ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Water temperature for Palau corals
    Description: Water temperature records for Acropora hyacinthus coral colonies located in either patch or fore reefs of the Palau Archipeglo from November 2017 to January 2020. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/772445
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1736736
    Keywords: Sea surface temperature ; Heat tolerance ; Coral reef ; Scleractinia ; Patch reef ; Fore reef
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Water column temperature
    Description: Water column temperatures were recorded around the island of Mo’orea, French Polynesia from September 2017 through March 2019. Three reef zones (fore reef, back reef, fringing reef) were sampled to help characterize environmental conditions affecting reef health and resilience, and to increase understanding of the factors that trigger viral outbreaks on reefs. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/842938
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1635798, NSF Division of Ocean Sciences (NSF OCE) OCE-1635913
    Keywords: Temperature ; Coral reef ; Moorea
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Octocoral Recruitment
    Description: This dataset includes species identifications and sizes from octocoral recruitment surveys conducted on transects at five sites on the south shore of St. John, US Virgin Islands from 2014-2019. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/851382
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1334052, NSF Division of Ocean Sciences (NSF OCE) OCE-1756381
    Keywords: Recruitment ; Settlement ; Coral reef ; Gorgonian ; Alcyonaria ; Benthic ecology ; Life history traits
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Densities of small corals in Diadema halos and temporal stability of D. antillarum clusters
    Description: Densities of small corals in Diadema halos and temporal stability of Diadema antillarum clusters. These data describe the individual small corals found in each quadrat at Yawzi Point and Cabritte Horn, St. John, US Virgin Islands in 2019 and 2020. These data were published in Stockton & Edmunds (2021). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/850372
    Description: NSF Division of Environmental Biology (NSF DEB) DEB-1350146, NSF Division of Ocean Sciences (NSF OCE) OCE-1756678
    Keywords: Peyssonnelia ; Ramicrusta ; Diadema ; Coral reef ; Virgin Islands
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jackson, R. L., Gabric, A. J., Matrai, P. A., Woodhouse, M. T., Cropp, R., Jones, G. B., Deschaseaux, E. S. M., Omori, Y., McParland, E. L., Swan, H. B., & Tanimoto, H. Parameterizing the impact of seawater temperature and irradiance on dimethylsulfide (DMS) in the Great Barrier Reef and the contribution of coral reefs to the global sulfur cycle. Journal of Geophysical Research:Oceans, 126(3), (2021): e2020JC016783, https://doi.org/10.1029/2020JC016783.
    Description: Biogenic emissions of dimethylsulfide (DMS) are an important source of sulfur to the atmosphere, with implications for aerosol formation and cloud albedo over the ocean. Natural aerosol sources constitute the largest uncertainty in estimates of aerosol radiative forcing and climate and thus, an improved understanding of DMS sources is needed. Coral reefs are strong point sources of DMS; however, this coral source of biogenic sulfur is not explicitly included in climatologies or in model simulations. Consequently, the role of coral reefs in local and regional climate remains uncertain. We aim to improve the representation of tropical coral reefs in DMS databases by calculating a climatology of seawater DMS concentration (DMSw) and sea-air flux in the Great Barrier Reef (GBR), Australia. DMSw is calculated from remotely sensed observations of sea surface temperature and photosynthetically active radiation using a multiple linear regression model derived from field observations of DMSw in the GBR. We estimate that coral reefs and lagoon waters in the GBR (∼347,000 km2) release 0.03–0.05 Tg yr−1 of DMS (0.02 Tg yr−1 of sulfur). Based on this estimate, global tropical coral reefs (∼600,000 km2) could emit 0.08 Tg yr−1 of DMS (0.04 Tg yr−1 of sulfur), with the potential to influence the local radiative balance.
    Description: Australian Research Council. Grant Number: DP150101649 National Science Foundation (NSF). Grant Number: 1543450 Ministry of Education, Culture, Sports, Science and Technology Grants-in-Aid for Scientific Research. Grant Number: 23310016,16H02967,24241010,15H01732 Ministry of Education, Culture, Sports, Science and Technology Grant-in-Aid for Young Scientists. Grant Number: 17K12812
    Keywords: Coral reef ; Dimethylsulfide (DMS) ; Photosynthetically active radiation ; Physiological stress ; Sea-air flux ; Sea surface temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. H. Aquatic biogeochemical eddy covariance fluxes in the presence of waves. Journal of Geophysical Research: Oceans, 126(2), (2021): e2020JC016637, https://doi.org/10.1029/2020JC016637.
