ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2025-2025  (24)
  • 2015-2019  (4,201,935)
  • 1990-1994  (1,577,931)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schlüter, Michael (1990): Zur Frühdiagenese von organischem Kohlenstoff und Opal in Sedimenten des südlichen und östlichen Weddellmeeres. Geochemische Analyse und Modellierung (Early diagenesis of organic carbon and opal in sediments of the southern and eastern Weddell Sea. Geochemical analysis and modelling). Berichte zur Polarforschung = Reports on Polar Research, 73, 156 pp, https://doi.org/10.2312/BzP_0073_1990
    Publication Date: 2024-07-01
    Description: During the ANT V14 (1986187) and ANT V113 (1987188) cruises of R.V. Polarstern sedirnents from the eastern, southern and central Weddell Sea were sarnpled with a boxcorer andlor a multicorer. The 24 sampling locations are distributed over the whole depth range, from shelf to pelagic environments. Porewater concentrations of aluminium, fluoride, manganese, nitrate, nitrite, oxygen and silicate, the pH and the alkalinity were measured. Of the sediment the opal, calcium carbonate and organic carbon content were quantified. The 210Pb-profile was measured for three sedirnent cores. This investigation deals with the estimation of the amounts of opal and organic carbon (Corg) that are transported into the sediment, the regional distribution of these flux rates and the early diagenetic processes that control the preservation of organic carbon and opal in the sediment. The flux and degradation rates of organic carbon were determined by modelling the rneasured oxygen and nitrate profiles. The highest flux and degradation rates were found in the eastern shelf sediments. Due to the high Corg-flux (〉500 mmol C m**-2 a-1) in this area the oxic environment is restricted to the upper 3 cm of the sediment. In contrast to this, the oxic Zone in the pelagic sedirnents of the Weddell Sea has probably an extension of a few meters. The Corg-flux here, computed from the flux of nitrate throug h the sedimentlwater-interface, is less than 50 mmol C m**-2 a**-1. The flux of organic carbon into the sediments of the continental slope area is usually intermediate between the values computed for the shelf and pelagic sediments. Exceptions are the continental slope region north of Halley Bay. In these sediments the measured oxygen and nitrate profiles indicate a relatively high organic carbon flux. This could be a result of the recurrent development of a coastal polynia in this area. The bioturbation rate determined in this region by a 210Pb-profile is 0,019 cm**2 a**-1. In the Weddell Sea the opal content at the sediment surface (0-1 cm depth) varies between 0,1 and 7 %-wt. These opal concentrations are rnuch lower than the opal contents determined for the sediments of the ROSS Sea by Ledford-Hoffmann et al. (1986 doi:10.1016/0016-7037(86)90263-2). Therefore the importance of the Antarctic shelf regions for the global silica cycle as stated by Ledford-Hoffmann et al. (1986) has to be reconsidered. The regional distribution of the opal content and the computed opal flux rates are correlated with the organic carbon flux rates. The processes controlling the preservation of opal are discussed based On the measured aluminium and silicate concentrations in the Pore water and the opal content of the sediment.The depth distribution of the Si- and Al-concentration of the porewater indicates that the reconstitution of clay minerals takes place in the immediate vicinity of the sediment-water nterface. A characterization of these minerals e.g. the estimation of the Si/AI-ratio (Mackin and Aller, 1984 a doi:10.1016/0016-7037(84)90251-5, 1984 b doi:10.1016/0016-7037(84)90252-7) is not possible. With the program WATEQ2 saturation indices are computed to estimate which minerals could reconstitute. In this context the applicability of programs like WATEQ2 for computations of the species distribution and saturation indices in solutions with the ionic strength of sea water is investigated.
