ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (82)
  • Malaysia
  • Oceanography
  • 2020-2023
  • 2000-2004
  • 1995-1999  (82)
  • 1999  (82)
  • 1
    Publikationsdatum: 2019-08-28
    Beschreibung: Bottom sediment resuspension frequency, duration and extent (% of bottom sediments affected) were characterized for the fifteen month period from September 1995 to January 1997 for the Barataria Basin, LA. An empirical model of sediment resuspension as a function of wind speed, direction, fetch and water depth was derived from wave theory. Water column turbidity was examined by processing remotely sensed radiance information from visible and near-IR AVHRR imagery. Based on model predictions, wind induced resuspension occurred during all seasons of this study. Seasonal characteristics for resuspension reveal that late fall, winter and early spring are the periods of most frequent and intense resuspension. Model predictions of the critical wind speed required to induce resuspension indicate that winds of 4 m/s (averaged over all wind directions resuspend approximately 50% of bottom sediments in the water bodies examined. Winds of this magnitude (4 m/s) occurred for 80% of the time during the late fall, winter and early spring and for approximately 30% of the time during the summer. More than 50% of the bottom sedimets are resuspended throughout the year, indicating the importance of resuspension as a process affecting sediment and biogeochemical fluxes in the Barataria Basin.
    Schlagwort(e): Oceanography
    Materialart: SE-1999-05-00018-SSC
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-08-17
    Beschreibung: Changes in the ocean angular momentum (OAM) components about the equatorial axes, either due to fluctuations in currents or bottom pressure (mass redistribution), can induce movements of the Earth's pole of rotation, commonly referred to as polar motion or wobble. Output from a 1 deg resolution ocean model is used to calculate the effective equatorial OAM functions chi(sub 1, sup O) and chi(sub 2, sup O), corresponding to polar motion excitation about the equatorial axis pointing to the Greenwich and 90 deg E meridians, respectively. Time series of chi(sup O) are combined with similar atmospheric series chi(sup A), computed from the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalyses, to interpret the observed low-frequency polar motion excitation for the period 1985-1996. Results indicate that the oceans are a very important excitation source for the Chandler (approximately 433 days), annual, and semiannual wobbles, providing for much better amplitude and phase agreement with the observed excitation at these periods, in comparison with what is obtained when only the atmosphere is considered. Both oceanic mass and motion terms are found to be important but with mass signals having somewhat larger amplitudes. The role of regional variability in ocean currents and bottom pressure in contributing to chi(sup O) signals is quantified. Midlatitude regions (approximately 30 deg - 70 deg) figure prominently as places of strong local oceanic excitation signals. The North Pacific basin is found to be generally important for chi(sup O) excitation, while the Southern Ocean is important for both chi(sub 1, sup O) and chi(sub 2, sup O). The largest positive covariances of local with global chi(sup O) signals occur in the Kuroshio region near the western boundary of the North Pacific for chi(sub 1, sup O) and southwest of Australia for chi(sub 2, sup O).
    Schlagwort(e): Oceanography
    Materialart: Paper-199JC900222 , Journal of Geophysical Research (ISSN 0148-0227); 104; C10; 23,292-23,409
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-18
    Beschreibung: Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s . Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(sup 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient- replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24+/-0.1 mol N/sq m/yr (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and biological transport fluxes, as well as geochemical inferences of new production, still need to be reconciled and many outstanding questions remain.
