ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2025-2025  (14)
  • 2015-2019  (15)
  • 2005-2009  (18)
  • 1990-1994  (334,955)
  • 1994  (334,955)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Eisenhauer, Anton; Spielhagen, Robert F; Frank, Martin; Hentzschel, Günter; Mangini, Augusto; Kubik, Peter W; Dittrich-Hannen, Beate; Billen, T (1994): 10Be records of sediment cores from high northern latitudes: Implications for environmental and climatic changes. Earth and Planetary Science Letters, 124(1-4), 171-184, https://doi.org/10.1016/0012-821X(94)00069-7
    Publication Date: 2024-07-01
    Description: The 10Be records of four sediment cores forming a transect from the Norwegian Sea at 70°N (core 23059) via the Fram Strait (core 23235) to the Arctic Ocean at 86°N (cores 1533 and 1524) were measured at a high depth resolution. Although the material in all the cores was controlled by different sedimentological regimes, the 10Be records of these cores were superimposed by glacial/interglacial changes in the sedimentary environment. Core sections with high 10Be concentrations ( 〉1 * 10**9 at/g) are related to interglacial stages and core sections with low10Be concentrations ( 〈0.5 * 10**9 at/g) are related to glacial stages. Climatic transitions (e.g., Termination II, 5/6) are marked by drastic changes in the 10Be concentrations of up to one order of magnitude. The average 10Be concentrations for each climatic stage show an inverse relationship to their corresponding sedimentation rates, indicating that the 10Be records are the result of dilution with more or less terrigenous ice-rafted material. However, there are strong changes in the 10Be fluxes (e.g., Termination II) into the sediments which may also account for the observed oscillations. Most likely, both processes affected the 10Be records equally, amplifying the contrast between lower (glacials) and higher (interglacials) 10Be concentrations. The sharp contrast of high and low 10Be concentrations at climatic stage boundaries are an independent proxy for climatic and sedimentary change in the Nordic Seas and can be applied for stratigraphic dating (10Be stratigraphy) of sediment cores from the northern North Atlantic and the Arctic Ocean.
    Keywords: Antarctic Ocean; ARK-II/4; ARK-IV/3; AWI_Paleo; Fram Strait; Giant box corer; GIK21524-2 PS11/364-2; GIK21533-3 PS11/412; GIK23059-1; GIK23235-1 PS05/422; GKG; Gravity corer (Kiel type); KAL; Kasten corer; M2/2; Meteor (1986); Norwegian Sea; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS05; PS11; PS1235-1; PS1524-2; PS1533-3; Quaternary Environment of the Eurasian North; QUEEN; SL; Svalbard
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stein, Ruediger; Grobe, Hannes; Wahsner, Monika (1994): Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments. Marine Geology, 119(3-4), 269-285, https://doi.org/10.1016/0025-3227(94)90185-6
    Publication Date: 2024-07-01
    Description: Results from a detailed sedimentological investigation of surface sediments from the eastern Arctic Ocean indicate that the distribution of different types of sediment facies is controlled by different environmental processes such as sea-ice distribution, terrigenous sediment supply, oceanic currents, and surface-water productivity. In comparison to other open-ocean environments, total organic carbon contents are high, with maximum values in some deep-basin areas as well as west and north of Svalbard. In general, the organic carbon fraction is dominated by terrigenous material as indicated by low hydrogen index values and high C/N ratios, probably transported by currents and/or sea ice from the Eurasian Shelf areas. The amount of marine organic carbon is of secondary importance reflecting the low-productivity environment described for the modern ice-covered Arctic Ocean. In the area north of Svalbard, some higher amounts of marine organic matter may indicate increased surface-water productivity controlled by the inflow of the warm Westspitsbergen Current (WSC) into the Arctic Ocean and reduced sea-ice cover. This influence of the WSC is also supported by the high content of biogenic carbonate recorded in the Yermak Plateau area. The clay mineral distribution gives information about different source areas and transport mechanisms. Illite, the dominant clay mineral in the eastern central Arctic Ocean sediments, reaches maximum values in the Morris-Jesup-Rise area and around Svalbard, indicating North Greenland and Svalbard to be most probable source areas. Kaolinite reaches maximum values in the Nansen Basin, east of Svalbard, and in the Barents Sea. Possible source areas are Mesozoic sediments in the Barents Sea (and Franz-Josef-Land). In contrast to the high smectite values determined in sea-ice samples, smectite contents are generally very low in the underlying surface sediments suggesting that the supply by sea ice is not the dominant mechanism for clay accumulation in the studied area of the modern central Arctic Ocean.