    Keywords: ANT-V/4; ANT-VI/3; Atka Bay; AWI_Paleo; Barents Sea; Camp Norway; Eastern Weddell Sea, Southern Ocean; Filchner Trough; Giant box corer; GKG; Halley Bay; Kapp Norvegia; Lyddan Island; Maud Rise; MG; ms_opal; MUC; Multiboxcorer; MultiCorer; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS10; PS10/672; PS10/673; PS10/675; PS10/678; PS10/684; PS10/686; PS10/690; PS10/699; PS10/701; PS10/703; PS10/707; PS10/711; PS10/719; PS10/725; PS10/738; PS10/748; PS10/757; PS10/766; PS10/778; PS10/782; PS10/784; PS10/804; PS10/818; PS10/820; PS10/824; PS12; PS12/289; PS12/300; PS12/302; PS12/305; PS12/310; PS12/312; PS12/319; PS12/336; PS12/338; PS12/340; PS12/344; PS12/348; PS12/352; PS12/366; PS12/368; PS12/374; PS12/380; PS12/382; PS12/458; PS12/465; PS12/472; PS12/486; PS12/490; PS12/510; PS12/526; PS1472-4; PS1473-1; PS1474-1; PS1475-1; PS1477-1; PS1478-1; PS1480-2; PS1483-2; PS1484-2; PS1485-1; PS1486-2; PS1487-1; PS1488-2; PS1489-3; PS1490-2; PS1492-1; PS1493-2; PS1496-2; PS1498-1; PS1499-2; PS1500-2; PS1502-1; PS1507-2; PS1508-2; PS1509-2; PS1587-1; PS1590-1; PS1591-2; PS1593-1; PS1595-2; PS1596-1; PS1596-2; PS1599-1; PS1599-2; PS1605-2; PS1605-3; PS1606-1; PS1606-2; PS1607-1; PS1607-2; PS1609-2; PS1611-1; PS1611-4; PS1613-2; PS1613-3; PS1619-1; PS1620-2; PS1622-1; PS1622-2; PS1625-1; PS1625-2; PS1626-1; PS1635-2; PS1635-3; PS1636-1; PS1636-2; PS1637-2; PS1638-1; PS1638-2; PS1638-3; PS1639-1; PS1639-2; PS1643-3; PS1645-1; PS1645-2; Silicon Cycling in the World Ocean; SINOPS; van Veen Grab; Vestkapp; VGRAB; Weddell Sea; Wegener Canyon
    Type: Dataset
    Format: application/zip, 106 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Grobe, Hannes; Fütterer, Dieter K; Spieß, Volkhard (1990): Oligocene to Quaternary sedimentation processes on the Antarctic continental margin, ODP Leg 113, Site 693. In: Barker, PF; Kennett, JP; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 113, 121-131, https://doi.org/10.2973/odp.proc.sr.113.193.1990
    Publication Date: 2024-07-01
    Description: Oligocene to Quaternary sediments were recovered from the Antarctic continental margin in the eastern Weddell Sea during ODP Leg 113 and Polarstern expedition ANT-VI. Clay mineral composition and grain size distribution patterns are useful for distinguishing sediments that have been transported by ocean currents from those that were ice-rafted. This, in turn, has assisted in providing insights about the changing late Paleogene to Neogene sedimentary environment as the cryosphere developed in Antarctica. During the middle Oligocene, increasing glacial conditions on the continent are indicated by the presence of glauconite sands, that are interpreted to have formed on the shelf and then transported down the continental slope by advancing glaciers or as a result of sea-level lowering. The dominance of illite and a relatively high content of chlorite suggest predominantly physical weathering conditions on the continent. The high content of biogenic opal from the late Miocene to the late Pliocene resulted from increased upwelling processes at the continental margin due to increased wind strength related to global cooling. Partial melting of the ice-sheet occurred during an early Pliocene climate optimum as is shown by an increasing supply of predominantly current-derived sediment with a low mean grain size and peak values of smectite. Primary productivity decreased at ~ 3 Ma due to the development of a permanent sea-ice cover close to the continent. Late Pleistocene sediments are characterized by planktonic foraminifers and biogenic opal, concentrated in distinct horizons reflecting climatic cycles. Isotopic analysis of AT. pachyderma produced a stratigraphy which resulted in a calculated sedimentation rate of 1 cm/k.y. during the Pleistocene. Primary productivity was highest during the last three interglacial maxima and decreased during glacial episodes as a result of increasing sea-ice coverage.
    Keywords: 113-690B; 113-693B; ANT-V/4; ANT-VI/3; AWI_Paleo; DRILL; Drilling/drill rig; Gravity corer (Kiel type); Joides Resolution; Kapp Norvegia; Leg113; Ocean Drilling Program; ODP; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS10; PS10/694; PS12; PS12/302; PS1481-3; PS1591-1; SL; South Atlantic Ocean; Weddell Sea
    Type: Dataset
    Format: application/zip, 9 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Melles, Martin (1991): Paläoglaziologie und Paläozeanographie im Spätquartär am Kontinentalrand des südlichen Weddellmeeres, Antarktis (Late Quaternary paleoglaciology and paleoceanography at the continental margin of the southern Weddell Sea, Antarctica). Berichte zur Polarforschung = Reports on Polar Research, 81, 190 pp, https://doi.org/10.2312/BzP_0081_1991
    Publication Date: 2024-07-01
