ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (38,248)
  • 2015-2019  (38,248)
  • 1960-1964
  • 2019  (38,248)
  • 1
    Publication Date: 2024-04-08
    Description: The Lagrangian method-where current location and intensity are determined by tracking the movement of flow along its path-is the oldest technique for measuring the ocean circulation. For centuries, mariners used compilations of ship drift data to map out the location and intensity of surface currents along major shipping routes of the global ocean. In the mid-20th century, technological advances in electronic navigation allowed oceanographers to continuously track freely drifting surface buoys throughout the ice-free oceans and begin to construct basin-scale, and eventually global-scale, maps of the surface circulation. At about the same time, development of acoustic methods to track neutrally buoyant floats below the surface led to important new discoveries regarding the deep circulation. Since then, Lagrangian observing and modeling techniques have been used to explore the structure of the general circulation and its variability throughout the global ocean, but especially in the Atlantic Ocean. In this review, Lagrangian studies that focus on pathways of the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC), both observational and numerical, have been gathered together to illustrate aspects of the AMOC that are uniquely captured by this technique. These include the importance of horizontal recirculation gyres and interior (as opposed to boundary) pathways, the connectivity (or lack thereof) of the AMOC across latitudes, and the role of mesoscale eddies in some regions as the primary AMOC transport mechanism. There remain vast areas of the deep ocean where there are no direct observations of the pathways of the AMOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-29
    Description: Continental slopes are areas of high primary productivity, in particular where strong winds allow cold, nutrient‐laden deep water to upwell. The seafloor in upwelling areas is affected by repeated large submarine landslides, but the special environmental conditions have as yet not been taken into account in the analysis of these landslides. We show evidence for a potential link between environmental conditions and landslide occurrence for the Cap Blanc Slide Complex in the center of the Cap Blanc upwelling zone. Ocean Drilling Program Site 658 was drilled inside the slide complex, and its integration with high‐resolution seismic lines reveals that the onset of sliding postdates the onset of glaciations in the Northern Hemisphere. The sediment associated with failure surfaces of all seven slide events comprises of diatom ooze, the conditions for the formation of which are only met at the end of glacials. Preconditioning of the slope in the Cap Blanc Slide Complex is thus climatically controlled. We conclude that the presence of ooze formed under specific environmental conditions is an important factor in preconditioning slopes to fail in the Cap Blanc Slide Complex and potentially also at other continental slopes with high primary productivity.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-29
    Description: Marine sediments host large amounts of methane (CH4), which is a potent greenhouse gas. Quantitative estimates for methane release from marine sediments are scarce, and a poorly constrained temporal variability leads to large uncertainties in methane emission scenarios. Here, we use 2D and 3D seismic reflection, multibeam bathymetric, geochemical and sedimentological data to (I) map and describe pockmarks in the Witch Ground Basin (central North Sea), (II) characterize associated sedimentological and fluid migration structures, and (III) analyze the related methane release. More than 1500 pockmarks of two distinct morphological classes spread over an area of 225 km2. The two classes form independently from another and are corresponding to at least two different sources of fluids. Class 1 pockmarks are large in size (〉 6 m deep, 〉 250 m long, and 〉 75 m wide), show active venting, and are located above vertical fluid conduits that hydraulically connect the seafloor with deep methane sources. Class 2 pockmarks, which comprise 99.5 % of all pockmarks, are smaller (0.9‐3.1 m deep, 26‐140 m long, and 14‐57 m wide) and are limited to the soft, fine‐grained sediments of the Witch Ground Formation and possibly sourced by compaction‐related dewatering. Buried pockmarks within the Witch Ground Formation document distinct phases of pockmark formation, likely triggered by external forces related to environmental changes after deglaciation. Thus, greenhouse gas emissions from pockmark fields cannot be based on pockmark numbers and present‐day fluxes but require an analysis of the pockmark forming processes through geological time.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3German Research, Wiley, 41(2), pp. 8-13, ISSN: 0172-1526