    Description: The eddy covariance (EC) technique is a powerful tool for measuring atmospheric exchange rates that was recently adapted by biogeochemists to measure aquatic oxygen fluxes. A review of aquatic biogeochemical EC literature revealed that the majority of studies were conducted in shallow waters where waves were likely present, and that waves biased sensor and turbulence measurements. This review identified that larger measurement heights shifted turbulence to lower frequencies, producing a spectral gap between turbulence and wave frequencies. However, some studies sampled too close to the boundary to allow for a spectral turbulence‐wave gap, and a change in how EC measurements are conducted and analyzed is needed to remove wave‐bias. EC fluxes have only been derived from the time‐averaged product of vertical velocity and oxygen, often resulting in wave‐bias. Presented is a new analysis framework for removing wave‐bias by accumulation of cross‐power spectral densities below wave frequencies. This analysis framework also includes new measurement guidelines based on wave period, currents, and measurement heights. This framework is applied to sand, seagrass, and reef environments where traditional EC analysis resulted in wave‐bias of 7.0% ± 9.2% error in biogeochemical (oxygen and H+) fluxes, while more variable and higher error was evident in momentum fluxes (10.5% ± 21.0% error). It is anticipated that this framework will lead to significant changes in how EC measurements are conducted and evaluated, and help overcome the major limitations caused by wave‐sensitive and slow‐response sensors, potentially expanding new chemical tracer applications and more widespread use of the EC technique.
    Description: This work was supported by the Independent Research & Development Program at WHOI grant 25307and NSF OCE grants 1657727 and 1633951.
    Keywords: Coral reef ; Eddy covariance ; Sand ; Seagrass ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(12), (2020): e2020JC016543, https://doi.org/10.1029/2020JC016543.
    Description: On coral reefs, flow determines residence time of water influencing physical and chemical environments and creating observable microclimates within the reef structure. Understanding the physical mechanisms driving environmental variability on shallow reefs, which distinguishes them from the open ocean, is important for understanding what contributes to thermal resilience of coral communities and predicting their response to future anomalies. In June 2014, a field experiment conducted at Dongsha Atoll in the northern South China Sea investigated the physical forces that drive flow over a broad shallow reef flat. Instrumentation included current and pressure sensors and a distributed temperature sensing system, which resolved spatially and temporally continuous temperature measurements over a 3‐km cross‐reef section from the lagoon to reef crest. Spectral analysis shows that while diurnal variability was significant across the reef flat—a result expected from daily solar heating—temperature also varied at higher frequencies near the reef crest. These spatially variable temperature regimes, or thermal microclimates, are influenced by circulation on the wide reef flat, with spatially and temporally variable contributions from tides, wind, and waves. Through particle tracking simulations, we find the residence time of water is shorter near the reef crest (3.6 h) than near the lagoon (8.6 h). Tidal variability in flow direction on the reef flat leads to patterns in residence time that are different than what would be predicted from unidirectional flow. Circulation on the reef also determines the source (originating from offshore vs. the lagoon) of the water present on the reef flat.
    Description: We thank S. Tyler, and J. Selker from the Center for Transformative Environmental Monitoring Programs (CTEMPs), funded by the National Science Foundation (EAR awards 1440596 and 1440506), for timely and effective provision of experimental design support, logistical support and equipment for the project. Support for S. Lentz is from NSF Grant No. OCE‐1558343. Support for A. Cohen from NSF Grant No. 1220529, by the Academia Sinica (Taiwan) through a thematic project grant to G. Wong and A. Cohen. Support for E. Reid and K. Davis is from National Science Foundation (NSF) Grant No. OCE‐1753317, and support to E. Reid from the Environmental Engineering Henry Samueli Endowed Fellowship and the UCI Oceans Graduate Fellowship.
    Description: 2021-05-23
    Keywords: Coral reef ; Distributed temperature sensing ; Temperature variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2021.
    Description: Anthropogenic emissions of greenhouse gases are driving rapid changes in ocean conditions. Shallow-water coral reefs are experiencing the brunt of these changes, including intensifying marine heatwaves (MHWs) and rapid ocean acidification (OA). Consequently, coral reefs are in broad-scale decline, threatening the livelihoods of hundreds of millions of people. Ensuring survival of coral reefs in the 21st century will thus require a new management approach that incorporates robust understanding of reef-scale climate change, the mechanisms by which these changes impact corals, and their potential for adaptation. In this thesis, I extract information from within coral skeletons to 1) Quantify the climate changes occurring on coral reefs and the effects on coral growth, 2) Identify differences in the sensitivity of coral reefs to these changes, and 3) Evaluate the adaptation potential of the keystone reef-building coral, Porites. First, I develop a mechanistic Porites growth model and reveal the physicochemical link between OA and skeletal formation. I show that the thickening (densification) of coral skeletal framework is most vulnerable to OA and that, under 21st century climate model projections, OA will reduce Porites skeletal density globally, with greatest impact in the Coral Triangle. Second, I develop an improved metric of thermal stress, and use a skeletal bleaching proxy to quantify coral responses to intensifying heatwaves in the central equatorial Pacific (CEP) since 1982. My work reveals a long history of bleaching in the CEP, and reef-specific differences in thermal tolerance linked to past heatwave exposure implying that, over time, reef communities have adapted to tolerate their unique thermal regimes. Third, I refine the Sr-U paleo-thermometer to enable monthly-resolved sea surface temperatures (SST) generation using laser ablation ICPMS. I show that laser Sr-U accurately captures CEP SST, including the frequency and amplitude of MHWs. Finally, I apply laser Sr-U to reconstruct the past 100 years of SST at Jarvis Island in the CEP, and evaluate my proxy record of bleaching severity in this context. I determine that Porites coral populations on Jarvis Island have not yet adapted to the pace of anthropogenic climate change.