    Description: During four expeditions with RV "Polarstern" at the continental margin of the southern Weddell Sea, profiling and geological sampling were carried out. A detailed bathymetric map was constructed from echo-sounding data. Sub-bottom profiles, classified into nine echotypes, have been mapped and interpreted. Sedimentological analyses were carried out on 32 undisturbed box grab surface samples, as well as on sediment cores from 9 sites. Apart from the description of the sediments and the investigation of sedimentary structures on X-radiographs the following characteristics were determined: grain-size distributions; carbonate and Corg content; component distibutions in different grain-size fractions; stable oxygen and carbon isotopes in planktic and, partly, in benthic foraminifers; and physical properties. The stratigraphy is based On 14C-dating, oxygen isotope Stages and, at one site, On paleomagnetic measurements and 230Th-analyses The sediments represent the period of deposition from the last glacial maximum until recent time. They are composed predominantly of terrigenous components. The formation of the sediments was controlled by glaciological, hydrographical and gravitational processes. Variations in the sea-ice coverage influenced biogenic production. The ice sheet and icebergs were important media for sediment transport; their grounding caused compaction and erosion of glacial marine sediments on the outer continental shelf. The circulation and the physical and chemical properties of the water masses controlled the transport of fine-grained material, biogenic production and its preservation. Gravitational transport processes were the inain mode of sediment movements on the continental slope. The continental ice sheet advanced to the shelf edge and grounded On the sea-floor, presumably later than 31,000 y.B.P. This ice movement was linked with erosion of shelf sediments and a very high sediment supply to the upper continental slope from the adiacent southern shelf. The erosional surface On the shelf is documented in the sub-bottom profiles as a regular, acoustically hard reflector. Dense sea-ice coverage above the lower and middle continental slope resulted in the almost total breakdown of biogenic production. Immediately in front of the ice sheet, above the upper continental slope, a 〈50 km broad coastal polynya existed at least periodically. Biogenic production was much higher in this polynya than elsewhere. Intense sea-ice formation in the polynya probably led to the development of a high salinity and, consequently, dense water mass, which flowed as a stream near bottom across the continental slope into the deep sea, possibly contributing to bottom water formation. The current velocities of this water mass presumably had seasonal variations. The near-bottom flow of the dense water mass, in combination with the gravity transport processes that arose from the high rates of sediment accumulation, probably led to erosion that progressed laterally from east to West along a SW to NE-trending, 200 to 400 m high morphological step at the continental slope. During the period 14,000 to 13,000 y.B.P., during the postglacial temperature and sea-level rise, intense changes in the environmental conditions occured. Primarily, the ice masses on the outer continental shelf started to float. Intense calving processes resulted in a rapid retreat of the ice edge to the south. A consequence of this retreat was, that the source area of the ice-rafted debris changed from the adjacent southern shelf to the eastern Weddell Sea. As the ice retreated, the gravitational transport processes On the continental slope ceased. Soon after the beginning of the ice retreat, the sea-ice coverage in the whole research area decreased. Simultaneously, the formation of the high salinity dense bottom water ceased, and the sediment composition at the continental slope then became influenced by the water masses of the Weddell Gyre. The formation of very cold Ice Shelf Water (ISW) started beneath the southward retreating Filchner-Ronne Ice Shelf somewhat later than 12,000 y.B.P. The ISW streamed primarily with lower velocities than those of today across the continental slope, and was conducted along the erosional step on the slope into the deep sea. At 7,500 y.B.P., the grounding line of the ice masses had retreated 〉 400 km to the south. A progressive retreat by additional 200 to 300 km probably led to the development of an Open water column beneath the ice south of Berkner Island at about 4,000 y.B.P. This in turn may have led to an additional ISW, which had formed beneath the Ronne Ice Shelf, to flow towards the Filcher Ice Shelf. As a result, increased flow of ISW took place over the continental margin, possibly enabling the ISW to spill over the erosional step On the upper continental slope towards the West. Since that time, there is no longer any documentation of the ISW in the sedimentary Parameters on the lower continental slope. There, recent sediments reflect the lower water masses of the Weddell Gyre. The sea-ice coverage in early Holocene time was again so dense that biogenic production was significantly restricted.