    Keywords: Amundsen Basin; ARK-VIII/2; ARK-VIII/3; AWI_Paleo; Barents Sea; Gakkel Ridge, Arctic Ocean; Giant box corer; GKG; KAL; Kasten corer; Lomonosov Ridge, Arctic Ocean; Makarov Basin; Morris Jesup Rise; MUC; MultiCorer; Nansen Basin; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS19/040; PS19/045; PS19/050; PS19/055; PS19/070; PS19/078; PS19/080; PS19/081; PS19/082; PS19/084; PS19/086; PS19/090; PS19/091; PS19/094; PS19/098; PS19/100; PS19/101; PS19/102; PS19/104; PS19/105; PS19/108; PS19/110; PS19/111; PS19/112; PS19/116; PS19/117; PS19/119; PS19/124; PS19/126; PS19/132; PS19/134; PS19/136; PS19/143; PS19/148; PS19/150; PS19/151; PS19/152; PS19/153; PS19/154; PS19/155; PS19/157; PS19/158; PS19/159; PS19/160; PS19/161; PS19/164; PS19/165; PS19/166; PS19/167; PS19/171; PS19/172; PS19/173; PS19/175; PS19/176; PS19/178; PS19/181; PS19/182; PS19/183; PS19/184; PS19/185; PS19/186; PS19/189; PS19/190; PS19/192; PS19/194; PS19/196; PS19/198; PS19/200; PS19/204; PS19/206; PS19/210; PS19/214; PS19/216; PS19/218; PS19/222; PS19/224; PS19/226; PS19/228; PS19/234; PS19/239; PS19/241; PS19/245; PS19/246; PS19/249; PS19/252; PS19 ARCTIC91; PS19 EPOS II; PS2111-2; PS2113-1; PS2114-1; PS2115-1; PS2116-1; PS2117-1; PS2119-2; PS2120-1; PS2121-1; PS2122-1; PS2123-3; PS2124-1; PS2125-2; PS2127-1; PS2128-1; PS2129-2; PS2130-2; PS2131-1; PS2132-3; PS2133-1; PS2134-1; PS2136-3; PS2137-4; PS2138-2; PS2142-3; PS2143-1; PS2144-3; PS2147-3; PS2148-1; PS2149-1; PS2150-1; PS2151-1; PS2153-1; PS2156-1; PS2157-3; PS2157-4; PS2158-1; PS2159-3; PS2159-4; PS2160-3; PS2161-2; PS2161-4; PS2162-1; PS2163-1; PS2163-2; PS2164-1; PS2164-4; PS2165-3; PS2165-5; PS2166-1; PS2166-2; PS2167-2; PS2167-3; PS2168-1; PS2168-3; PS2170-1; PS2170-2; PS2171-1; PS2171-2; PS2172-1; PS2172-3; PS2174-2; PS2174-4; PS2175-3; PS2175-4; PS2176-2; PS2176-4; PS2177-1; PS2177-3; PS2178-2; PS2178-4; PS2179-1; PS2179-3; PS2180-1; PS2181-3; PS2182-1; PS2182-4; PS2183-2; PS2183-3; PS2184-1; PS2184-3; PS2185-3; PS2185-4; PS2186-1; PS2186-3; PS2187-1; PS2187-5; PS2189-1; PS2189-3; PS2190-3; PS2190-5; PS2191-1; PS2192-1; PS2192-2; PS2193-2; PS2193-3; PS2194-1; PS2195-4; PS2196-2; PS2196-3; PS2198-1; PS2198-4; PS2199-4; PS2200-2; PS2200-4; PS2202-2; PS2202-4; PS2204-1; PS2204-3; PS2205-3; PS2206-1; PS2206-4; PS2208-1; PS2209-1; PS2210-1; PS2210-3; PS2212-5; PS2213-1; PS2213-4; PS2214-1; PS2214-4; PS2215-1; PS2215-2; Quaternary Environment of the Eurasian North; QUEEN; Svalbard; Yermak Plateau
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bergsten, Helene (1994): Recent benthic foraminifera of a transect from the North Pole to the Yermak Plateau, eastern central Arctic Ocean. Marine Geology, 119(3-4), 251-267, https://doi.org/10.1016/0025-3227(94)90184-8
    Publication Date: 2024-07-01
    Description: The Recent distribution of living and dead benthic foraminifera of the Arctic Ocean proper has been examined in surface sediments that were sampled during the International Arctic Ocean Expedition 1991 (Arctic 91). The samples represent the Amundsen and Nansen Basins, the Morris Jesup Rise, and the Yermak Plateau from 90°N to 79°42.4'N, 05°15.6'E. Due to the technical difficulties of deep-sea drilling in the Arctic Ocean these areas have, until now, been investigated only in very low density sampling. The Arctic 91 sites of this study cover a water depth range between 552 and 4375 m and represent three sites which are seasonally ice-free, although not yearly, while the other sites are characterized by permanent sea-ice. There is a Recent production of benthic foraminifera in the whole investigation area and all surface samples contain both benthic and planktonic foraminifera. Abyssal assemblages are recorded in the Amundsen and Nansen Basins where Stetsonia arctica dominates with high abundances. It is, however, also possible to distinguish these two basins by the use of diagnostic species. At intermediate water depths (500 to 2000-2500 m) the faunas show higher diversities and higher abundances of Atlantic species than the deep-sea sites. Mixing of North Atlantic water down to approximately 2500 m, is suggested to explain the influx of Atlantic species on the Yermak Plateau and the Morris Jesup Rise. The foraminiferal tests are well preserved within the investigation area and dissolution does not seem to be very obvious in the deeper areas. There is no evidence from the Recent foraminiferal faunas that the bottom waters of the eastern, central Arctic Ocean are undersaturated with respect to calcium carbonate and the deep-sea areas appear, therefore, to lie above the present CCD.
