ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Design, Testing and Performance  (212)
  • Malaysia
  • Oceanography
  • 2020-2023
  • 2005-2009
  • 2000-2004  (258)
  • 2004  (258)
  • 1
    Publication Date: 2019-08-28
    Description: A space module has an outer structure designed for traveling in space, a docking mechanism for facilitating a docking operation therewith in space, a first storage system storing a first propellant that burns as a result of a chemical reaction therein, a second storage system storing a second propellant that burns as a result of electrical energy being added thereto, and a bi-directional transfer interface coupled to each of the first and second storage systems to transfer the first and second propellants into and out thereof. The space module can be part of a propellant supply architecture that includes at least two of the space modules placed in an orbit in space.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: The X-37 Approach and Landing Vehicle (ALTV) is an automated (unmanned) spacecraft designed to reduce technical risk in the descent and landing phases of flight. ALTV mission requirements and Orbital Vehicle (OV) technology research and development (R&D) goals are formulated to validate and mature high-payoff ground and flight technologies such as Thermal Protection Systems (TPS). It has been more than three decades since the Space Shuttle was designed and built. Real-world hardware experience gained through the multitude of X-37 Project activities has expanded both Government and industry knowledge of the challenges involved in developing new generations of spacecraft that can fulfill the Vision for Space Exploration.
    Keywords: Spacecraft Design, Testing and Performance
    Type: IAC-04-V-6.05 , International Astronautical Federation; Oct 07, 2004; Vancouver; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: The X-37 Approach and Landing Vehicle (ALTV) is an automated (unmanned) spacecraft designed to reduce technical risk in the descent and landing phases of flight. ALTV mission requirements and Orbital Vehicle (OV) technology research and development (R&D) goals are formulated to validate and mature high-payoff ground and flight technologies such as Thermal Protection Systems (TPS). It has been more than three decades since the Space Shuttle was designed and built. Real-world hardware experience gained through the multitude of X-37 Project activities has expanded both Government and industry knowledge of the challenges involved in developing new generations of spacecraft that can fulfill the Vision for Space Exploration.
    Keywords: Spacecraft Design, Testing and Performance
    Type: IAC-04-V.6.05 , International Astronautical Federation; Oct 07, 2004; Vancouver; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-26
    Description: The dynamics and control challenges presented by a conceptual Jovian Moon Tour spacecraft are summarized in this paper. Attitude and orbital dynamics interactions are present due to the designed low-thrust trajectory, and controls structure interactions are also present due to the non-collocated sensor-actuator pairs on board the flexible spacecraft. A finite-element based simulation model is described which is capable of handling the complex orbital and attitude dynamics arising during the low-thrust spiraling maneuvers of the spacecraft. A few numerical simulations demonstrate that some of the challenges hitherto identified can be faced via integrated dynamics and control analysis, and that reasonable assessments of the pointing performance can be made.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper-04-04866 , 2004 AIAA/AAS Astrodynamics Specialist Conference; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-26
    Description: A detailed Neptune aerocapture systems analysis and spacecraft design study was performed to improve our understanding of the techonology requirement for such a hard mission. The primary objective was to engineer a point design based on blunt body aeroshell technology and quantitatively assess feasibility and performance. This paper reviews the launch vehicle, propulsion, and trajectory options to reach Neptune in the 2015-2020 time frame using aerocapture and all-propulsive vehicles. It establishes the range of entry conditions that would be consistent with delivering a - 1900 kg total entry vehicle maximum expected mass to Neptune including a - 790 kg orbiter maximum expected mass to the science orbit. Two Neptune probes would be also be delivered prior to the aerocapture maneuver. Results show that inertial entry velocities in the range of 28 to 30 km/s are to be expected for chemical and solar electric propulsion options with several gravity assists (combinations of Venus, Earth and Jupiter gravity assists). Trip times range from approximately 10-11 years for aerocapture orbiters to 15 years for all-propulsive vehicles. This paper shows that the use of aerocapture enables this mission given the payload to deliver around Neptune compared to an all-propulsive orbit insertion approach. However, an all-propulsive chemical insertion option is possible for lower payload masses than the one needed for this science mission. Both approaches require a Delta IV heavy class launch vehicle.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 12, 2004 - Jul 14, 2004; Fort Lauderale, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-26
    Description: We present calibration results from Jason-1 and TOPEX/POSEIDON overflights of the three dedicated verification sites: 1) a California offshore oil platform (Harvest); 2) the Mediterranean island of Corsica (Cape Senetosa), and 3) the Bass Strait off the coast of Tasmania. The high-accuracy of the Jason-1 measurement system is evident in the results from the dedicated calibration experiments. These experiments do indicate, however, that the Jason-1 sea-surface-height (SSH) measurements are biased high by approximately 12-15 cm. We discuss the implications of geographically correlated errors on the determination of the SSH bias.
