ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Comment to “Shallow portion of an active geothermal system revealed by multidisciplinary studies: The case of Le Biancane (Larderello, Italy)” by Granieri D., Mazzarini F., Cerminara M., Calusi B., Scozzari A., Menichini M., and Lelli M. (2023) Luca Bolognesi Geothermics 113 (2023) 102753 https://doi.org/10.1016/j.geothermics.2023.102753
    Publication Date: 2024-04-09
    Description: Reply to the comment by Luca Bolognesi
    Description: Reply to the comment by Luca Bolognesi
    Description: Published
    Description: 102754
    Description: OSA5: Energia e georisorse
    Description: JCR Journal
    Keywords: 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-09
    Description: The natural park of Le Biancane is located in the southern sector of the Larderello-Travale geothermal field (LTGF). It extends over an approximately 100,000 m2 area where the impermeable caprock is locally absent and deep fluids may directly reach the surface. Through a multidisciplinary approach including measurements of soil CO2 flux (total output of 11.5 t day􀀀 1), soil temperature (average 34.4 ◦C), stable isotope and chemical data on fluids from fumaroles (dominated by a mixture of geothermal gases and air or gases from air-saturated meteoric water), and structural analysis of the formation outcropping, we found that anomalous CO2 emissions are positively correlated with shallow temperature anomalies. These are in restricted locations adjacent to vents and fumaroles, where a network of well-connected fractures (preferentially NW-SE and NE-SW orientated and with steep dips) drains efficiently allowing upward migration of the deep fluids and the energy toward the surface.
    Description: INGV Project RL 2021 - AGEREMUS
    Description: Published
    Description: 102616
    Description: OSA5: Energia e georisorse
    Description: JCR Journal
    Keywords: Larderello geothermal field ; Fracture network connectivity ; Diffuse CO2 soil degassing ; Thermal infrared images ; Hydrothermal gas ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-21
    Description: Highlights -He isotopic R/Ra of emitted gas decreases moving away from Albani Hills volcano -Total soil flux of endogenous CO2 at Lavinio-Tor Caldara is estimated to 20 ton/day -Tor Caldara gas has the highest H2S content (up to 6.3 vol.%) of central Italy -Repetition of soil CO2 flux survey shows that flux increases during earthquakes -Gas air concentration monitoring shows that H2S is the killer gas of small animals
    Description: Gas hazard was evaluated at Lavinio-Tor Caldara, the southernmost gas-discharging zone of the quiescent Albani Hills volcano in central Italy. Also this zone, like the other gas discharges of this volcanic complex, is located above a structural high of the buried Mesozoic carbonate basement, which represents the main reservoir for gas rising from depth. All extensional faults affecting the carbonates are leaking pathways along which gas may rise to the surface creating hazardous conditions. Gas is dominated by CO2 (〉90 vol.%) and the second component at Lavinio-Tor Caldara is H2S that displays the highest content (4.0-6.3 vol.%) of all gas manifestations of the Rome region. This H2S enrichment corresponds to a marked decrease in 3He/4He (R/Ra) isotopic ratio suggesting that gas was contaminated in an upper crustal environment. The main gas discharge occurs at the natural reserve of Tor Caldara, in zones where past sulphur mining excavations removed the surficial impervious cover, or along a ditch. Comparison of the results of four soil CO2 flux surveys carried out in 2005-2018 at Miniera Grande within Tor Caldara, indicates that the highest soil CO2 release occurs shortly after local earthquakes. Continuous monitoring of CO2 and H2S air concentration and of wind speed has been carried out for four months in twelve anomalous gas realising sites of Tor Caldara. Results indicate that only H2S reaches lethal concentration (〉250 ppm) near the soil in no wind nights, explaining the presence of small dead animals. At Lavinio, the main soil gas release occurs near old water wells that likely produced a gas blowout during drilling. A total release of over 20 tons/day from 2.93 km2 of gas of endogenous origin, has been estimated for the Lavinio-Tor Caldara area by a detailed soil CO2 flux survey (2,572 measurement points over an area of 3.65 km2). The main structural lineaments of the area have N-S and W-E directions, but also NE-SW and NW-SE directions are well represented. Some sectors of the investigated area are exposed to a severe gas hazard for people and animals and precautionary measures should be adopted.