    Keywords: ANT-I/2; ANT-II/4; ANT-III/3; ANT-IV/3; ANT-V/4; ANT-VI/3; Atka Bay; AWI_Paleo; Camp Norway; Cape Fiske; Dredge; DRG; Eastern Weddell Sea, Southern Ocean; Filchner Shelf; Filchner Trough; Giant box corer; GKG; Gould Bay; Gravity corer (Kiel type); Kapp Norvegia; Lyddan Island; MG; Multiboxcorer; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS01; PS01/154; PS01/155; PS01/156; PS01/161; PS01/162; PS01/177; PS01/184; PS01/186; PS01/189; PS04; PS04/477; PS04/481; PS04/484; PS04/495; PS04/500; PS04/508; PS04/509; PS06/301; PS06/302; PS06/303; PS06/304; PS06/306; PS06 SIBEX; PS08; PS08/321; PS08/324; PS08/327; PS08/333; PS08/335; PS08/336; PS08/338; PS08/340; PS08/344; PS08/345; PS08/346; PS08/347; PS08/350; PS08/353; PS08/354; PS08/355; PS08/356; PS08/357; PS08/358; PS08/359; PS08/360; PS08/361; PS08/364; PS08/365; PS08/366; PS08/367; PS08/368; PS08/369; PS08/374; PS08/375; PS08/379; PS08/380; PS08/381; PS08/382; PS08/384; PS08/385; PS08/386; PS08/387; PS08/394; PS08/396; PS08/397; PS08/401; PS08/402; PS08/410; PS08/428; PS08/430; PS08/432; PS08/438; PS08/439; PS08/440; PS08/442; PS08/444; PS08/445; PS08/449; PS08/450; PS08/452; PS08/480; PS08/482; PS08/483; PS10; PS10/725; PS10/738; PS10/740; PS10/748; PS10/757; PS10/760; PS10/762; PS10/766; PS10/768; PS10/778; PS10/782; PS1010-1; PS1011-1; PS1012-1; PS1013-1; PS1014-1; PS1016-1; PS1017-1; PS1018-1; PS1019-1; PS12; PS12/336; PS12/338; PS12/340; PS12/342; PS12/344; PS12/346; PS12/348; PS12/350; PS12/352; PS12/354; PS12/356; PS12/382; PS12/384; PS1215-2; PS1216-1; PS1217-1; PS1219-1; PS1220-3; PS1222-1; PS1223-1; PS1275-1; PS1276-1; PS1277-1; PS1278-1; PS1279-1; PS1363-3; PS1364-1; PS1366-1; PS1367-1; PS1368-1; PS1369-1; PS1370-1; PS1371-1; PS1372-2; PS1373-2; PS1374-2; PS1375-2; PS1376-2; PS1377-1; PS1378-1; PS1379-1; PS1380-1; PS1381-1; PS1382-1; PS1383-1; PS1384-1; PS1385-1; PS1386-1; PS1387-1; PS1388-1; PS1389-1; PS1390-1; PS1391-1; PS1394-1; PS1395-1; PS1396-1; PS1397-1; PS1398-2; PS1399-1; PS1400-1; PS1400-4; PS1401-1; PS1401-2; PS1402-2; PS1403-1; PS1405-1; PS1406-1; PS1407-1; PS1410-1; PS1411-1; PS1412-1; PS1414-1; PS1415-1; PS1416-1; PS1417-1; PS1418-1; PS1419-1; PS1420-1; PS1420-2; PS1421-1; PS1422-1; PS1423-1; PS1424-1; PS1425-1; PS1427-1; PS1428-1; PS1489-3; PS1490-2; PS1491-3; PS1492-1; PS1493-2; PS1494-2; PS1494-3; PS1495-1; PS1496-2; PS1497-1; PS1498-1; PS1498-2; PS1499-2; PS1605-3; PS1606-1; PS1606-3; PS1607-1; PS1607-3; PS1608-1; PS1609-1; PS1609-2; PS1609-3; PS1610-3; PS1610-4; PS1611-1; PS1611-2; PS1611-3; PS1612-1; PS1612-2; PS1613-2; PS1613-4; PS1614-1; PS1615-2; PS1626-1; PS1627-1; SL; Weddell Sea
    Type: Dataset
    Format: application/zip, 209 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cronin, Thomas M; Holtz, Thomas R; Whatley, Robin C (1994): Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda. Marine Geology, 119(3-4), 305-332, https://doi.org/10.1016/0025-3227(94)90188-0
    Publication Date: 2024-07-01
    Description: Ostracodes were studied from deep Arctic Ocean cores obtained during the Arctic 91 expedition of the Polarstern to the Nansen, Amundsen and Makarov Basins, the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau, in order to investigate their distribution in Arctic Ocean deep water (AODW) and apply these data to paleoceanographic reconstruction of bottom water masses during the Quaternary. Analyses of coretop assemblages from Arctic 91 boxcores indicate the following: ostracodes are common at all depths between 1000 and 4500 m, and species distribution is strongly influenced by water mass characteristics and bathymetry; quantitative analyses comparing Eurasian and Canada Basin assemblages indicate that distinct assemblages inhabit regions east and west of the Lomonosov Ridge, a barrier especially important to species living in lower AODW; deep Eurasian Basin assemblages are more similar to those living in Greenland Sea deep water (GSDW) than those in Canada Basin deep water; two upper AODW assemblages were recognized throughout the Arctic Ocean, one living between 1000 and 1500 m, and the other, having high species diversity, at 1500-3000 m. Downcore quantitative analyses of species' abundances and the squared chord distance coefficient of similarity reveals a distinct series of abundance peaks in key indicator taxa interpreted to signify the following late Quaternary deep water history of the Eurasian Basin. During the Last Glacial Maximum (LGM), a GSDW/AODW assemblage, characteristic of cold, well oxygenated deep water 〉 3000 m today, inhabited the Lomonosov Ridge to depths as shallow as 1000 m, perhaps indicating the influence of GSDW at mid-depths in the central Arctic Ocean. During Termination 1, a period of high organic productivity associated with a strong inflowing warm North Atlantic layer occurred. During the mid-Holocene, several key faunal events indicate a period of warming and/or enhanced flow between the Canada and Eurasian Basins. A long-term record of ostracode assemblages from kastenlot core PS2200-5 (1073 m water depth) from the Morris Jesup Rise indicates a quasi-cyclic pattern of water mass changes during the last 300 kyr. Interglacial ostracode assemblages corresponding to oxygen isotope stages 1, 5, and 7 indicate rapid changes in dissolved oxygen and productivity during glacial-interglacial transitions.