    Schlagwort(e): Oceanography
    Materialart: Journal of Geophysical Research; 104; C6; 13359-13379
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-18
    Beschreibung: A mesoscale resolution biogeochemical survey was carried out in the vicinity of the U.S. Joint Global Ocean Flux Study Bermuda Atlantic Time-series Study (BATS) site during the summer of 1996. Real-time nowcasting and forecasting of the flow field facilitated adaptive sampling of several eddy features in the area. Variations in upper ocean nutrient and pigment distributions were largely controlled by vertical isopycnal displacements associated with the mesoscale field. Shoaling density surfaces tended to introduce cold, nutrient-rich water into the euphotic zone, while deepening isopycnals displaced nutrient-depleted water downward. Chlorophyll concentration was generally enhanced in the former case and reduced in the latter. Eddy-induced upwelling at the base of the euphotic zone was affected by features of two different types captured in this survey-, (1) a typical mid-ocean cyclone in which doming of the main thermocline raised the near-surface stratification upward and (2) a mode water eddy composed of a thick lens of 18C water, which pushed up the seasonal thermocline and depressed the main thermocline. Model hindcasts using all available data provide a four-dimensional context in which to interpret temporal trends at the BATS site and two other locations during the 2 weeks subsequent to the survey. Observed changes in near-surface structure at the BATS site included shoaling isopycnals, increased nutrient availability at the base of the euphotic zone, and enhanced chlorophyll concentration within the cuphotic zone. These trends are explicable in terms of a newly formed cyclone that impinged upon the site during this time period. These observations reveal that eddy upwelling has a demonstrable impact on the way in which the nitrate-density relationship changes with depth from the aphotic zone into the euphotic zone. A similar transition is present in the BATS record, suggesting that eddy-driven upwelling events are present in the time series of upper ocean biogeochemical properties. The variability in main thermocline temperature and nitrate in this synoptic spatial survey spans the range observed in these quantities in the 10-year time series available at BATS to date (1988-1998).
    Schlagwort(e): Oceanography
    Materialart: Journal of Geophysical Research; 104; C6; 13381-13394
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-18
    Beschreibung: A mesoscale eddy advected across the Bermuda Testbed Mooring site over a 30-day period centered on July 14, 1995. Temperature and current measurements along with biogeochemical measurements were used to characterize the biological response of the upper ocean associated with the introduction of nitrate into the euphotic layer due to the doming of isotherms associated with the eddy. Complementary shipboard data showed an anomalous water mass, which extended from a depth of approximately 50 to 1000 m, manifesting as a cold surface expression and warm anomaly at depth. Although mesoscale eddies are frequently observed in the Sargasso Sea, the present observations are particularly unique because of the high-temporal-resolution measurements of the new instrumentation deployed on the mooring. Analyzers that measure nitrate plus nitrite were placed at depths of 80 and 200 m and bio-optical sensors were located at depths of 20, 35, 45, 71, and 86 m. Peak nitrate values of nearly 3.0 micro-M at 80 m and chlorophyll a values of 1.4 mg/cubic m at 71 m were observed, a well as a 25- to 30-meter shoaling of the 1% light level depth. A Doppler shift from the inertial period (22.8 hours) to 25.2 hours was observed in several time series records due to the movement of the eddy across the mooring. Inertial pumping brought cold, nutrient-rich waters farther into the euphotic zone than would occur solely by isothermal lifting. Silicic acid was depleted to undetectable levels owing to the growth of diatoms within the eddy. The chlorophyll a values associated with the eddy appear to be the largest recorded during the eight years of the ongoing US JGOFS Bermuda Atlantic Time Series Study program.
    Schlagwort(e): Oceanography
    Materialart: Journal of Geophysical Research; 104; C7; 15,537-15,548
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-18
    Beschreibung: A mesoscale resolution biogeochemical survey was carried out in the vicinity of the US Joint Global Ocean Flux Study Bermuda Atlantic Time-Series Study (BATS) site during the summer of 1996. Real-time nowcasting and forecasting of the flow field facilitated adaptive sampling of several eddy features in the area. Variations in upper ocean nutrient and pigment distributions were largely controlled by vertical isopycnal displacements associated with the mesoscale field. Shoaling density surfaces tended to introduce cold, nutrient-rich water into the euphotic zone, while deepening isopycnals displaced nutrient-depleted water downward. Chlorophyll concentration was generally enhanced in the former case and reduced in the latter. Eddy-induced upwelling at the base of the euphotic zone was affected by features of two different types captured in this survey: (1) a typical mid-ocean cyclone in which doming of the main thermocline raised the near-surface stratification upward; and (2) a mode water eddy composed of a thick lens of 18 C water, which pushed up the seasonal thermocline and depressed the main thermocline. Model hindcasts using all available data provide a four-dimensional context in which to interpret temporal trends at the BATS site and two other locations during the two weeks subsequent to the survey. Observed changes in near-surface structure at the BATS site included shoaling iscpycnals, increased nutrient availability at the base of the euphotic zone, and enhanced chlorophyll concentration within the euphotic zone. These trends are explicable in terms of a newly formed cyclone that impinged upon the site during this time period. These observations reveal that eddy upwelling has a demonstrable impact on the way in which the nitrate-density relationship changes with depth from the aphotic zone into the euphotic zone. A similar transition is present in the BATS record, suggesting that eddy-driven upwelling events are present in the time series of upper ocean biogeochemical properties. The variability in main thermocline temperature and nitrate in this synoptic spatial survey spans the range observed in these quantities in the 10-year time series available at BATS to date (1988-1998).