    Description: Published
    Description: 106985
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: •Lavinio-Tor Caldara, southern periphery of Albani Hills volcano ; •He isotopic R/Ra values ; •Soil CO2 flux surveys ; •CO2 and H2S air concentration monitoring ; •Gas chemistry ; •Gas hazard assessment ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-21
    Description: This study presents a detailed analysis of minor seismic sequences recorded in the Amatrice-Norcia area (central Italy) before 2016 when the most important seismic sequence of the last 40 years struck the region with the Mw 6.0 Amatrice and the Mw 6.5 Norcia earthquakes. We observe that, in the four decades before the 2016–2018 Amatrice-Visso-Norcia sequence, the instrumental seismicity rate is low, with maximum magnitudes lower than Mw 4.0, and is characterized by different types of behaviours as single shock events, swarms and minor se- quences. For the first time, we relocate the minor seismicity recorded before 2016 by the Italian National Seismic Network of the Istituto Nazionale di Geofisica e Vulcanologia by applying the nonlinear inversion code Non- LinLoc in a local velocity model. Revised earthquake locations of the past seismic sequences are compared to the recent 2016–2018 seismicity in order to investigate some possible correlations with the seismogenic structures reactivated in 2016. With this goal, we also integrated our new hypocentral locations with fault plane solutions and geological data to interpret our results with respect to the 2016–2018 seismicity. Our results show how some of the structures identified by the minor seismicity before 2016 were reactivated during the recent sequence, while others seismic structures remained silent. We therefore highlight how the study of minor seismic sequences provides important information about the seismogenic attitude of less active or less known seismogenic struc- tures with consequent impact on the evaluation of the seismic hazard.
    Description: Published
    Description: 228858
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: 04.07. Tectonophysics ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-15
    Description: The exploitation of a geothermal field can be accompanied by both natural and induced seismicity. Hence the installation of a seismic network suitable for locating also low magnitude earthquakes is of great interest for geothermal development, especially for monitoring the activity related to the injection or production. Here we propose an improvement of the D-OPTIMAL algorithm (Tramelli et al., 2013) that tries and find optimal station positions minimizing the volume of the error ellipsoid of the event location using the D-criterion. In this version, we introduced the possibility to account for several prior information that is generally available when instrumenting a monitoring site permanently or temporarily. The a priori parameters introduced are: i) three-dimensional seismic velocity models, ii) seismic noise levels, iii) topographic gradient, and iv) H/V ratio values. The last three parameters are introduced in the station position 24 selection using aweighting system. We applied the methodology to the Acoculco geothermal field (Mexico) where an injection test was planned and executed in 2021. The comparison between the network defined usingthe standard approach and this updated version shows the importance of introducing a prioriinformation during the selection of the network. Installation sites resulted better distributed on the region, resulting in an overall increase of the sensitivity, and in a decreasing of the error location estimation in the target region. The methodology presented here is easy to apply to other study cases such as active volcanoes, anthropogenic activities, or whatever other study at local scale.
    Description: Published
    Description: 103995
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Network optimization ; Geothermal areas ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-07
    Description: Fault zone architecture and its internal structural variability play a pivotal role in earthquake mechanics, by controlling, for instance, the nucleation, propagation and arrest of individual seismic ruptures and the evolution in space and time of foreshock and aftershock seismic sequences. Nevertheless, the along-strike architectural variability of crustal-scale seismogenic sources over regional distances is still poorly investigated. Here, we describe the architectural variability of the 〉40-km-long exhumed, seismogenic Bolfin Fault Zone (BFZ) of the intra-arc Atacama Fault System (Northern Chile). The BFZ cuts through plutonic rocks of the Mesozoic Coastal Cordillera and was seismically active at 5–7 km depth and ≤ 300 °C in a fluid-rich environment. The BFZ includes multiple altered fault core strands, consisting of chlorite-rich cataclasites-ultracataclasites and pseudotachylytes, surrounded by chlorite-rich protobreccias to protocataclasites over a zone up to 60-m-thick. These fault rocks are embedded within a low-strain damage zone, up to 150-m-thick, which includes strongly altered volumes of dilatational hydrothermal breccias and clusters of epidote-rich fault-vein networks at the linkage of the BFZ with subsidiary faults. The strong hydrothermal alteration of rocks along both the fault core and the damage zone attests to an extensive percolation of fluids across all the elements of the structural network during the activity of the entire fault zone. In particular, we interpret the epidote-rich fault-vein networks and associated breccias as an exhumed example of upper-crustal fluid-driven earthquake swarms, similar to the presently active intra-arc Liquiñe-Ofqui Fault System (Southern Andean Volcanic Zone, Chile).
