ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-27
    Description: Global astrometry is the measurement of stellar positions and motions. These are typically characterized by five parameters, including two position parameters, two proper motion parameters, and parallax. The Space Interferometry Mission (SIM) will derive these parameters for a grid of approximately 1300 stars covering the celestial sphere to an accuracy of approximately 4uas, representing a two orders of magnitude improvement over the most precise current star catalogues. Narrow angle astrometry will be performed to a 1uas accuracy. A wealth of scientific information will be obtained from these accurate measurements encompassing many aspects of both galactic (and extragalactic science. SIM will be subject to a number of instrument errors that can potentially degrade performance. Many of these errors are systematic in that they are relatively static and repeatable with respect to the time frame and direction of the observation. This paper and its companion define the modeling of the, contributing factors to these errors and the analysis of how they impact SIM's ability to perform astrometric science.
    Keywords: Astronomy
    Type: Proceedings of SPIE Space Systems Engineering and Optical Alignment Mechanisms; 5528; Article 118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-17
    Description: The MASSIF (Masses and Stellar Systems with Interferometry) Team will use SIM to investigate the mass content of the Galaxy - from huge stars to barely glimmering brown dwarfs, and from hot white dwarfs to exotic black holes. We will target various samples of the Galactic population to determine and relate the fundamental characteristics of mass, luminosity, age, composition, and multiplicity - attributes that together yield an extensive understanding of the stars. Our samples will include distant clusters that span a factor of 5000 in age, and commonplace stars and substellar objects that lurk near the Sun. The principal goals of the MASSIF Key Project are to (1) define the mass-luminosity relation for main sequence stars in five fundamental clusters so that effects of age and metallicity can be mapped (Trapezium, TW Hydrae, Pleiades, Hyades, and M67), and (2) determine accurate masses for representative examples of nearly every type of star, stellar descendant or brown dwarf in the Galaxy.
    Keywords: Astronomy
    Type: SIM PlanetQuest: Science with the Space Interferometry Mission; 9-11; JPL-Publ-2004-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-17
    Description: In April 2002 the IVS (International VLBI Service for Geodesy and Astrometry) set up the Pilot Project - Tropospheric Parameters, and the Institute of Geodesy and Geophysics (IGG), Vienna, was put in charge of coordinating the project. Seven IVS Analysis Centers have joined the project and regularly submitted their estimates of tropospheric parameters (wet and total zenith delays, horizontal gradients) for all IVS-R1 mid IVS-R4 sessions since January 1st, 2002. The individual submissions are combined by a two-step procedure to obtain stable, robust and highly accurate tropospheric parameter time series with one hour resolution (internal accuracy: 2-4 ram). Starting with July 2003, the combined tropospheric estimates became operational IVS products. In the second half of October 2002 the VLBI campaign CONT02 was observed with 8 stations participating around the globe. At four of them (Gilmore Creek, U.S.A.; Hartebeesthoek, South Africa; Kokee Park, U.S.A.; Ny-Alesund, Norway) also total zenith delays from DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) are available and these estimates are compared with those from the IGS (International GPS Service) and the IVS. The distance from the DORIS beacons to the co-located GPS and VLBI stations is around 2 km or less for the four sites mentioned above.
    Keywords: Astronomy
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 461-465; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: We intend to use SIM to make definitive measurements of fundamental structural and dynamical parameters of the Milky Way. The important niche in dynamical parameter space afforded by SIM can be exploited to resolve, with unprecedented precision, a number of classical problems of Galactic astronomy. In addition, we have developed new tests of the Galactic mass distribution specifically designed for data with the special properties of SIM products. Our proposed suite of experiments will utilize the SIM Astrometric Grid as well as complementary observations of star clusters and other strategically-selected, distant "test particles" for a definitive characterization of the major components (bulge, disk, halo, satellite system) of the Milky Way. Specifically, our goals will be: 1) The determination of two fundamental parameters that play a central role in virtually every problem in Galactic astronomy, namely (a) the solar distance to the center of the Milky Way, R(sub 0); (b) the solar angular velocity around the Galactic: center, omega(sub 0). 2) The measurement of fundamental dynamical properties of the Milky Way, among them (a) the pattern speed of the central bar (b) the rotation field and velocity-dispersion tensor in the disk (c) the kinematics (mean rotational velocity and velocity dispersion tensor) of the halo as a function of position 3. The definition of the mass distribution of the Galaxy, which is dominated by the presence of dark matter. We intend to measure (a) the relative contribution of the disk and halo to the gravitational potential (b) the local volume and surface mass density of the disk (c) the shape, mass and extent of the dark halo of the Milky Way out to 250 kpc.