    Publication Date: 2024-01-22
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Plate tectonics, volcanic activity and ocean floor spreading in the Arctic: Following several complex research expeditions and earthquake measurements, the Emmy Noether group MOVE has obtained some surprising findings about the formation and structure of the ocean lithosphere. A look at the results so far〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-07
    Description: Global biogeochemical ocean models rely on many parameters, which govern the interaction between individual components, and their response to the physical environment. They are often assessed/calibrated against quasi-synoptic data sets of dissolved inorganic tracers. However, a good fit to one observation might not necessarily imply a good match to another. We investigate whether two different metrics—the root-mean-square error to nutrients and oxygen and a metric measuring the overlap between simulated and observed oxygen minimum zones (OMZs)—help to constrain a global biogeochemical model in different aspects of performance. Three global model optimizations are carried out. Two single-objective optimizations target the root-mean-square metric and a sum of both metrics, respectively. We then present and explore multiobjective optimization, which results in a set of compromise solutions. Our results suggest that optimal parameters for denitrification and nitrogen fixation differ when applying different metrics. Optimization against observed OMZs leads to parameters that enhance fixed nitrogen cycling; this causes too low nitrate concentrations and a too high global pelagic denitrification rate. Optimization against nutrient and oxygen concentrations leads to different parameters and a lower global fixed nitrogen turnover; this results in a worse fit to OMZs. Multiobjective optimization resolves this antagonistic effect and provides an ensemble of parameter sets, which help to address different research questions. We finally discuss how systematic model calibration can help to improve models used for projecting climate change and its effect on fisheries and climate gas emissions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-03-22
    Description: Unique marine sediment cores retrieved from the southwestern slope of the Iceland‐Faroe Ridge (IFR), close to the main axis of the Iceland‐Scotland Overflow Water (ISOW) revealed prominent sedimentary cycles reflecting near‐bottom current dynamics, sediment transport and deposition, coincident with Dansgaard‐Oeschger cycles and deglacial perturbations of the Atlantic Meridional Overturning Circulation (AMOC). The transition between Greenland Stadials (GSs) and Greenland Interstadials (GIs) follows a distinct, recurring sedimentation pattern. Basaltic (Ti‐rich) silts were transported from local volcanic sources by strong bottom currents and deposited during GIs comparable to modern ocean circulation. Finer‐grained felsic (K‐rich) sediments were deposited during GSs, when ISOW was weak. Possible felsic source areas include British‐Ireland and/or Fennoscandian shelf areas. A cyclic saw‐tooth pattern of bottom current strength is characterized by gradual intensification during GIs followed by a sharp decline towards GSs as is documented at core sites along the flank of Reykjanes Ridge. The cores north of Faroe Channel instead document the opposite pattern. This suggests that the near‐bottom currents along the Reykjanes Ridge are strongly controlled by the flow cascading over the IFR. Heinrich (like) Stadials (HSs) especially HS‐1 and HS‐2 are characterized by the deposition of very fine felsic sediments pointing to weakened bottom currents. Distinct coarse‐grained intervals of ice rafted debris (IRD) are absent from the sediment records, although pebble and gravel sized IRD is irregularly distributed throughout the fine sediment matrix. Near bottom currents are considered to have a major control on the lithogenic sediment deposition southwest of the Iceland‐Faroe Ridge and further down‐stream.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-22