    Keywords: Amundsen Basin; ARK-VIII/3; AWI_Paleo; Giant box corer; GKG; Gravity corer (Kiel type); Morris Jesup Rise; Nansen Basin; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS19/194; PS19/198; PS19/200; PS19/204; PS19/206; PS19/210; PS19/214; PS19/216; PS19/218; PS19/220; PS19/222; PS19/226; PS19/239; PS19/241; PS19/245; PS19/246; PS19/249; PS19/252; PS19 ARCTIC91; PS2190-2; PS2192-1; PS2193-2; PS2194-1; PS2195-4; PS2196-2; PS2198-1; PS2199-1; PS2200-2; PS2201-1; PS2202-1; PS2205-2; PS2209-1; PS2210-1; PS2212-1; PS2213-1; PS2214-1; PS2215-2; Quaternary Environment of the Eurasian North; QUEEN; SL; Yermak Plateau
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stein, Ruediger; Schubert, Carsten J; Vogt, Christoph; Fütterer, Dieter K (1994): Stable isotope stratigraphy, sedimentation rates, and salinity changes in the latest Pleistocene and Holocene eastern central Arctic Ocean. Marine Geology, 119(3-4), 333-355, https://doi.org/10.1016/0025-3227(94)90189-9
    Publication Date: 2024-07-01
    Description: A high-resolution study including oxygen and carbon stable isotopes as well as carbonate and total organic carbon contents, has been performed on undisturbed near-surface (0-40 cm) sediment sequences taken in the eastern Arctic Ocean during the international Arctic 91 Expedition. Based on the oxygen stable isotope records measured on Neogloboquadrina pachyderma (sin.) and AMS 14C dating, the upper 10 to 20 cm of the sediment sequences represent isotope stage 1, and the base of Termination I (15.7 ka) can be identified very well. Stage 1 sedimentation rates vary between 0.4 and 〉2.0 cm/kyr. In general, glacial stage 2 sedimentation rates are probably lower and vary between 0.4 and 0.7 cm/kyr. The glacial-interglacial shifts in delta18O values of N. pachyderma sin. may reach values of 1.3 to 2.5 per mil indicating (1) that, in addition to the glacial-interglacial global ice-volume signal, changes in surface-water salinity have effected the isotope records and (2) that these salinity changes have varied laterally. Glacial-interglacial differences in salinity were small in the Lomonosov Ridge area (0-0.4 per mil) and relatively high in the Morris-Jesup-Rise area (up to 1.4 per mil). This implies that the supply of low-saline waters onto the Eurasian shelves and its further transport into the central Arctic Ocean via the Transpolar Drift should have continued during the last glacial and should have significantly influenced the surface water characteristics in parts of the central Arctic. On the Morris-Jesup-Rise, on the other hand, the glacial low-saline-water signal at that time was strongly reduced in comparison to the modern situation. At the glacial-interglacial stage 1/2 boundary, a strong meltwater signal is recorded in a sharp depletion in delta18O as well as delta13C. This central Arctic Ocean meltwater event can be correlated from the Makarov Basin through the Lomonosov Ridge and Amundsen Basin to the eastern Gakkel Ridge. The beginning of this event is AMS 14C dated at 15.7 ka, i.e., significantly older than the major decrease in the global ice-volume signal which occurs between 9 and 13.5 ka. Large amounts of freshwater/meltwater were probably supplied from the Eurasian continent due to the decay of the Barents-Sea-Ice-Sheet, causing this distinct early meltwater anomaly in the central Arctic Ocean. The extension of a well-oxygenated surface-near water mass in the Arctic Ocean and (at least seasonal) open-ice conditions and some increased bioproductivity were probably established at the end of Termination I, as indicated by the increase in delta13C to modern values as well as increased carbonate (i.e., foraminifers, coccoliths, ostracodes) and total organic carbon contents.