    Keywords: Oceanography
    Type: 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2004); Sep 20, 2004 - Sep 24, 2004; Anchorage, AK; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: In this paper we describe current research in tethered formations for interferometry, and a roadmap to demonstrating the required key technologies via on-ground and in-orbit testing. We propose an integrated kilometer-size tethered spacecraft formation flying concept which enables Far IR and Sub-mm astronomy observations from space. A rather general model is used to predict the dynamics, control, and estimation performance of formations of spacecraft connected by tethers in LEO and deep space. These models include the orbital and tethered formation dynamics, environmental models, and models of the formation estimator/controller/commander. Both centralized and decentralized control/sensing/estimation schemes are possible, and dynamic ranges of interest for sensing/control are described. Key component/subsystem technologies are described which need both ground-based and in-orbit demonstration prior to their utilization in precision space interferometry missions using tethered formations. Defining an orbiting formation as an ensemble of orbiting spacecraft performing a cooperative task, recent work has demonstrated the validity of the tethering the spacecraft to provide both the required formation rigidity and satisfy the formation reconfiguration needs such as interferometer baseline control. In our concept, several vehicles are connected and move along the tether, so that to reposition them the connecting tether links must vary in length. This feature enables variable and precise baseline control while the system spins around the boresight. The control architecture features an interferometer configuration composed of one central combiner spacecraft and two aligned collector spacecraft. The combiner spacecraft acts as the formation leader and is also where the centralized sensing and estimation functions reside. Some of the issues analyzed with the model are: dynamic modes of deformation of the distributed structure, architecture of the formation sensor, and sources of dynamical perturbation that need to be mitigated for precision operation in space. Examples from numerical simulation of an envisioned scenario in heliocentric orbit demonstrate the potential of the concept for space interferometry.
    Keywords: Spacecraft Design, Testing and Performance
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 472-482; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-17
    Description: Future science missions will require solar sails on the order 10,000 sq m (or larger). However, ground and flight demonstrations must be conducted at significantly smaller Sizes (400 sq m for ground demo) due to limitations of ground-based facilities and cost and availability of flight opportunities. For this reason, the ability to understand the process of scalability, as it applies to solar sail system models and test data, is crucial to the advancement of this technology. This report will address issues of scaling in solar sail systems, focusing on structural characteristics, by developing a set of similarity or similitude functions that will guide the scaling process. The primary goal of these similarity functions (process invariants) that collectively form a set of scaling rules or guidelines is to establish valid relationships between models and experiments that are performed at different orders of scale. In the near term, such an effort will help guide the size and properties of a flight validation sail that will need to be flown to accurately represent a large, mission-level sail.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Solar Sail Technology and Applications Conference (SSTAC); Sep 28, 2004 - Sep 30, 2004; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-15
    Description: This paper reports on the validation of bio-optical models in estuarine and nearshore (case 2) waters of New Jersey-New York to retrieve accurate water-leaving radiance spectra and chlorophyll concentration from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imaging spectrometer data. MODTRAN-4 was applied to remove the effects of the atmosphere so as to infer the water-leaving radiance. The study area - Hudson/Raritan of New York and New Jersey (Figure 1) is an extremely complex estuarine system where tidal and wind-driven currents are modified by freshwater discharges from the Hudson, Raritan, Hackensack, and Passaic rivers. Over the last century, the estuarine water quality has degraded in part due to eutrophication, which has disrupted the preexisting natural balance, resulting in phytoplankton blooms of both increased frequency and intensity, increasing oxygen demand, and leading to episodes of hypoxia. As the end result, a thematic map of chlorophyll-a concentration was generated using an atmospherically corrected AVIRIS ratio image. This thematic map serves as an indication of phytoplankton concentration. Such maps are important input into the geographic information system (GIS) for use as a management tool for monitoring water resources.
    Keywords: Oceanography
    Type: Proceedings of the 12th JPL Airborne Earth Science Workshop; JPL-Publ-04-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-15
    Description: Results from the climatologically forced coupled ice/ocean/biogeochemical model that covers the Arctic and North Atlantic Oceans are presented and compared to the chlorophyll fields of satellite-derived ocean color measurements. Biogeochemical processes in the model are determined from the interactions among four phytoplankton functional groups (diatoms, chlorophytes, cyanobacteria and coccolithophores) and four nutrients (nitrate, ammonium, silicate and dissolved iron). The model simulates the general large-scale pattern in April, May and June, when compared to both satellite-derived and in situ observations. The subpolar North Atlantic was cool in the 1980s and warm in the latter 1990s, corresponding to the CZCS and SeaWiFS satellite observing periods, respectively. The oceanographic conditions during these periods resemble the typical subpolar upper ocean response to the NAO+ and NAO-phases, respectively. Thus, we use the atmospheric forcing composites from the two NAO phases to simulate the variability of the mid-ocean bloom during the satellite observing periods. The model results show that when the subpolar North Atlantic is cool, the NAO+ case, more nutrients are available in early spring than when the North Atlantic is warm, the NAO-case. However, the NAO+ simulation produces a later bloom than the NAO-simulation. This difference in the bloom times is also identified in SeaWiFS and CZCS satellite measurements. In the model results, we can trace the difference to the early diatom bloom due to a warmer upper ocean. The higher nutrient abundance in the NAO+ case did not provide larger total production than in the NAO- case, instead the two cases had a comparable area averaged amplitude. This leads us to conclude that in the subpolar North Atlantic, the timing of the spring phytoplankton bloom depends on surface temperature and the magnitude of the bloom is not significantly impacted by the nutrient abundance.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...