    Keywords: 80PB50; 81-APB-13; AC-71-36; AC-71-38; AC-71-48; Amundsen Basin; ARK-VIII/3; AW-2375; AW-2839; AW-2904; AW-2905; AW-3101A; AW-3143; AW-3154; AW-3161; AW-57-328-46; AW-62-160-10; AW-62-160-7; AW-62-160-8; AW-62-160-9; AWI_Paleo; AW-IH25; AW-NN; AW-V6-33-78-21; Barnes26-80; Barnes27-80; Barnes56-80; Bart.30; Bart.46; Bart.49; Bart.55; Bart.LT23Hazel3; Bart.LT26Hazel2; Bart.LT30; Bart.LT35Hazel5; Bart.N.Omenolu; Beaufort Sea; Canadian Beaufort; Cape Martineau; Chest.Inlet1; Chest.Inlet2; Chest.Inlet5; Chest.Inlet8; Chest.Inlet9; Chikchi Sea; DC1-79-EG-1; DC2-80-EG-186; DC2-80-EG-73; EGAL-75-KC-53; E Greenland; Gakkel Ridge, Arctic Ocean; Giant box corer; GKG; Gulf of Alaska; GV8202745; GV82027-67; GV83033#44; GV83033#45; HU69-050.830; HU69-050.836; HU85-027-76; Hudson Bay; Hudson Strait; Hurd Channel; Ikerssauk15; Ikerssauk2; Ikerssauk4; Ikerssauk5; KAL; Kara Sea; Kasten corer; Labrador; Lomonosov Ridge, Arctic Ocean; Makarov Basin; Melville Penin.; Morris Jesup Rise; Nansen Basin; Northwind5; Northwind65#106; Northwind65#112; Northwind65#115; Northwind65#41; Norton Sound; N Star Bay, Greenl.; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Penney274101; PenneyIkerss.#1; Polarstern; PRZO70-22-130; PRZO72-44; PS19/150; PS19/151; PS19/152; PS19/155; PS19/157; PS19/158; PS19/159; PS19/160; PS19/161; PS19/164; PS19/165; PS19/166; PS19/167; PS19/171; PS19/172; PS19/173; PS19/175; PS19/176; PS19/178; PS19/181; PS19/182; PS19/183; PS19/184; PS19/185; PS19/186; PS19/189; PS19/190; PS19/192; PS19/194; PS19/198; PS19/200; PS19/204; PS19/206; PS19/210; PS19/214; PS19/218; PS19/239; PS19/241; PS19/245; PS19/246; PS19/249; PS19/252; PS19 ARCTIC91; PS2157-4; PS2158-1; PS2159-4; PS2162-1; PS2163-2; PS2164-4; PS2165-3; PS2166-2; PS2167-2; PS2168-1; PS2170-1; PS2171-1; PS2172-1; PS2174-4; PS2175-3; PS2176-4; PS2177-1; PS2178-2; PS2179-1; PS2180-1; PS2181-3; PS2182-1; PS2183-1; PS2184-1; PS2185-3; PS2186-5; PS2187-1; PS2189-1; PS2190-3; PS2192-1; PS2193-2; PS2194-1; PS2195-4; PS2196-2; PS2198-1; PS2200-2; PS2200-5; PS2209-1; PS2210-1; PS2212-5; PS2213-1; PS2214-1; PS2215-2; Quaternary Environment of the Eurasian North; QUEEN; S5-77-BS-17; SEA5-125A; SEA-5-76-174; Svalbard; SW Greenland; Ungava Bay; W Greenland; WhiteBearHazel18; Yermak Plateau
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Weber, Michael E; Bonani, Georges; Fütterer, Dieter K (1994): Sedimentation processes within channel-ridge systems, southeastern Weddell Sea, Antarctica. Paleoceanography, 9(6), 1027-1048, https://doi.org/10.1029/94PA01443
    Publication Date: 2024-07-01
    Description: On the continental margin of the southeastern Weddell Sea, Antarctica, several channel-ridge systems can be traced on the eastern side of the Crary Fan. Swath mapping of the bathymetry reveals three southwest-northeast trending ridges up to 300 m high with channels on their southeastern side. The structures occur on a terrace of the continental slope in water depths of 2000 - 3300 m. We carried out sedimentological studies on cores from three sites. Two of the studied cores are from ridges, one is from the northwestern part of the terrace. The stratigraphy of the recovered sediments is based on accelerator mass spectrometer 14C determinations, stable oxygen and carbon isotopes analyses and paleomagnetic measurements. The sediments represent a period from the last glacial maximum (LGM) to recent time. They are composed predominantly of terrigenous components. We distinguish four different sedimentary facies and assign them to processes controlling sedimentation. Microlaminated muds and cross-stratified coarse-silty sediments originated from contour currents. Bioturbated sediments reflect the increasing influence of hemipelagic sedimentation. Structureless sediments with high contents of ice-rafted debris characterize slumps. The inferred contour currents shaping the continental slope during the LGM were canalized within the channels and supplied microlaminated mud to the western sedimentary ridges due to deflection to the left induced by the Coriolis force. The lamination of the sediments is attributed to seasonal variations of current velocities. The thermohaline bottom currents were directed to the northeast and hence opposite to the Weddell Gyre. Cross-stratified coarse-silty