    Keywords: Amundsen Basin; ARK-VIII/3; AWI_Paleo; Gakkel Ridge, Arctic Ocean; Giant box corer; GKG; Gravity corer (Kiel type); Lomonosov Ridge, Arctic Ocean; Makarov Basin; Morris Jesup Rise; MUC; MultiCorer; Nansen Basin; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS19/152; PS19/154; PS19/157; PS19/159; PS19/165; PS19/172; PS19/175; PS19/176; PS19/178; PS19/185; PS19/186; PS19/194; PS19/198; PS19/200; PS19/210; PS19/214; PS19/218; PS19/222; PS19/224; PS19/226; PS19/228; PS19/234; PS19/241; PS19/245; PS19 ARCTIC91; PS2159-3; PS2161-1; PS2163-1; PS2165-5; PS2170-4; PS2175-4; PS2177-3; PS2178-4; PS2179-3; PS2184-3; PS2185-4; PS2190-5; PS2192-3; PS2193-2; PS2196-2; PS2198-4; PS2200-4; PS2202-2; PS2204-2; PS2204-3; PS2205-1; PS2206-4; PS2208-1; PS2210-3; PS2212-6; Quaternary Environment of the Eurasian North; QUEEN; SL; Yermak Plateau
    Type: Dataset
    Format: application/zip, 28 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kröncke, Ingrid (1994): Macrobenthos composition, abundance and biomass in the Arctic Ocean along a transect between Svalbard and the Makarov Basin. Polar Biology, 14(8), 519-529, https://doi.org/10.1007/BF00238221
    Publication Date: 2024-07-01
    Description: Macrofauna has been sampled at 30 stations, at water depths of 1018–4478 m, along a transect extending between Northern Svalbard and the Makarov Basin, as a basis for understanding aspects of the benthic ecology of the Arctic Ocean. Species numbers, abundances and biomasses were extremely low, and generally varied between 0 to 11/0.02 m**2, 0 to 850 individuals/m**2, and 0 to 82.65 g/m**2, respectively. A total of 42 species was found. The Amphipod Jassa marmorata was the most common species. Both numbers and biomasses of suspension-feeding species increased towards the Lomonosov Ridge, probably due to lateral transport of organic material by deep currents along the ridge.
    Keywords: Amundsen Basin; ARK-VIII/3; Gakkel Ridge, Arctic Ocean; Giant box corer; GKG; Lomonosov Ridge, Arctic Ocean; Makarov Basin; Nansen Basin; Polarstern; PS19/150; PS19/151; PS19/155; PS19/165; PS19/166; PS19/181; PS19/182; PS19/186; PS19 ARCTIC91; PS2157-7; PS2158-1; PS2159-7; PS2161-5; PS2162-1; PS2163-5; PS2164-7; PS2165-6; PS2166-4; PS2167-4; PS2168-4; PS2170-1; PS2171-1; PS2172-5; PS2174-7; PS2175-6; PS2176-7; PS2177-7; PS2178-6; PS2179-4; PS2180-1; PS2181-1; PS2182-6; PS2183-5; PS2184-4; PS2185-3; PS2185-8; PS2186-6; PS2187-6; PS2189-6; PS2190-6
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Spielhagen, Robert F; Erlenkeuser, Helmut (1994): Stable oxygen and carbon isotopes in planktic foraminifers from Arctic Ocean surface sediments: Reflection of the low salinity surfac water layer. Marine Geology, 119(3-4), 227-250, https://doi.org/10.1016/0025-3227(94)90183-X
    Publication Date: 2024-07-01
    Description: Planktic foraminifers Neogloboquadrina pachyderma (sin.) from 87 eastern and central Arctic Ocean surface sediment samples were analyzed for stable oxygen and carbon isotope composition. Additional results from 52 stations were taken from the literature. The lateral distribution of delta18O (18O/16O) values in the Arctic Ocean reveals a pattern of roughly parallel, W-E stretching zones in the Eurasian Basin, each ~0.5 per mil wide on the delta18O scale. The low horizontal and vertical temperature variability in the Arctic halocline waters (0-100 m) suggests only little influence of temperature on the oxygen isotope distribution of N. pachyderma (sin.). The zone of maximum delta18O values of up to 3.8 per mil is situated in the southern Nansen Basin and relates to the tongue of saline (〉 33%.) Atlantic waters entering the Arctic Ocean through the