ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rats  (76)
  • Binding Sites  (74)
  • Malaysia
  • OBIS
  • Oceanography
  • American Association for the Advancement of Science (AAAS)  (152)
  • Chauvin, LA
  • Frontiers Media S.A.
  • UNESCO
  • 2020-2023
  • 2010-2014
  • 2000-2004  (152)
  • 1995-1999
  • 2001  (152)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (152)
  • Chauvin, LA
  • Frontiers Media S.A.
  • UNESCO
  • Elsevier Science  (1)
Years
  • 2020-2023
  • 2010-2014
  • 2000-2004  (152)
  • 1995-1999
Year
  • 1
    Publication Date: 2001-12-26
    Description: In anaerobic organisms, the decarboxylation of pyruvate, a crucial component of intermediary metabolism, is catalyzed by the metalloenzyme pyruvate: ferredoxin oxidoreductase (PFOR) resulting in the generation of low potential electrons and the subsequent acetylation of coenzyme A (CoA). PFOR is the only enzyme for which a stable acetyl thiamine diphosphate (ThDP)-based free radical reaction intermediate has been identified. The 1.87 A-resolution structure of the radical form of PFOR from Desulfovibrio africanus shows that, despite currently accepted ideas, the thiazole ring of the ThDP cofactor is markedly bent, indicating a drastic reduction of its aromaticity. In addition, the bond connecting the acetyl group to ThDP is unusually long, probably of the one-electron type already described for several cation radicals but not yet found in a biological system. Taken together, our data, along with evidence from the literature, suggest that acetyl-CoA synthesis by PFOR proceeds via a condensation mechanism involving acetyl (PFOR-based) and thiyl (CoA-based) radicals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chabriere, E -- Vernede, X -- Guigliarelli, B -- Charon, M H -- Hatchikian, E C -- Fontecilla-Camps, J C -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2559-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Cristallographie et Cristallogenese des Proteines, Institut de Biologie Structurale Jean-Pierre Ebel, Commissariat a l'Energie Atomique, Universite Joseph Fourier, CNRS, 41, rue Jules Horowitz, 38027 Grenoble Cedex 1, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752578" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl Coenzyme A/metabolism ; Anaerobiosis ; Binding Sites ; Carbon Dioxide/metabolism ; Catalysis ; Chemistry, Physical ; Coenzymes/*chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Desulfovibrio/*enzymology ; Dimerization ; Electron Spin Resonance Spectroscopy ; *Free Radicals/chemistry/metabolism ; Ketone Oxidoreductases/*chemistry/metabolism ; Molecular Conformation ; Molecular Structure ; Oxidation-Reduction ; Physicochemical Phenomena ; Protein Conformation ; Pyruvate Synthase ; Pyruvic Acid/metabolism ; Thiamine Pyrophosphate/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2001 Dec 21;294(5551):2445.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752540" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Communicable Diseases ; Elementary Particles ; Gene Silencing ; Humans ; Oceanography ; Rna ; *Research ; Research Support as Topic ; *Science ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moine, H -- Mandel, J L -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2487-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UPR9002 CNRS, 67084 Strasbourg Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752559" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Brain/metabolism ; Crystallography, X-Ray ; Fragile X Mental Retardation Protein ; Fragile X Syndrome/genetics/*metabolism ; Gene Expression Regulation ; Humans ; Mice ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Nucleic Acid Conformation ; Oligonucleotide Array Sequence Analysis ; Protein Biosynthesis ; Protein Structure, Tertiary ; RNA, Messenger/*chemistry/genetics/*metabolism ; *RNA-Binding Proteins ; Synapses/physiology ; Untranslated Regions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-18
    Description: DNA replication is initiated at numerous origins of replication (oris) within the chromosomes. In a pair of ambitious studies, two groups have used different techniques to pinpoint the locations of all of the oris throughout the yeast genome at different times during S phase (Raghuraman et al., Wyrick et al.). Stillman, in his Perspective, compares and contrasts the different methods and their findings, and speculates on the value of combining these techniques to look at oris in the human genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stillman, B -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2301-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. stillman@cshl.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743187" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Cycle Proteins/metabolism ; Chromosomes, Fungal ; *DNA Replication ; DNA, Fungal/biosynthesis ; DNA-Binding Proteins/metabolism ; *Genome, Fungal ; Genome, Human ; Humans ; Oligonucleotide Array Sequence Analysis ; Origin Recognition Complex ; *Replication Origin ; S Phase ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-12-18