contourites on the ridges are intercalated with the muds and indicate spillover of faster thermohaline flows. Average sedimentation rates on the terrace of the continental slope were unusually high (250 cm/ka) during the LGM, indicating active growth phases of the Crary Fan during glacial intervals. A substantial environmental change at 19.5 - 20 ka is documented in the sediments by a gradual change from lamination to bioturbation. During the recent interglacial, bioturbated sediments were deposited in all parts of the terrace. Because of a reduction of the contour current velocities (4-7 cm/s), the water masses of the Weddell Gyre, supplying fine-grained sediments from northeast, gain a greater influence on sedimentation on the continental slope. Higher percentages of microfossils indicate enhanced biogenic productivity. Increased iceberg activity is documented by greater amounts of ice-rafted debris. The interglacial sedimentation rates decrease to a few cm/ka and indicate that the Crary Fan became relatively sediment-starved during interglacial intervals.
    Keywords: ANT-VI/3; ANT-VIII/5; AWI_Paleo; Gravity corer (Kiel type); Halley Bay; Lyddan Island; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS12; PS12/319; PS1599-3; PS16; PS16/409; PS16/410; PS1789-1; PS1790-1; SL
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kröncke, Ingrid (1994): Macrobenthos composition, abundance and biomass in the Arctic Ocean along a transect between Svalbard and the Makarov Basin. Polar Biology, 14(8), 519-529, https://doi.org/10.1007/BF00238221
    Publication Date: 2024-07-01
    Description: Macrofauna has been sampled at 30 stations, at water depths of 1018–4478 m, along a transect extending between Northern Svalbard and the Makarov Basin, as a basis for understanding aspects of the benthic ecology of the Arctic Ocean. Species numbers, abundances and biomasses were extremely low, and generally varied between 0 to 11/0.02 m**2, 0 to 850 individuals/m**2, and 0 to 82.65 g/m**2, respectively. A total of 42 species was found. The Amphipod Jassa marmorata was the most common species. Both numbers and biomasses of suspension-feeding species increased towards the Lomonosov Ridge, probably due to lateral transport of organic material by deep currents along the ridge.
    Keywords: Amundsen Basin; ARK-VIII/3; Gakkel Ridge, Arctic Ocean; Giant box corer; GKG; Lomonosov Ridge, Arctic Ocean; Makarov Basin; Nansen Basin; Polarstern; PS19/150; PS19/151; PS19/155; PS19/165; PS19/166; PS19/181; PS19/182; PS19/186; PS19 ARCTIC91; PS2157-7; PS2158-1; PS2159-7; PS2161-5; PS2162-1; PS2163-5; PS2164-7; PS2165-6; PS2166-4; PS2167-4; PS2168-4; PS2170-1; PS2171-1; PS2172-5; PS2174-7; PS2175-6; PS2176-7; PS2177-7; PS2178-6; PS2179-4; PS2180-1; PS2181-1; PS2182-6; PS2183-5; PS2184-4; PS2185-3; PS2185-8; PS2186-6; PS2187-6; PS2189-6; PS2190-6
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tan, Tjhing Lok; Rüger, Hans-Jürgen (1991): Biomass and nutritional requirements of psychrotrophic bacterial communities in Fram Strait and western Greenland Sea. Proceedings of the Fourth European Marine Micobiology Symposium, Kieler Meeresforschung, 8, 219-224, hdl:10013/epic.13649.d001
    Publication Date: 2024-07-01
    Description: During the 'Polarstern' expedition ARK-IV/2 in June 1987, water samples from 8 stations were taken to study biomass and substrate utilization of cold adapted bacteria. Bacterial biomasses determined from acridine orange direct counts (AODC) were between 0.4 and 31.4 µ/g C/l, and ATP concentrations amounted from 〈0.1 to 40 ng/l. Colony counts on seawater agar reached only 0.1% of AODC, but with the MPN-method 1 to 10% of AODC were recorded. With 14C-glutamic acid or 14C-glucose as tracer substrate in oligotrophic broth containing 0.5 mg trypticase and 0.05 mg yeast extract per liter of seawater, obligately oligotrophic bacteria could be detected in one water sample. Although incubation was at 2 °C, only psychrotrophic bacteria showing growth temperatures between 1 and 30 °C were obtained. Organic substrate utilizations by 106 isolates were tested at 4 and 20 °C. Most carbohydrates, organic acids, alcohols, and alanine were assimilated at both temperatures, but arginine, aspartate and ornithine were utilized only at 20 °C by almost all strains.