Fram Strait. delta18O values decrease both to the Barents Shelf and to the North Pole, in accordance with the decreasing salinities of the halocline waters. In the Nansen Basin, a strong N-S delta18O gradient is in contrast with a relatively low salinity change and suggests contributions from different freshwater sources, i.e. salinity reduction from sea ice meltwater in the south and from light isotope waters (meteoric precipitation and river-runoff) in the northern part of the basin. North of the Gakkel Ridge, delta18O and salinity gradients are in good accordance and suggest less influence of sea ice melting processes. The delta13C (13C/12C) values of N. pachyderma (sin.) from Arctic Ocean surface sediment samples are generally high (0.75-0.95 per mil). Lower values in the southern Eurasian Basin appear to be related to the intrusion of Atlantic waters. The high delta13C values are evidence for well ventilated surface waters. Because the perennial Arctic sea ice cover largely prevents atmosphere-ocean gas exchange, ventilation on the seasonally open shelves must be of major importance. Lack of delta13C gradients along the main routes of the ice drift from the Siberian shelves to the Fram Strait suggests that primary production (i.e. CO2 consumption) does probably not change the CO2 budget of the Arctic Ocean significantly.
    Keywords: 125SGC; 83-101; 83-104; 83-106; 83-109; 83-110; 83-201; 83-202; 83-203; 83-204; 83-205; Alpha Ridge, Arctic Ocean; Amerasian Basin; Amundsen Basin; Antarctic Ocean; Arctic Ocean; ARK-III/3; ARK-IV/3; ARK-IX/4; ARK-VIII/2; ARK-VIII/3; Barents Sea; CESAR; CESAR_83-101; CESAR_83-104; CESAR_83-106; CESAR_83-109; CESAR_83-110; CESAR_83-201; CESAR_83-202; CESAR_83-203; CESAR_83-204; CESAR_83-205; D.St.A.2; DEPTH, sediment/rock; Elevation of event; Event label; FL-433; FL-523; Fram-I; FramI/4; FramI/7; FramII/1; FramII/3; FramII/4; FramII/5; FramIII/1; FramIII/2; FramIII/3; FramIII/7; FramIII/8; FramIV/1; FramIV/7; FramIV/9; Fram Strait; Gakkel Ridge, Arctic Ocean; GC; GEOMAR; Giant box corer; GIK21308-3 PS07/601; GIK21310-4 PS07/603; GIK21312-3 PS07/606; GIK21314-3 PS07/608; GIK21319-2 PS07/617; GIK21513-9 PS11/276-9; GIK21515-10 PS11/280-10; GIK21519-11 PS11/296-11; GIK21520-10 PS11/310-10; GIK21522-19 PS11/358-19; GIK21523-15 PS11/362-15; GIK21524-1 PS11/364-1; GIK21525-2 PS11/365-2; GIK21527-10 PS11/371-10; GIK21528-7 PS11/372-7; GIK21529-7 PS11/376-7; GIK21533-3 PS11/412; GIK21534-6 PS11/423-6; GKG; Gravity corer; Gravity corer (Kiel type); Helmholtz Centre for Ocean Research Kiel; Ice drift station; Laptev Sea; Laptev Sea, Taymyr Island; Latitude of event; Lomonosov Ridge, Arctic Ocean; Longitude of event; LOREX; LOREX1; LOREX10; LOREX11; LOREX2; LOREX3; LOREX6; LOREX8; LOREX9; Makarov Basin; Mass spectrometer Finnigan MAT 251; MIC; MiniCorer; Morris Jesup Rise; MUC; MultiCorer; Nansen Basin; Neogloboquadrina pachyderma sinistral, δ13C; Neogloboquadrina pachyderma sinistral, δ18O; Polarstern; PS07; PS11; PS1308-3; PS1310-4; PS1312-3; PS1314-3; PS1319-2; PS1513-9; PS1515-10; PS1519-11; PS1520-10; PS1522-19; PS1523-15; PS1524-1; PS1525-2; PS1527-10; PS1528-7; PS1529-7; PS1533-3; PS1534-6; PS19/111; PS19/113; PS19/114; PS19/148; PS19/150; PS19/152; PS19/154; PS19/155; PS19/157; PS19/158; PS19/159; PS19/160; PS19/161; PS19/164; PS19/165; PS19/166; PS19/167; PS19/171; PS19/172; PS19/173; PS19/175; PS19/176; PS19/178; PS19/181; PS19/182; PS19/183; PS19/184; PS19/185; PS19/186; PS19/189; PS19/190; PS19/192; PS19/194; PS19/198; PS19/200; PS19/204; PS19/206; PS19/210; PS19/214; PS19/216; PS19/218; PS19/222; PS19/226; PS19/228; PS19/234; PS19/239; PS19/241; PS19/245; PS19/246; PS19/249; PS19 ARCTIC91; PS19 EPOS