    Keywords: Astronomy
    Type: SIM PlanetQuest: Science with the Space Interferometry Mission; 15-17; JPL-Publ-2004-19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: We present XMM-Newton RGS and EPIC data of the putative cooling flow cluster Abell 2597. Velocities of the low-ionization emission lines in the spectrum are blue shifted with respect to the high-ionization lines by 1320 (sup +660) (sub -210) kilometers per second, which is consistent with the difference in the two peaks of the galaxy velocity distribution and may be the signature of bulk turbulence, infall, rotation or damped oscillation in the cluster. A hierarchical velocity structure such as this could be the direct result of galaxy mergers in the cluster core, or the injection of power into the cluster gas from a central engine. The uniform X-ray morphology of the cluster, the absence of fine scale temperature structure and the random distribution of the the galaxy positions, independent of velocity, suggests that our line of sight is close to the direction of motion. These results have strong implications for cooling flow models of the cluster Abell 2597. They give impetus to those models which account for the observed temperature structure of some clusters using mergers instead of cooling flows.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: Stars from in the densest parts of cold interstellar clouds which-due to presence of obscuring dust-cannot be observed with optical telescopes. Recent rapid progress in understanding how stars and planets are formed has gone hand in hand with our ability to observe extremely young systems in the infrared and (submillimeter) spectral regimes. The detections and silhouetted imaging of disks around young objects in the visible and NIR have demonstrated the common occurrence of circumstellar disks and their associated jets and outflows in star forming regions. However, in order to obtain quantitative information pertaining to even earlier evolutionary phases, studies at longer wavelengths are necessary. From spectro-photometric imaging at all wavelengths we learn about the temperature and density structure of the young stellar environment. From narrow band imaging in the far infrared and submillimeter spectral regimes we can learn much about the velocity structure and the chemical makeup (pre-biotic material) of the planet-forming regions.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 79-85; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-16
    Description: SIM - the Space Interferometry Mission - will perform precision optical astrometry on objects as faint as R magnitude 20. It will be the first space-based astrometric interferometer, operating in the optical band with a 10-m baseline. The Project is managed by the Jet Propulsion Laboratory, California Institute of Technology, in close collaboration with two industry partners, Lockheed Martin Missiles and Space, and TRW Inc., Space and Electronics Group. Launch of SIM is currently planned for 2009. In its wide-angle astrometric mode, SIM will yield 4 microarcsecond absolute position and parallax measurements. Astrometric planet searches will be done in a narrow-angle mode, with an accuracy of 4 microarcseconds or better in a single measurement. As a pointed rather than a survey instrument, SIM will maintain.its astrometric accuracy down to the faintest, magnitudes, opening up the opportunity for astrometry of active galactic nuclei to better than 10 pas. SIM will define a new astrometric reference frame, using a grid of approximately 1500 stars with positions accurate to 4 microarcseconds. The SIM Science Team comprises the Principal Investigators of ten Key Projects, and five Mission Scientists contributing their expertise to specific areas of the mission. Their science programs cover a wide range of topics in Galactic and extragalactic astronomy. They include: searches for low-mass planets - including analogs to our own solar system - tlie formation and dynamics of our Galaxy, calibration of the cosmic distance scale, and fundamental stellar astrophysics. All of the science observing on SIM is competitively awarded; the Science Team programs total about 40% of the total available, and the remainder will be assigned via future NASA competitions. This report is a compilation of science summaries by members of the Science Team, and it illustrates the wealth of scientific problems that microarcsecond-precision astrometry can contribute to. More information on SIM, including copies of this report, may be obtained from the project web site, at http://sim. jpl.nasa.gov.
    Keywords: Astronomy
    Type: JPL-Publ-2004-19 , American Astronomical Society 205th Meeting; Jan 09, 2005; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-16
    Description: This document outlines a path for the development of the field of extrasolar planet research, with a particular emphasis on the goals of the Terrestrial Planet Finder (TPF). Over the past decade, a new field of research has developed, the study of extrasolar planetary systems, driven by the discovery of massive planets around nearby stars. The planet count now stands at over 130. Are there Earth-like planets around nearby stars? Might any of those planets be conducive to the formation and maintenance of life? These arc the questions that TPF seeks to answer. TPF will be implemented as a suite of two space observatories, a 6-m class optical coronagraph, to be launched around 20 14, and a formation flying mid-infrared interferometer, to be launched sometime prior to 2020. These facilities will survey up to 165 or more nearby stars and detect planets like Earth should they be present in the 'habitable zone' around each star. With observations over a broad wavelength range, TPF will provide a robust determination of the atmospheric composition of planets to assess habitability and the presence of life. At this early stage of TPF's development, precursor observational and theoretical programs are essential to help define the mission, to aid our understanding of the planets that TPF could discover, and to characterize the stars that TPF will eventually study. This document is necessarily broad in scope because the significance of individual discoveries is greatly enhanced when viewed in thc context of the field as a whole. This document has the ambitious goal of taking us from our limited knowledge today, in 2004, to the era of TPF observations in the middle of the next decade. We must use the intervening years wisely. This document will be reviewed annually and updated as needed. The most recent edition is available online at http://tpf.jpl.nasa.gov/ or by email request to lawson@hucy.jpl.nasa.gov
    Keywords: Astronomy
    Type: JPL-Publ-04-014
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-16
    Description: The Next Generation Space Telescope (NGST) and the Atacama Large Millimeter Array (ALMA) will both start operations long before a new far IR observatory to follow SIRTF into space can be launched. What will be unknown even after they are operational, and what will a far IR space observatory be able to add? I will compare the telescope design concepts and capabilities and the advertised scientific programs for the projects and attempt to forecast the research topics that will be at the forefront in 2010.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 178-187; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-16
    Description: To date, the only far-infrared spectroscopic observations of ultraluminous infrared galaxies have been obtained with the European Space Agency s Infrared Space Observatory Long Wavelength Spectrometer. The spectra of these galaxies are characterized by molecular absorption lines and weak emission lines from photodissociation regions (PDRs), but no far-infrared (greater than 40 microns) lines from ionized regions have been detected. ESA s Herschel Space Observatory, slated for launch in 2007, will likely be able to detect these lines in samples of local and moderate redshift ultra luminous galaxies and to enable measurement of the ionization parameters, the slope of the ionizing continuum, and densities present in the ionized regions of these galaxies. The higher spatial resolution of proposed observatories discussed in this workshop will enable isolation of the central regions of local galaxies and detection of these lines in high-redshift galaxies for study of the evolution of galaxies. Here we discuss evidence for the e.ects of absorption by dust within ionized regions and present the spectroscopic signatures predicted by photoionization modeling of dust-bounded regions.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 109-116; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...