal.pone.0191509.
    Description: Wintertime convective mixing plays a pivotal role in the sub-polar North Atlantic spring phytoplankton blooms by favoring phytoplankton survival in the competition between light-dependent production and losses due to grazing and gravitational settling. We use satellite and ocean reanalyses to show that the area-averaged maximum winter mixed layer depth is positively correlated with April chlorophyll concentration in the northern Labrador Sea. A simple theoretical framework is developed to understand the relative roles of winter/spring convection and gravitational sedimentation in spring blooms in this region. Combining climate model simulations that project a weakening of wintertime Labrador Sea convection from Arctic sea ice melt with our framework suggests a potentially significant reduction in the initial fall phytoplankton population that survive the winter to seed the region’s spring bloom by the end of the 21st century.
    Description: KB, LB, PJR and LRL were supported by the Office of Science (BER), U. S. Department of Energy as part of the Regional and Global Climate Modelling (RGCM) Program. SCD acknowledges support from NASA Award NNX15AE65G North Atlantic Aerosol and Marine Ecosystem Study (NAAMES).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 12 (2017): e0188340, doi:10.1371/journal.pone.0188340.
    Description: Prion diseases include a number of progressive neuropathies involving conformational changes in cellular prion protein (PrPc) that may be fatal sporadic, familial or infectious. Pathological evidence indicated that neurons affected in prion diseases follow a dying-back pattern of degeneration. However, specific cellular processes affected by PrPc that explain such a pattern have not yet been identified. Results from cell biological and pharmacological experiments in isolated squid axoplasm and primary cultured neurons reveal inhibition of fast axonal transport (FAT) as a novel toxic effect elicited by PrPc. Pharmacological, biochemical and cell biological experiments further indicate this toxic effect involves casein kinase 2 (CK2) activation, providing a molecular basis for the toxic effect of PrPc on FAT. CK2 was found to phosphorylate and inhibit light chain subunits of the major motor protein conventional kinesin. Collectively, these findings suggest CK2 as a novel therapeutic target to prevent the gradual loss of neuronal connectivity that characterizes prion diseases.
    Description: This work was supported by Alzheimer Association New Investigator Research Grant to Promote Diversity NIRGD-11-206379 and Consejo Nacional de Investigaciones Científicas y Técnicas PIP 112 20150100954 CO (to GP), National Institutes of Health NS066942A and NS096642 (to GM), R01-NS023868 and R01-NS041170 (to STB).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 13 (2018): e0190905, doi:10.1371/journal.pone.0190905.
    Description: Trichoplax adhaerens has only six cell types. The function as well as the structure of crystal cells, the least numerous cell type, presented an enigma. Crystal cells are arrayed around the perimeter of the animal and each contains a birefringent crystal. Crystal cells resemble lithocytes in other animals so we looked for evidence they are gravity sensors. Confocal microscopy showed that their cup-shaped nuclei are oriented toward the edge of the animal, and that the crystal shifts downward under the influence of gravity. Some animals spontaneously lack crystal cells and these animals behaved differently upon being tilted vertically than animals with a typical number of crystal cells. EM revealed crystal cell contacts with fiber cells and epithelial cells but these contacts lacked features of synapses. EM spectroscopic analyses showed that crystals consist of the aragonite form of calcium carbonate. We thus provide behavioral evidence that Trichoplax are able to sense gravity, and that crystal cells are likely to be their gravity receptors. Moreover, because placozoans are thought to have evolved during Ediacaran or Cryogenian eras associated with aragonite seas, and their crystals are made of aragonite, they may have acquired gravity sensors during this early era.
    Description: This research was supported by the intramural research program of the NIH, NINDS.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...