II; PS2137-1; PS2139-1; PS2140-1; PS2156-1; PS2157-4; PS2159-4; PS2161-4; PS2162-1; PS2163-2; PS2164-4; PS2165-3; PS2166-2; PS2167-2; PS2168-1; PS2170-1; PS2171-1; PS2172-1; PS2174-4; PS2175-3; PS2176-4; PS2177-1; PS2178-2; PS2179-1; PS2180-1; PS2181-1; PS2181-2; PS2182-1; PS2183-1; PS2183-2; PS2184-1; PS2185-1; PS2185-3; PS2186-5; PS2187-1; PS2189-1; PS2190-3; PS2192-1; PS2193-2; PS2194-1; PS2195-4; PS2196-2; PS2198-1; PS2199-4; PS2200-2; PS2202-2; PS2205-3; PS2206-4; PS2208-1; PS2209-1; PS2210-1; PS2212-1; PS2212-5; PS2213-1; PS2214-1; PS2441-3; PS2442-4; PS2443-2; PS2444-1; PS2445-3; PS2446-3; PS2447-4; PS2449-3; PS2455-3; PS2456-2; PS2458-3; PS2459-2; PS2464-2; PS2465-3; PS2466-3; PS2468-3; PS2469-3; PS2470-4; PS2471-3; PS2472-3; PS2473-3; PS2474-2; PS2475-1; PS2476-3; PS2482-3; PS2483-2; PS2484-2; PS27; PS27/007; PS27/014; PS27/016; PS27/017; PS27/019; PS27/020; PS27/024; PS27/027; PS27/033; PS27/034; PS27/038; PS27/039; PS27/046; PS27/047; PS27/048; PS27/050; PS27/052; PS27/053; PS27/054; PS27/056; PS27/058; PS27/059; PS27/060; PS27/062; PS27/069; PS27/070; PS27/071; Quaternary Environment of the Eurasian North; QUEEN; Reference/source; Sampling/drilling from ice; Sampling/drilling ice; SL; Svalbard; T-3; T3-66; T3-67-11; T3-67-5; Y80_125SGC; Yermak Plateau; Ymer; YMER-80
    Type: Dataset
    Format: text/tab-separated-values, 330 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Peucker-Ehrenbrink, Bernhard; Hofmann, Albrecht W; Hart, Stanley R (1994): Hydrothermal lead transfer from mantle to continental crust: the role of metalliferous sediments. Earth and Planetary Science Letters, 125(1-4), 129-142, https://doi.org/10.1016/0012-821X(94)90211-9
    Publication Date: 2024-07-01
    Description: The amount of lead annually transferred from oceanic crust to metalliferous sediments was estimated in order to test the hypothesis that a non-magmatic flux of lead causes the Pb surplus in the continental crust. A Pb surplus has been inferred from global crust-mantle lead mass balances derived from lead concentration correlations with other trace elements and from lead isotope systematics in oceanic basalts. DSDP/ODP data on the amount of metalliferous sediments in the Pacific Ocean and along a South Atlantic traverse are used to calculate the mean worldwide thickness of 3 (+/-1) m for purely metalliferous sediment componens. Lead isotope ratios of 39 metalliferous sediments from the Pacific define mixing lines between continent-derived (seawater) and mantle-derived (basaltic) lead, with the most metal-rich sediments usually having the most mantle-like Pb isotope composition. We used this isotope correlation and the Pb content of the 39 metalliferous sediments to derive an estimate of 130 (+/-70) µg/g for the concentration of mantle-derived lead in the purely metalliferous end-member. Mass balance calculations show that at least 12 (+/-8)% of the lead, annually transferred from upper mantle to oceanic crust at the ocean ridges, is leached out by hydrothermal processes and re-deposited in marine sediments. If all of the metalliferous lead is ultimately transferred to the continental crust during subduction, the annual flux of this lead from mantle to continental crust is 2.6 (+/-2.0) * 10**6 kg. Assuming this transfer rate to be proportional to the rate of oceanic plate production, one can fit the lead transfer to models of plate production rate variations through time. Integrating over 4 Ga, hydrothermal lead transfer to the continental crust accounts for a significant portion of the Pb surplus in the continental crust. It therefore appears to be one of the main reasons for the anomalous behavior of lead in the global crust-mantle system.