    Description: In marine ecosystems, viruses are major disrupters of the direct flow of carbon and nutrients to higher trophic levels. Although the genetic diversity of several eukaryotic phytoplankton virus groups has been characterized, their infection dynamics are less understood, such that the physiological and ecological implications of their diversity remain unclear. We compared genomes and infection phenotypes of the two most closely related cultured phycodnaviruses infecting the widespread picoprasinophyte Ostreococcus lucimarinus under standard- (1.3 divisions per day) and limited-light (0.41 divisions per day) nutrient replete conditions. OlV7 infection caused early arrest of the host cell cycle, coinciding with a significantly higher proportion of infected cells than OlV1-amended treatments, regardless of host growth rate. OlV7 treatments showed a near-50-fold increase of progeny virions at the higher host growth rate, contrasting with OlV1's 16-fold increase. However, production of OlV7 virions was more sensitive than OlV1 production to reduced host growth rate, suggesting fitness trade-offs between infection efficiency and resilience to host physiology. Moreover, although organic matter released from OlV1- and OlV7-infected hosts had broadly similar chemical composition, some distinct molecular signatures were observed. Collectively, these results suggest that current views on viral relatedness through marker and core gene analyses underplay operational divergence and consequences for host ecology.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-03-09
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-03
    Description: A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baumgartner, M. F., Bonnell, J., Van Parijs, S. M., Corkeron, P. J., Hotchkin, C., Ball, K., Pelletier, L., Partan, J., Peters, D., Kemp, J., Pietro, J., Newhall, K., Stokes, A., Cole, T. V. N., Quintana, E., & Kraus, S. D. Persistent near real-time passive acoustic monitoring for baleen whales from a moored buoy: System description and evaluation. Methods in Ecology and Evolution, 10(9), (2019): 1476-1489, doi: 10.1111/2041-210X.13244.
    Description: 1. Managing interactions between human activities and marine mammals often relies on an understanding of the real‐time distribution or occurrence of animals. Visual surveys typically cannot provide persistent monitoring because of expense and weather limitations, and while passive acoustic recorders can monitor continuously, the data they collect are often not accessible until the recorder is recovered. 2. We have developed a moored passive acoustic monitoring system that provides near real‐time occurrence estimates for humpback, sei, fin and North Atlantic right whales from a single site for a year, and makes those occurrence estimates available via a publicly accessible website, email and text messages, a smartphone/tablet app and the U.S. Coast Guard's maritime domain awareness software. We evaluated this system using a buoy deployed off the coast of Massachusetts during 2015–2016 and redeployed again during 2016–2017. Near real‐time estimates of whale occurrence were compared to simultaneously collected archived audio as well as whale sightings collected near the buoy by aerial surveys. 3. False detection rates for right, humpback and sei whales were 0% and nearly 0% for fin whales, whereas missed detection rates at daily time scales were modest (12%–42%). Missed detections were significantly associated with low calling rates for all species. We observed strong associations between right whale visual sightings and near real‐time acoustic detections over a monitoring range 30–40 km and temporal scales of 24–48 hr, suggesting that silent animals were not especially problematic for estimating occurrence of right whales in the study area. There was no association between acoustic detections and visual sightings of humpback whales. 4. The moored buoy has been used to reduce the risk of ship strikes for right whales in a U.S. Coast Guard gunnery range, and can be applied to other mitigation applications.
    Description: We thank Annamaria Izzi, Danielle Cholewiak and Genevieve Davis of the NOAA NEFSC for assistance in developing the analyst protocol. We are grateful to the NOAA NEFSC aerial survey observers (Leah Crowe, Pete Duley, Jen Gatzke, Allison Henry, Christin Khan and Karen Vale) and the NEAq aerial survey observers (Angela Bostwick, Marianna Hagbloom and Paul Nagelkirk). Danielle Cholewiak and three anonymous reviewers provided constructive criticism on earlier drafts of the manuscript. Funding for this project was provided by the NOAA NEFSC, NOAA Advanced Sampling Technology Work Group, Environmental Security Technology Certification Program of the U.S. Department of Defense, the U.S. Navy's Living Marine Resources Program, Massachusetts Clean Energy Center and the Bureau of Ocean Energy Management. Funding from NOAA was facilitated by the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158.
    Keywords: Acoustics ; Autonomous ; Buoy ; Conservation ; Mitigation ; Real‐time ; Ship strikes ; Whale
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...