ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Malaysia
  • Oceanography
  • 2020-2023
  • 2000-2004  (90)
  • 1995-1999  (144)
  • 2001  (90)
  • 1999  (86)
  • 1998  (58)
  • 11
    Publikationsdatum: 2019-08-15
    Beschreibung: The successful combination of data from different ocean color sensors depends on the correct interpretation of signal from each of these sensors. Ideally, the sensor measured signals are calibrated to geophysical units of spectral radiance, and sensor artifacts are removed and corrected. The calibration process resamples the signal into a common radiometric data space so that subsequent ocean color algorithms that are applied to the data are based on physical processes and are inherently sensor independent. The objective of this project is to calibrate and validate the on-orbit radiometric characteristics of Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) with underflights of NASA's calibrated Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This objective is feasible because AVIRIS measures the same spectral range as SeaWIFS at higher spectral resolution. In addition to satellite sensor underflights, the AVIRIS project has supported comparison and analysis of the radiometric calibration standards used for AVIRIS and SeaWIFS. To date, both the OCTS and SeaWIFS satellite sensors have been underflown by AVIRIS with matching spectral, spatial, geometric, radiometric, and temporal domains. The calibration and validation objective of this project is pursued for the following reasons: (1) Calibration is essential for the quantitative use of SeaWIFS and other SIMBIOS (Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies) sensor data; (2) Calibration in the laboratory of spaceborne sensors is challenging; (3) Satellite sensors are subjected aging on the ground and to trauma during launch; (4) The Earth orbit environment is significantly different than the laboratory calibration environment; (5) Through years of effort AVIRIS has been demonstrated to be well calibrated; and (6) AVIRIS can match the spectral and spatial observation characteristics near the top of the atmosphere at the time of SeaWIFS measurements.
    Schlagwort(e): Oceanography
    Materialart: SIMBIOS Project; 80-83; NASA/TM-2001-209976
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2019-08-15
    Beschreibung: Ocean angular momentum (OAM) calculations using forward model runs without any data constraints have, recently revealed the effects of OAM variability on the Earth's rotation. Here we use an ocean model and its adjoint to estimate OAM values by constraining the model to available oceanic data. The optimization procedure yields substantial changes in OAM, related to adjustments in both motion and mass fields, as well as in the wind stress torques acting on the ocean. Constrained and unconstrained OAM values are discussed in the context of closing the planet's angular momentum budget. The estimation procedure, yields noticeable improvements in the agreement with the observed Earth rotation parameters, particularly at the seasonal timescale. The comparison with Earth rotation measurements provides an independent consistency check on the estimated ocean state and underlines the importance of ocean state estimation for quantitative. studies of the variable large-scale oceanic mass and circulation fields, including studies of OAM.
    Schlagwort(e): Oceanography
    Materialart: Paper-2000GL000000 , Geophysical Research Letters (ISSN 0094-8276); 0; 0; 1-4
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2019-08-15
    Beschreibung: Clouds interfere with the distribution of short-wave and long-wave radiations over sea ice, and thereby strongly affect the surface energy balance in polar regions. To evaluate the overall effects of clouds on climatic feedback processes in the atmosphere-ice-ocean system, the challenge is to observe sea ice surface thermal states under both clear sky and cloudy conditions. From laboratory experiments, we show that C-band radar (transparent to clouds) backscatter is very sensitive to the surface temperature of first-year sea ice. The effect of sea ice surface temperature on the magnitude of backscatter change depends on the thermal regimes of sea ice thermodynamic states. For the temperature range above the mirabilite (Na2SO4.10H20) crystallization point (-8.2 C), C-band data show sea ice backscatter changes by 8-10 dB for incident angles from 20 to 35 deg at both horizontal and vertical polarizations. For temperatures below the mirabilite point but above the crystallization point of MgCl2.8H2O (-18.0 C), relatively strong backwater changes between 4-6 dB are observed. These backscatter changes correspond to approximately 8 C change in temperature for both cases. The backscattering mechanism is related to the temperature which determines the thermodynamic distribution of brine volume in the sea ice surface layer. The backscatter is positively correlated to temperature and the process is reversible with thermodynamic variations such as diurnal insolation effects. From two different dates in May 1993 with clear and overcast conditions determined by the Advanced Very High Resolution Radiometer (AVHRR), concurrent Earth Resources Satellite 1 (ERS-1) C-band ice observed with increases in backscatter over first-year sea ice, and verified by increases in in-situ sea ice surface temperatures measured at the Collaborative-Interdisciplinary Cryosphere Experiment (C-ICE) site.