    Keywords: 16-161A; 16-162; 19-183; 34-319; 35-323; 5-37; 5-39; 85-574C; 8-74; 8-75; 91-596; 92-597; 9-77B; Antarctic Ocean/PLAIN; Components indeterminata; Deep Sea Drilling Project; Distance, relative; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Elevation of event; Event label; Glomar Challenger; Latitude of event; Lead; Lead-206/Lead-204 ratio; Lead-207/Lead-204 ratio; Lead-208/Lead-204 ratio; Leg16; Leg19; Leg34; Leg35; Leg5; Leg8; Leg85; Leg9; Leg91; Leg92; Longitude of event; Mass spectrometer Finnigan MAT 251; North Pacific/CONT RISE; North Pacific/HILL; North Pacific/PLAIN; North Pacific/TROUGH; Sample code/label; South Pacific; South Pacific/BASIN; South Pacific/CONT RISE
    Type: Dataset
    Format: text/tab-separated-values, 312 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: McCorkle, Daniel C; Keigwin, Lloyd D (1994): Depth profiles of d13C in bottom water and core top C. wuellerstorfi on the Ontong Java Plateau and Emperor Seamounts. Paleoceanography, 9(2), 197-208, https://doi.org/10.1029/93PA03271
    Publication Date: 2024-07-01
    Description: We have measured the carbon isotopic composition of dissolved inorganic carbon in bottom waters of the Ontong Java Plateau (western equatorial Pacific) and on the northern Emperor Seamounts (northwest Pacific). Each of these locations is several hundred miles from the nearest Geochemical Ocean Sections Study (GEOSECS) stations, and the observed delta13C values at each site differ substantially from regionally averaged GEOSECS delta13C profiles. We discuss the possible causes of these differences, including horizontal variability, near-bottom effects, and problems with the Pacific GEOSECS delta13C data. We also measured the isotopic composition (C and O) of core top C. wuellerstorfi from a depth transect of cores at each location. The delta18O data are used to verify that our samples are Holocene. Comparison of foraminiferal and bottom water delta13C values shows that this species faithfully records bottom water delta13C at both sites and demonstrates that there is no depth-related artifact in the dissolved inorganic carbon-C. wuellerstorfi delta13C relationship at these sites.
    Keywords: 6-TOW; 6-TOW-001GGC; 6-TOW-002GGC; 6-TOW-003GGC; 6-TOW-005GGC; 6-TOW-006GGC; 6-TOW-007GGC; 6-TOW-008GGC; 6-TOW-011GGC; 6-TOW-011PC; 6-TOW-012GGC; 6-TOW-013GGC; 6-TOW-014GGC; 6-TOW-015GGC; 6-TOW-016GGC; Akademik A. Vinogradov; AVI19-4; BC; Box corer; GGC; Giant gravity corer; Moana Wave; MW9109; MW9109-13BC; MW9109-16BC; MW9109-22BC; MW9109-33BC; MW9109-37BC; MW9109-3BC; MW9109-47BC; MW9109-53BC; MW9109-54BC; MW9109-58BC; MW9109-59BC; MW9109-63BC; MW9109-66BC; MW9109-70BC; MW9109-74BC; MW9109-7BC; Pacific; PC; Piston corer; RAMA; RAMA03WT; RAMA-44P; RNDB-11GGC; RNDB-11PC; RNDB-12GGC; RNDB-13GGC; RNDB-14GGC; RNDB-15GGC; RNDB-16GGC; RNDB-1GGC; RNDB-2GGC; RNDB-3GGC; RNDB-5GGC; RNDB-6GGC; RNDB-7GGC; RNDB-8GGC; Thomas Washington; Vi-26BC; Vi-35GC; Vi-37GC; VINO-26BC; VINO-35GGC; VINO-37GGC
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cronin, Thomas M; Holtz, Thomas R; Whatley, Robin C (1994): Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda. Marine Geology, 119(3-4), 305-332, https://doi.org/10.1016/0025-3227(94)90188-0
    Publication Date: 2024-07-01