    Schlagwort(e): Oceanography
    Materialart: Journal of Geophysical Research; 104; C6; 13,381-13,394
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-18
    Beschreibung: Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s. Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(exp 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely sensed estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient-replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24 +/- 0.1 mol N/sq m (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and biological transport fluxes, as well as geochemical inferences of new production, still need to be reconciled and many outstanding questions remain.
    Schlagwort(e): Oceanography
    Materialart: Journal of Geophysical Research; 104; C6; 13,359-13,379
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-07-18
    Beschreibung: A mesoscale eddy advected across the Bermuda Testbed Mooring site over a 30-day period centered on July 14, 1995. Temperature and current measurements along with biogeochemical measurements were used to characterize the biological response of the upper ocean associated with the introduction of nitrate into the euphoric layer due to the doming of isotherms associated with the eddy. Complementary shipboard data showed an anomalous water mass, which extended from a depth of approximately 50 to 1000 m, manifesting as a cold surface expression and warm anomaly at depth. Although mesoscale eddies are frequently observed in the Sargasso Sea, the present observations are particularly unique because of the high-temporal-resolution measurements of the new instrumentation deployed on the mooring. Analyzers that measure nitrate plus nitrite were placed at depths of 80 and 200 m and bio-optical sensors were located at depths of 20, 35, 45, 71, and 86 m. Peak nitrate values of nearly 3.0 microns at 80 m and chlorophyll alpha values of 1.4 mg/cu m at 71 m were observed, as well as a 25- to 30-meter shoaling of the 1% light level depth. A Doppler shift from the inertial period (22.8 hours) to 25.2 hours was observed in several time series records due to the movement of the eddy across the mooring. Inertial pumping brought cold, nutrient-rich waters farther into the euphotic zone than would occur solely by isothermal lifting. Silicic acid was depleted to undetectable levels owing to the growth of diatoms within the eddy. The chlorophyll alpha values associated with the eddy appear to be the largest recorded during the 8 years of the ongoing U.S. JGOFS Bermuda Atlantic Time Series Study (BATS) program.
    Schlagwort(e): Oceanography
    Materialart: Journal of Geophysical Research; 104; C7; 15537-15548
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-07-17
    Beschreibung: Ocean surface remote sensing techniques often rely on scattering or emission linked to shorter- scale gravity-capillary ocean wavelets. However, it is increasingly apparent that slightly longer wavelengths of O(10 to 500 cm) are vital components in the robust sea surface description needed to link varied global remote sensing data sets. This paper describes a sensor suite developed to examine sea surface slope variations in the field using an aircraft flying at very low altitude (below 30 m) and will also provide preliminary measurements detailing changes in slope characteristics versus sea state and friction velocity. Two-dimensional surface slope is measured using simultaneous range measurements from three compact short-range laser altimeters mounted in an equilateral triangle arrangement with spacing of about 1 m. In addition, all three lasers provide independent wave elevation profiles after GPS-aided correction for aircraft altitude. Laser range precision is 1 cm rms while vertical motion correction is 15 cm rms. The measurements are made along-track at approximately 1 m intervals setting the spatial scale of the measurement to cover waves of intermediate to long scale. Products available for this array then include surface elevation, two-dimensional slope distribution, and the cross- and along-track 1-D slope distributions. To complement the laser, a down-looking mm-wave radar scatterometer is centered within the laser array to measure radar backscatter simultaneously with the laser slope. The radar's footprint is nominally 1 m in diameter. Near-vertical radar backscatter is inversely proportional to the small-scale surface slope variance and to the tilt of the underlying (laser-measured) surface facet. Together the laser and radar data provide information on wave roughness from the longest scales down to about 1 cm. These measurements are complemented by aircraft turbulence probe data that provides robust surface flux information.
    Schlagwort(e): Oceanography
    Materialart: IGARSS''99; Jun 29, 1999 - Jul 02, 1999; Hamburg; Germany
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-07-17
    Beschreibung: The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.
    Schlagwort(e): Oceanography
    Materialart: Ninth Annual V. M. Goldschmidt Conference; LPI-Contrib-971
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...