    Description: Peptide recognition modules mediate many protein-protein interactions critical for the assembly of macromolecular complexes. Complete genome sequences have revealed thousands of these domains, requiring improved methods for identifying their physiologically relevant binding partners. We have developed a strategy combining computational prediction of interactions from phage-display ligand consensus sequences with large-scale two-hybrid physical interaction tests. Application to yeast SH3 domains generated a phage-display network containing 394 interactions among 206 proteins and a two-hybrid network containing 233 interactions among 145 proteins. Graph theoretic analysis identified 59 highly likely interactions common to both networks. Las17 (Bee1), a member of the Wiskott-Aldrich Syndrome protein (WASP) family of actin-assembly proteins, showed multiple SH3 interactions, many of which were confirmed in vivo by coimmunoprecipitation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, Amy Hin Yan -- Drees, Becky -- Nardelli, Giuliano -- Bader, Gary D -- Brannetti, Barbara -- Castagnoli, Luisa -- Evangelista, Marie -- Ferracuti, Silvia -- Nelson, Bryce -- Paoluzi, Serena -- Quondam, Michele -- Zucconi, Adriana -- Hogue, Christopher W V -- Fields, Stanley -- Boone, Charles -- Cesareni, Gianni -- P41 RR11823/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2002 Jan 11;295(5553):321-4. Epub 2001 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1L6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743162" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; *Computational Biology ; Consensus Sequence ; *Cytoskeletal Proteins ; Databases, Genetic ; Databases, Protein ; Fungal Proteins/chemistry/metabolism ; Ligands ; Molecular Sequence Data ; Peptide Library ; Peptides/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Proteins/*chemistry/*metabolism ; *Proteome ; Saccharomyces cerevisiae/chemistry/genetics ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Software ; Two-Hybrid System Techniques ; Wiskott-Aldrich Syndrome Protein ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-12-18
    Description: In mammals, X-inactivation silences one of two female X chromosomes. Silencing depends on the noncoding gene, Xist (inactive X-specific transcript), and is blocked by the antisense gene, Tsix. Deleting the choice/imprinting center in Tsix affects X-chromosome selection. Here, we identify the insulator and transcription factor, CTCF, as a candidate trans-acting factor for X-chromosome selection. The choice/imprinting center contains tandem CTCF binding sites that function in an enhancer-blocking assay. In vitro binding is reduced by CpG methylation and abolished by including non-CpG methylation. We postulate that Tsix and CTCF together establish a regulatable epigenetic switch for X-inactivation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chao, Wendy -- Huynh, Khanh D -- Spencer, Rebecca J -- Davidow, Lance S -- Lee, Jeannie T -- New York, N.Y. -- Science. 2002 Jan 11;295(5553):345-7. Epub 2001 Dec 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743158" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antisense Elements (Genetics) ; Binding Sites ; CpG Islands ; DNA Methylation ; DNA-Binding Proteins/genetics/*metabolism ; *Dosage Compensation, Genetic ; Enhancer Elements, Genetic ; *Gene Silencing ; Genomic Imprinting ; HeLa Cells ; Humans ; Mice ; Models, Genetic ; RNA, Long Noncoding ; RNA, Untranslated/genetics ; *Repressor Proteins ; Transcription Factors/genetics/*metabolism ; X Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-12-18
    Description: DNA replication origins are fundamental to chromosome organization and duplication, but understanding of these elements is limited because only a small fraction of these sites have been identified in eukaryotic genomes. Origin Recognition Complex (ORC) and minichromosome maintenance (MCM) proteins form prereplicative complexes at origins of replication. Using these proteins as molecular landmarks for origins, we identified ORC- and MCM-bound sites throughout the yeast genome. Four hundred twenty-nine sites in the yeast genome were predicted to contain replication origins, and approximately 80% of the loci identified on chromosome X demonstrated origin function. A substantial fraction of the predicted origins are associated with repetitive DNA sequences, including subtelomeric elements (X and Y') and transposable element-associated sequences (long terminal repeats). These findings identify the global set of yeast replication origins and open avenues of investigation into the role(s) ORC and MCM proteins play in chromosomal architecture and dynamics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wyrick, J J -- Aparicio, J G -- Chen, T -- Barnett, J D -- Jennings, E G -- Young, R A -- Bell, S P -- Aparicio, O M -- GM34365/GM/NIGMS NIH HHS/ -- GM52339/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2357-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743203" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Cycle Proteins/*metabolism ; Chromosomes, Fungal/metabolism ; *DNA Replication ; DNA Transposable Elements ; DNA, Fungal/biosynthesis/genetics/metabolism ; DNA, Intergenic ; DNA-Binding Proteins/*metabolism ; *Genome, Fungal ; Minichromosome Maintenance Complex Component 4 ; Minichromosome Maintenance Complex Component 7 ; Nuclear Proteins/metabolism ; Oligonucleotide Array Sequence Analysis ; Origin Recognition Complex ; RNA, Fungal/genetics/metabolism ; RNA, Transfer/genetics/metabolism ; Repetitive Sequences, Nucleic Acid ; *Replication Origin ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; Telomere/metabolism ; Terminal Repeat Sequences
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2001-12-12