    Keywords: ARK-IV/2; CTD/Rosette; CTD-RO; North Greenland Sea; Polarstern; PS11; PS11/185-1; PS11/195-1; PS11/223-1; PS11/227-1; PS11/235-1; PS11/242-1; PS11/248-1; PS11/253-1
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-07-01
    Keywords: Agulhas Basin; ANT-IX/4; ANT-VI/3; ANT-VIII/3; Atlantic Indik Ridge; Atlantic Ridge; AWI_Paleo; Cape Basin; Communality; Discovery Seamount; Elevation of event; Event label; Factor 1; Factor 2; Factor 3; Factor 4; Factor 5; Factor analysis; Giant box corer; GKG; Indian-Antarctic Ridge; LATITUDE; LONGITUDE; Meteor Rise; MUC; MultiCorer; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS12; PS12/545; PS12/551; PS12/553; PS12/555; PS12/557; PS16; PS16/262; PS16/267; PS16/271; PS16/278; PS16/281; PS16/284; PS16/294; PS16/303; PS16/306; PS16/311; PS16/316; PS16/321; PS16/323; PS16/329; PS16/334; PS16/337; PS16/342; PS16/345; PS16/351; PS16/354; PS16/362; PS16/366; PS16/372; PS1649-1; PS1651-2; PS1652-1; PS1653-2; PS1654-1; PS1750-7; PS1751-2; PS1752-5; PS1754-2; PS1755-1; PS1756-6; PS1759-1; PS1764-2; PS1765-1; PS1768-1; PS1771-4; PS1772-6; PS1773-2; PS1774-1; PS1775-5; PS1776-6; PS1777-7; PS1778-1; PS1779-3; PS1780-1; PS1782-6; PS1783-1; PS1786-2; PS18; PS18/229; PS18/232; PS18/236; PS18/237; PS18/238; PS18/239; PS18/241; PS18/242; PS18/243; PS18/244; PS18/249; PS18/250; PS18/251; PS18/252; PS18/253; PS18/254; PS18/255; PS18/256; PS18/257; PS18/260; PS18/261; PS18/262; PS18/263; PS18/264; PS18/266; PS18/267; PS2073-1; PS2076-1; PS2080-1; PS2081-1; PS2082-3; PS2083-1; PS2084-2; PS2085-1; PS2086-3; PS2087-1; PS2091-1; PS2092-1; PS2093-1; PS2094-1; PS2095-1; PS2096-1; PS2097-1; PS2098-1; PS2099-1; PS2102-1; PS2103-2; PS2104-1; PS2105-2; PS2106-1; PS2108-1; PS2109-3; SFB261; Shona Ridge; South Atlantic in Late Quaternary: Reconstruction of Budget and Currents; South Sandwich Basin; South Sandwich Islands; South Sandwich Trough; Van Heesen Ridge
    Type: Dataset
    Format: text/tab-separated-values, 324 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-07-01
    Keywords: Agulhas Basin; ANT-IX/4; ANT-VI/3; ANT-VIII/3; Atlantic Indik Ridge; Atlantic Ridge; AWI_Paleo; Cape Basin; Communality; Discovery Seamount; Elevation of event; Event label; Factor 1; Factor 2; Factor 3; Factor 4; Factor 5; Factor 6; Factor analysis; Giant box corer; GKG; Indian-Antarctic Ridge; LATITUDE; LONGITUDE; Meteor Rise; MUC; MultiCorer; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS12; PS12/545; PS12/551; PS12/553; PS12/555; PS12/557; PS16; PS16/262; PS16/267; PS16/271; PS16/278; PS16/281; PS16/284; PS16/294; PS16/303; PS16/306; PS16/311; PS16/316; PS16/321; PS16/323; PS16/329; PS16/334; PS16/337; PS16/342; PS16/345; PS16/351; PS16/354; PS16/362; PS16/366; PS16/372; PS1649-1; PS1651-2; PS1652-1; PS1653-2; PS1654-1; PS1750-7; PS1751-2; PS1752-5; PS1754-2; PS1755-1; PS1756-6; PS1759-1; PS1764-2; PS1765-1; PS1768-1; PS1771-4; PS1772-6; PS1773-2; PS1774-1; PS1775-5; PS1776-6; PS1777-7; PS1778-1; PS1779-3; PS1780-1; PS1782-6; PS1783-1; PS1786-2; PS18; PS18/229; PS18/231; PS18/232; PS18/236; PS18/237; PS18/238; PS18/239; PS18/241; PS18/242; PS18/243; PS18/244; PS18/249; PS18/250; PS18/251; PS18/252; PS18/253; PS18/254; PS18/255; PS18/256; PS18/257; PS18/260; PS18/261; PS18/262; PS18/263; PS18/264; PS18/266; PS18/267; PS2073-1; PS2075-3; PS2076-1; PS2080-1; PS2081-1; PS2082-3; PS2083-1; PS2084-2; PS2085-1; PS2086-3; PS2087-1; PS2091-1; PS2092-1; PS2093-1; PS2094-1; PS2095-1; PS2096-1; PS2097-1; PS2098-1; PS2099-1; PS2102-1; PS2103-2; PS2104-1; PS2105-2; PS2106-1; PS2108-1; PS2109-3; SFB261; Shona Ridge; South Atlantic in Late Quaternary: Reconstruction of Budget and Currents; South Sandwich Basin; South Sandwich Islands; South Sandwich Trough; Van Heesen Ridge