    Description: This research was supported by US National Science Foundation Awards OCE-1220529, ANT-1246387, OCE-1737311, CE-1601365, OCE-1805618, OCE-1537338, OCE-2016133, and from the Woods Hole Oceanographic Institution through the Ocean Life Institute, the Ocean Ventures Fund, the Grassle Fellowship Fund, and the MIT-WHOI Academic Programs Office. Additional funding was provided by the Taiwan MOST Grant 104-2628-M-001-007-MY3, the Robertson Foundation, the Leverhulme Trust in UK, the Atlantic Donor Advised Fund, The Prince Albert 2 of Monaco Foundation, the Akiko Shiraki Dynner Fund, the New England Aquarium, the Martin Family Society Fellowship for Sustainability, the Gates Millenium Scholarship, the Arthur Vining Davis Foundation, the NOAA Coral Reef Conservation Program, and from the Woods Hole Oceanographic Institution through Investment in Science Fund, the Early Career Award, and the Access to the Sea Award.
    Keywords: Coral reef ; Climate ; Proxy
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    South Pacific Applied Geoscience Commission | Suva, Fiji
    In:  http://aquaticcommons.org/id/eprint/25859 | 20823 | 2018-10-11 09:32:49 | 25859 | South Pacific Applied Geoscience Commission
    Publication Date: 2022-09-13
    Description: Seabed mapping was completed using a Reson 8101 multibeam system to delineate the seabed morphology in the vicinity of the wreck USS Mississinewa located in water depths of around 40 m in Ulithi Atoll. A second area was mapped in Ulithi Atoll along the NE eastern margin of the lagoon from Masu to Asor island. Results of this mapping did not delineate any extraordinary feature other than the existing morphology of the seabed. The most interesting feature seen were elliptical-shaped mounds which may imply bi-directional bottom currents of similar magnitudes. The mapping of Yap harbour was also completed. These results have been presented in map form as contours and as soundings. The results of the mapping for Yap and Ulithi are available in GIS format. Digital side-scan imagery for all surveyed lines for both Ulithi and Yap harbour were collected and is presently only archived for processing should this facility become available. Conclusions are: The dataset for Ulithi lagoon provides excellent baseline information for long-term assessment of the impacts of the wrecks on the environment. Detailed maps and visualisation of seabed wrecks provides an opportunity for tourism e.g. a potential dive sites. The completion of the multibeam survey of Yap harbour and approaches provides for excellent baseline data for future infrastructure development. Recommendations are: Updating of the existing topographic map for Yap to account for expanding infrastructure in Colonia harbour should be completed. The use of IKONOS imagery in GIS provides an immediate solution for new and up-to-date maps for development planning.
    Keywords: Oceanography
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 27pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Training Department, Southeast Asian Fisheries Development Center | Samut Prakan, Thailand
    In:  http://aquaticcommons.org/id/eprint/26320 | 23782 | 2019-03-27 07:10:12 | 26320 | Southeast Asian Fisheries Development Center, Training Department
    Publication Date: 2022-08-02
    Description: Our study provides new information on the physical characteristics of watermass in the South China Sea. We analyzed the temperature, salinity and density profiles to determine the effect of the NE monsoon on the variability of the physical properties of watermass, in the Gulf of Thailand and the east coast of Peninsular Malaysia. CTD data were obtained from both the M.V. SEAFDEC cruises conducted before (September 1995) and after (April 1996) the northeast (NE) monsoon season. We concluded that the NE monsoon caused the variability of the physical properties of watermasses, in the study area, slightly. We observed the movement of the thermocline, halocline and pycnocline layers from deeper depth to shallower depth, before and after the NE monsoon season, respectively. This movement indicates the possible occurrence of downwelling and upwelling processes in the region.
    Keywords: Oceanography ; Water masses ; CTD observations ; Physical oceanography ; Monsoons ; South China Sea ; Gulf of Thailand ; Malaysia
    Repository Name: AquaDocs
    Type: book_section
    Format: application/pdf
    Format: application/pdf
    Format: 1-5
    Format: 5
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...