    Description: The Staphylococcus aureus multidrug binding protein QacR represses transcription of the qacA multidrug transporter gene and is induced by structurally diverse cationic lipophilic drugs. Here, we report the crystal structures of six QacR-drug complexes. Compared to the DNA bound structure, drug binding elicits a coil-to-helix transition that causes induction and creates an expansive multidrug-binding pocket, containing four glutamates and multiple aromatic and polar residues. These structures indicate the presence of separate but linked drug-binding sites within a single protein. This multisite drug-binding mechanism is consonant with studies on multidrug resistance transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumacher, M A -- Miller, M C -- Grkovic, S -- Brown, M H -- Skurray, R A -- Brennan, R G -- AI 48593/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2158-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11739955" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Berberine/chemistry/metabolism ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/metabolism ; Dequalinium/chemistry/metabolism ; Dimerization ; Drug Resistance, Multiple, Bacterial ; Ethidium/chemistry/metabolism ; Gentian Violet/chemistry/*metabolism ; Glutamates/chemistry ; Heterocyclic Compounds/chemistry/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Structure ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/metabolism ; Rhodamines/chemistry/metabolism ; Rosaniline Dyes/chemistry/*metabolism ; Staphylococcus aureus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2001-12-12
    Description: Calcium (Ca2+) influx through Ca2+-permeable ion channels plays a pivotal role in a variety of neuronal signaling processes, and negative-feedback control of this influx by Ca2+ itself is often equally important for modulation of such signaling. Negative modulation by Ca2+ through calmodulin (CaM) on cyclic nucleotide-gated (CNG) channels underlies the adaptation of olfactory receptor neurons to odorants. We show that this feedback requires two additional subunits of the native olfactory channel, CNGA4 and CNGB1b, even though the machinery for CaM binding and modulation is present in the principal subunit CNGA2. This provides a rationale for the presence of three distinct subunits in the native olfactory channel and underscores the subtle link between the molecular make-up of an ion channel and the physiological function it subserves.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bradley, J -- Reuter, D -- Frings, S -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2176-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biologische Informationsverarbeitung, Forschungszentrum Julich, 52425 Julich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11739960" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Animals ; Calcium/metabolism/pharmacology ; Calcium Signaling ; Calmodulin/*metabolism/pharmacology ; Cell Line ; Cyclic AMP/*metabolism ; Cyclic Nucleotide-Gated Cation Channels ; Feedback, Physiological ; Humans ; Ion Channel Gating ; Ion Channels/metabolism/*physiology ; Kinetics ; *Odors ; Olfactory Receptor Neurons/*physiology ; Patch-Clamp Techniques ; Photolysis ; Protein Subunits ; Rats ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2001-12-01
    Description: Neurotrophins are growth factors that promote cell survival, differentiation, and cell death. They are synthesized as proforms that can be cleaved intracellularly to release mature, secreted ligands. Although proneurotrophins have been considered inactive precursors, we show here that the proforms of nerve growth factor (NGF) and the proforms of brain derived neurotrophic factor (BDNF) are secreted and cleaved extracellularly by the serine protease plasmin and by selective matrix metalloproteinases (MMPs). ProNGF is a high-affinity ligand for p75(NTR) with high affinity and induced p75NTR-dependent apoptosis in cultured neurons with minimal activation of TrkA-mediated differentiation or survival. The biological action of neurotrophins is thus regulated by proteolytic cleavage, with proforms preferentially activating p75NTR to mediate apoptosis and mature forms activating Trk receptors to promote survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, R -- Kermani, P -- Teng, K K -- Hempstead, B L -- NS30687/NS/NINDS NIH HHS/ -- T32 EY07138/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1945-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology, Department of Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729324" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects ; Brain-Derived Neurotrophic Factor/chemistry/metabolism/pharmacology/secretion ; Cell Death/drug effects ; Cell Differentiation/drug effects ; Cell Line ; *Cell Survival/drug effects ; Fibrinolysin/metabolism ; Furin ; Humans ; Inhibitory Concentration 50 ; Matrix Metalloproteinases/metabolism ; Mice ; Nerve Growth Factor/chemistry/metabolism/pharmacology/secretion ; Nerve Growth Factors/chemistry/*metabolism/pharmacology/*secretion ; Neurons/cytology/drug effects ; Phosphorylation/drug effects ; Protein Precursors/chemistry/*metabolism/pharmacology/*secretion ; Protein Processing, Post-Translational ; Rats ; Receptor, Nerve Growth Factor ; Receptor, trkA/metabolism ; Receptors, Nerve Growth Factor/metabolism ; Subtilisins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...