    Description: European Research Council Consolidator Grant Project (NOFEAR) No 614705
    Description: Published
    Description: 104745
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: Atacama fault system ; Earthquakes ; Fault structure ; Fault zone rocks ; Fluid-driven seismicity ; Seismogenic faults ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-27
    Description: Seismic coupling helps define how large the earthquake potential of a region is, as well as the presence of asperities along plate zones. This work seeks to provide an improved picture of the seismic coupling for the Aegean-Anatolian region by taking advantage of extensive seismic and geodetic datasets. To estimate coupling, we compiled a series of by-products that are specific ingredients also for seismic hazard studies. With these by-products, we found that the seismogenic thickness is thinner (10–15 km) or thicker (20 to 30 km) to the east and to the west, respectively and even deeper along the Hellenic subduction zone. The b-value ranges between 0.9 and 1.1 for the entire area with high values concentrated at locations of Late Miocene to -recent volcanism whereas low b-values (〈0.8) concentrate along most of the Northern Anatolian fault zone that may suggests stress accumulation. Seismic coupling is low (〈35%) or intermediate (35% - 70%) in most of the area, while the Karliova triple junction, on a N-S-oriented belt along the boundary between western and central Anatolia, and the southeastern Peloponnese are fully coupled, suggesting a full seismic release of the entire deformation budget. An intermediate value of seismic coupling is observed for the eastern and central segments of the Northern and Eastern Anatolian Fault zones, for part of the Hellenic volcanic arc, the Kefalonia Transform Fault and the Corinth gulf active faults. Considering historical earthquake data, these intermediate coupling values indicate either aseismic deformation or catalog incompleteness. Furthermore, the time period since large magnitude earthquakes clearly raises the possibility of impending earthquakes on the Northern and Eastern Anatolian Fault zones. A broad seismic gap is evidenced along the Hellenic subduction zone, because of the reduced coupling and the absence of ~M8 earthquakes in the last 700 years, at least. We conclude that in most of the central Aegean Sea aseismic deformation prevails as suggested by the small value of coupling and the modest seismic release over the last millennium.
    Description: Published
    Description: 103993
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: GNSS ; crustal deformation ; seismic coupling ; b-value ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-25
    Description: Recent measurements of surface vertical displacements of the European Alps show a correlation between vertical velocities and topographic features, with widespread uplift at rates of up to ~2–2.5 mm/a in the North-Western and Central Alps, and ~1 mm/a across a continuous region from the Eastern to the South-Western Alps. Such a rock uplift rate pattern is at odds with the horizontal velocity eld, characterized by shortening and crustal thickening in the Eastern Alps and very limited deformation in the Central and Western Alps. Proposed me- chanisms of rock uplift rate include isostatic response to the last deglaciation, long-term erosion, detachment of the Western Alpine slab, as well as lithospheric and surface de ection due to mantle convection. Here, we assess previous work and present new estimates of the contributions from these mechanisms. Given the large range of model estimates, the isostatic adjustment to deglaciation and erosion are su cient to explain the full observed rate of uplift in the Eastern Alps, which, if correct, would preclude a contribution from horizontal shortening and crustal thickening. Alternatively, uplift is a partitioned response to a range of mechanisms. In the Central and Western Alps, the lithospheric adjustment to deglaciation and erosion likely accounts for roughly half of the rock uplift rate, which points to a noticeable contribution by mantle-related processes such as detachment of the European slab and/or asthenospheric upwelling. While it is di cult to independently constrain the patterns and magnitude of mantle contributions to ongoing Alpine vertical displacements at present, future data should provide additional insights. Regardless, interacting tectonic and surface mass redistribution processes, rather than an individual forcing, best explain ongoing Alpine elevation changes.