    Schlagwort(e): Oceanography
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2019-08-15
    Beschreibung: The main objective of this proposal was to use SeaWiFs data to study the relationship between aerosols found in aeollan dust and photosynthesis of phytoplankton in open ocean surface waters. This project was a collaborative effort between myself and Dr. Neil Tindale at Texas A&M University and followed on our earlier funded proposal which had been designed as a proof-of-concept study to determine if ocean color sensors such as the Coastal Zone Color Scanner (CZCS) could be used to detect and map large-scale mineral aerosol plumes. Despite the large spatial and temporal gaps inherent in the CZCS data coverage, our results from this initial study indicated that an ocean color sensor could indeed be used to detect aerosols. These encouraging results led us to propose in this proposal the use of SeaWiFS data to study mineral aerosol transport and its impact on phytoplankton production. This proposal orignally intended to make use of SeaWiFS images, but as the launch delay of SeaWiFS dragged on, we had to make do with other satellite data sets. Thus, the focus of this proposal became the CSCS image archive instead. I detail my results and accomplishments with this data set.
    Schlagwort(e): Oceanography
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2019-07-20
    Beschreibung: A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.
    Schlagwort(e): Oceanography
    Materialart: NASA/CR-96-207497 , NAS 1.26:207497
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-18
    Beschreibung: Patchiness is perhaps the most salient characteristic of plankton populations in the ocean. The scale of this heterogeneity spans many orders of magnitude in its spatial extent, ranging from planetary down to microscale. It has been argued that patchiness plays a fundamental role in the functioning of marine ecosystems, insofar as the mean conditions may not reflect the environment to which organisms are adapted. Understanding the nature of this patchiness is thus one of the major challenges of oceanographic ecology. The patchiness problem is fundamentally one of physical-biological-chemical interactions. This interconnection arises from three basic sources: (1) ocean currents continually redistribute dissolved and suspended constituents by advection; (2) space-time fluctuations in the flows themselves impact biological and chemical processes, and (3) organisms are capable of directed motion through the water. This tripartite linkage poses a difficult challenge to understanding oceanic ecosystems: differentiation between the three sources of variability requires accurate assessment of property distributions in space and time, in addition to detailed knowledge of organismal repertoires and the processes by which ambient conditions control the rates of biological and chemical reactions. Various methods of observing the ocean tend to lie parallel to the axes of the space/time domain in which these physical-biological-chemical interactions take place. Given that a purely observational approach to the patchiness problem is not tractable with finite resources, the coupling of models with observations offers an alternative which provides a context for synthesis of sparse data with articulations of fundamental principles assumed to govern functionality of the system. In a sense, models can be used to fill the gaps in the space/time domain, yielding a framework for exploring the controls on spatially and temporally intermittent processes. The following discussion highlights only a few of the multitude of models which have yielded insight into the dynamics of plankton patchiness. In addition, this particular collection of examples is intended to furnish some exposure to the diversity of modeling approaches which can be brought to bear on the problem. These approaches range from abstract theoretical models intended to elucidate specific processes, to complex numerical formulations which can be used to actually simulate observed distributions in detail.
    Schlagwort(e): Oceanography
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2019-07-18
    Beschreibung: Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s . Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(sup 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient- replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24+/-0.1 mol N/sq m/yr (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and biological transport fluxes, as well as geochemical inferences of new production, still need to be reconciled and many outstanding questions remain.
    Schlagwort(e): Oceanography
    Materialart: Journal of Geophysical Research; 104; C6; 13359-13379
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2019-07-18
    Beschreibung: An open boundary ocean model is configured in a domain bounded by the four TOPEX/Poseidon (TIP) ground tracks surrounding the U.S. Joint Global Ocean Flux Study Bermuda Atlantic Time-series Study (BATS) site. This implementation facilitates prescription of model boundary conditions directly from altimetric measurements (both TIP and ERS-2). The expected error characteristics for a domain of this size with periodically updated boundary conditions are established with idealized numerical experiments using simulated data. A hindcast simulation is then constructed using actual altimetric observations during the period October 1992 through September 1998. Quantitative evaluation of the simulation suggests significant skill. The correlation coefficient between predicted sea level anomaly and ERS observations in the model interior is 0.89; that for predicted versus observed dynamic height anomaly based on hydrography at the BATS site is 0.73. Comparison with the idealized experiments suggests that the main source of error in the hindcast is temporal undersampling of the boundary conditions. The hindcast simulation described herein provides a basis for retrospective analysis of BATS observations in the context of the mesoscale eddy field.