    Type: Dataset
    Format: text/tab-separated-values, 385 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ho, Sze Ling; Laepple, Thomas (2016): Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean. Nature Geoscience, https://doi.org/10.1038/ngeo2763
    Publication Date: 2024-07-01
    Description: This dataset contains the collection of available published paired Uk'37 and Tex86 records spanning multi-millennial to multi-million year time scales, as well as a collection of Mg/Ca-derived temperatures measured in parallel on surface and subsurface dwelling foraminifera, both used in the analyses of Ho and Laepple, Nature Geoscience 2016. As the signal-to-noise ratios of proxy-derived Holocene temperatures are relatively low, we selected records that contain at least the last deglaciation (oldest sample 〉18kyr BP).
    Keywords: 130-806; 138-850; 145-882; 161-977A; 165-999A; 175-1085; 184-1143; 184-1146; 184-1147; 202-1239; 202-1240; 202-1241; 202-1241C; 293G; 313; 64PE-174P13; 77; Alboran Sea; Arabian Sea; AUSCAN; AWI_PerDyn; Benguela Current, South Atlantic Ocean; CALYPSO; CALYPSO2; Calypso Corer; Calypso Corer II; Caribbean Sea; CD129; Charles Darwin; COMPCORE; Composite Core; DRILL; Drilling/drill rig; Eastern Mediterranean, Continental slope off Israel; Elevation of event; Equatorial East Pacific; Event label; GC; GeoB10038-4; GeoB12610-2; GeoB7702-3; GeoB7926-2; GeoB9528-3; GEOSCIENCES, MARMARCORE; Giant piston corer; GPC; Gravity corer; Gravity corer (Kiel type); Guaymas Basin; IMAGES III - IPHIS; IMAGES IV-IPHIS III; IMAGES VIII - MONA; IMAGES VII - WEPAMA; IMAGES XII - MARCO POLO; IMAGES XIV - MARCO POLO 2; Joides Resolution; KAL; Kasten corer; KL-74, AS-12; Latitude of event; Leg130; Leg138; Leg145; Leg161; Leg165; Leg175; Leg184; Leg202; Longitude of event; M52/2; M53/1; M65/1; M75/2; M75/2_97-2; Marion Dufresne (1995); MD012378; MD01-2378; MD012390; MD01-2390; MD01-2461; MD022515; MD02-2515; MD032607; MD03-2607; MD052904; MD05-2904; MD06-3067; MD104; MD106; MD111; MD122; MD123; MD126; MD131; MD147; MD155; MD96-2048; MD972146; MD97-2146; MD972151; MD97-2151; MD982195; MD98-2195; Meteor (1986); Method comment; Mindanao; NIOP-C2; NIOP-C2_905_PC; North Pacific Ocean; North-West African margin; PABESIA; PC; PEGASE; Pemba Channel; Permafrost Research (Periglacial Dynamics) @ AWI; Persistent Identifier; Piston corer; Professor Logachev; Reference/source; SL; SO184/1; SO18460; SO185; SO213/2; SO213/2_59-2; SO42; SO42-74KL; Sonne; SOPATRA; South China Sea; Southern Ocean; South Pacific Ocean; Species; SW Indian Ocean; Timor Sea; TTR-12_293G; TTR-12/3; Tyro; V12; V12-107; Vema; VITAL; Walvis Ridge; WIND; WIND-28K
    Type: Dataset
    Format: text/tab-separated-values, 159 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...