    Description: Published
    Description: 589-604
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: 04. Solid Earth ; 04.03. Geodesy ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-11-18
    Description: Highlights -Gas blowouts from water wells are frequent in the southeastern zone of Rome -Emitted gas killed some pets and families had to be evacuated for security reasons -Gas has a magmatic origin with the highest helium R/Ra of Colli Albani gas discharges -Monitoring of soil CO2 flux and air gas concentration allowed to assess gas hazard -Gas diffusing in soil reached nearby houses creating dangerous indoor conditions
    Description: The southeastern zone of Rome city is located at the northwest periphery of the quiescent Colli Albano volcano. This zone is characterized by the presence of a shallow (depth ~ 45–50 m) gas pressurized aquifer that produces gas blowouts when it is reached by wells. Three gas blowouts occurred in this zone in 2003, 2008 (another one was discovered during the present study) and 2016 and in this paper we describe in detail the latter two. The emitted gas consists mostly of CO2 (〉90 vol%) and contains a low but significant quantity of H2S (0.3–0.5 vol%) and it has the highest helium isotopic R/Ra value (1.90) of all Colli Albani natural gas discharges, suggesting its likely magmatic origin. In both the described gas blowouts, dozens of families had to be prudentially evacuated from their houses and the emitted gas killed some animals. We monitored, continuously or by discrete surveys, the soil CO2 flux, the indoor and outdoor air concentration of CO2 and H2S, the environmental parameters and we checked whether the cementation of the gas releasing wells had been effective. In both cases, the upper part of the wells had been partly closed with an inflating packer to avoid free gas dispersion in atmosphere; as a consequence gas diffused laterally from the wells into the permeable surficial soil up to reach the nearest houses creating hazardous indoor conditions, particularly for CO2 in some basements. During the well cementation operations, and in one case because of the packer rupture, gas and nebulized water were freely discharged from the wells into the atmosphere, and high air CO2 and H2S concentrations were found. Fortunately gas was quickly dispersed by strong winds. The positive results obtained in all the studied gas blowouts demonstrate that our applied geochemistry approach represents a model of intervention useful for the assessment of the hazard associated to accidental endogenous gas release. This model is of fundamental importance also to overcome the risk problems created by accidental gas blowout from wells in an urbanized environment, up to the safe return of the people in their evacuated houses.
    Description: Published
    Description: 104769
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Rome gas blowouts zone ; Hazard assessment of endogenous gas blowouts from wells ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-19
    Description: The chemical and isotopic features of the fluids (water and gases) in the Lucane thermal area (southern Italy) have been investigated in order to verify their origin, water temperature in the geothermal reservoir, and to recognize the main natural processes concerning the water composition during ascent towards the surface. The Lucane geothermal system is placed in the southern sector of the Apennines chains, a seismically active area, close to the southern base of the Mt. Alpi carbonate massif. Along the study area, two main sets of high-angle faults form an almost orthogonal fault system that, as suggested by local structural geology, acts as a preferential pathway for uprising deep fluids. Here, we recognized two different types of waters: (i) cold shallow waters having a meteoritic origin and interacting with carbonate rocks (dolomite and calcite), whose dissolved gases show a dominant atmospheric contribution and (ii) hypothermal waters (average temperature of 21 °C), having a meteoritic origin and interacting with both carbonate rocks and inter-bedded evaporitic deposit. Geochemical data allow estimating a geothermal reservoir temperature between 30 °C and 60 °C, according to silica and Ca/ Mg geothermometers, respectively. A heat discharge related to hypothermal groundwater flow between 7.75E +06 and 2.00E+07 J/s was computed. δ18O and δ2Η data allowed recognizing a meteoric origin for hypothermal (hereafter TL) waters, with mean recharge (infiltration) elevations between 1300 and 1700 m a.s.l. These waters are gas-rich (e.g., CO2 and He), which amounts are higher than those in air-saturated water (ASW). Carbon and helium isotope signature in the TL waters indicate their mainly crustal origin and involve a tectonic control on fluid migration through the crust. Furthermore, we observe that the He isotopic signature in gases dissolved in TL waters is stable over time and its monitoring could be a powerful tool to assess the seismogenetic processes since their preparatory phases.
    Description: Published
    Description: 106618
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: geochemistry ; tectonics ; geothermy ; earthquakes ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...