    Schlagwort(e): Oceanography
    Materialart: Journal of Geophysical Research; 106; C8; 16641-16656
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2019-07-18
    Beschreibung: A mesoscale resolution biogeochemical survey was carried out in the vicinity of the U.S. Joint Global Ocean Flux Study Bermuda Atlantic Time-series Study (BATS) site during the summer of 1996. Real-time nowcasting and forecasting of the flow field facilitated adaptive sampling of several eddy features in the area. Variations in upper ocean nutrient and pigment distributions were largely controlled by vertical isopycnal displacements associated with the mesoscale field. Shoaling density surfaces tended to introduce cold, nutrient-rich water into the euphotic zone, while deepening isopycnals displaced nutrient-depleted water downward. Chlorophyll concentration was generally enhanced in the former case and reduced in the latter. Eddy-induced upwelling at the base of the euphotic zone was affected by features of two different types captured in this survey-, (1) a typical mid-ocean cyclone in which doming of the main thermocline raised the near-surface stratification upward and (2) a mode water eddy composed of a thick lens of 18C water, which pushed up the seasonal thermocline and depressed the main thermocline. Model hindcasts using all available data provide a four-dimensional context in which to interpret temporal trends at the BATS site and two other locations during the 2 weeks subsequent to the survey. Observed changes in near-surface structure at the BATS site included shoaling isopycnals, increased nutrient availability at the base of the euphotic zone, and enhanced chlorophyll concentration within the cuphotic zone. These trends are explicable in terms of a newly formed cyclone that impinged upon the site during this time period. These observations reveal that eddy upwelling has a demonstrable impact on the way in which the nitrate-density relationship changes with depth from the aphotic zone into the euphotic zone. A similar transition is present in the BATS record, suggesting that eddy-driven upwelling events are present in the time series of upper ocean biogeochemical properties. The variability in main thermocline temperature and nitrate in this synoptic spatial survey spans the range observed in these quantities in the 10-year time series available at BATS to date (1988-1998).
    Schlagwort(e): Oceanography
    Materialart: Journal of Geophysical Research; 104; C6; 13381-13394
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2019-07-18
    Beschreibung: A mesoscale eddy advected across the Bermuda Testbed Mooring site over a 30-day period centered on July 14, 1995. Temperature and current measurements along with biogeochemical measurements were used to characterize the biological response of the upper ocean associated with the introduction of nitrate into the euphotic layer due to the doming of isotherms associated with the eddy. Complementary shipboard data showed an anomalous water mass, which extended from a depth of approximately 50 to 1000 m, manifesting as a cold surface expression and warm anomaly at depth. Although mesoscale eddies are frequently observed in the Sargasso Sea, the present observations are particularly unique because of the high-temporal-resolution measurements of the new instrumentation deployed on the mooring. Analyzers that measure nitrate plus nitrite were placed at depths of 80 and 200 m and bio-optical sensors were located at depths of 20, 35, 45, 71, and 86 m. Peak nitrate values of nearly 3.0 micro-M at 80 m and chlorophyll a values of 1.4 mg/cubic m at 71 m were observed, a well as a 25- to 30-meter shoaling of the 1% light level depth. A Doppler shift from the inertial period (22.8 hours) to 25.2 hours was observed in several time series records due to the movement of the eddy across the mooring. Inertial pumping brought cold, nutrient-rich waters farther into the euphotic zone than would occur solely by isothermal lifting. Silicic acid was depleted to undetectable levels owing to the growth of diatoms within the eddy. The chlorophyll a values associated with the eddy appear to be the largest recorded during the eight years of the ongoing US JGOFS Bermuda Atlantic Time Series Study program.
    Schlagwort(e): Oceanography
    Materialart: Journal of Geophysical Research; 104; C7; 15,537-15,548
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...