    Description: Ostracodes were studied from deep Arctic Ocean cores obtained during the Arctic 91 expedition of the Polarstern to the Nansen, Amundsen and Makarov Basins, the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau, in order to investigate their distribution in Arctic Ocean deep water (AODW) and apply these data to paleoceanographic reconstruction of bottom water masses during the Quaternary. Analyses of coretop assemblages from Arctic 91 boxcores indicate the following: ostracodes are common at all depths between 1000 and 4500 m, and species distribution is strongly influenced by water mass characteristics and bathymetry; quantitative analyses comparing Eurasian and Canada Basin assemblages indicate that distinct assemblages inhabit regions east and west of the Lomonosov Ridge, a barrier especially important to species living in lower AODW; deep Eurasian Basin assemblages are more similar to those living in Greenland Sea deep water (GSDW) than those in Canada Basin deep water; two upper AODW assemblages were recognized throughout the Arctic Ocean, one living between 1000 and 1500 m, and the other, having high species diversity, at 1500-3000 m. Downcore quantitative analyses of species' abundances and the squared chord distance coefficient of similarity reveals a distinct series of abundance peaks in key indicator taxa interpreted to signify the following late Quaternary deep water history of the Eurasian Basin. During the Last Glacial Maximum (LGM), a GSDW/AODW assemblage, characteristic of cold, well oxygenated deep water 〉 3000 m today, inhabited the Lomonosov Ridge to depths as shallow as 1000 m, perhaps indicating the influence of GSDW at mid-depths in the central Arctic Ocean. During Termination 1, a period of high organic productivity associated with a strong inflowing warm North Atlantic layer occurred. During the mid-Holocene, several key faunal events indicate a period of warming and/or enhanced flow between the Canada and Eurasian Basins. A long-term record of ostracode assemblages from kastenlot core PS2200-5 (1073 m water depth) from the Morris Jesup Rise indicates a quasi-cyclic pattern of water mass changes during the last 300 kyr. Interglacial ostracode assemblages corresponding to oxygen isotope stages 1, 5, and 7 indicate rapid changes in dissolved oxygen and productivity during glacial-interglacial transitions.
    Keywords: 80PB50; 81-APB-13; AC-71-36; AC-71-38; AC-71-48; Amundsen Basin; ARK-VIII/3; AW-2375; AW-2839; AW-2904; AW-2905; AW-3101A; AW-3143; AW-3154; AW-3161; AW-57-328-46; AW-62-160-10; AW-62-160-7; AW-62-160-8; AW-62-160-9; AWI_Paleo; AW-IH25; AW-NN; AW-V6-33-78-21; Barnes26-80; Barnes27-80; Barnes56-80; Bart.30; Bart.46; Bart.49; Bart.55; Bart.LT23Hazel3; Bart.LT26Hazel2; Bart.LT30; Bart.LT35Hazel5; Bart.N.Omenolu; Beaufort Sea; Canadian Beaufort; Cape Martineau; Chest.Inlet1; Chest.Inlet2; Chest.Inlet5; Chest.Inlet8; Chest.Inlet9; Chikchi Sea; DC1-79-EG-1; DC2-80-EG-186; DC2-80-EG-73; EGAL-75-KC-53; E Greenland; Gakkel Ridge, Arctic Ocean; Giant box corer; GKG; Gulf of Alaska; GV8202745; GV82027-67; GV83033#44; GV83033#45; HU69-050.830; HU69-050.836; HU85-027-76; Hudson Bay; Hudson Strait; Hurd Channel; Ikerssauk15; Ikerssauk2; Ikerssauk4; Ikerssauk5; KAL; Kara Sea; Kasten corer; Labrador; Lomonosov Ridge, Arctic Ocean; Makarov Basin; Melville Penin.; Morris Jesup Rise; Nansen Basin; Northwind5; Northwind65#106; Northwind65#112; Northwind65#115; Northwind65#41; Norton Sound; N Star Bay, Greenl.; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Penney274101; PenneyIkerss.#1; Polarstern; PRZO70-22-130; PRZO72-44; PS19/150; PS19/151; PS19/152; PS19/155; PS19/157; PS19/158; PS19/159; PS19/160; PS19/161; PS19/164; PS19/165; PS19/166; PS19/167; PS19/171; PS19/172; PS19/173; PS19/175; PS19/176; PS19/178; PS19/181; PS19/182; PS19/183; PS19/184; PS19/185; PS19/186; PS19/189; PS19/190; PS19/192; PS19/194; PS19/198; PS19/200; PS19/204; PS19/206; PS19/210; PS19/214; PS19/218; PS19/239; PS19/241; PS19/245; PS19/246; PS19/249; PS19/252; PS19 ARCTIC91; PS2157-4; PS2158-1; PS2159-4; PS2162-1; PS2163-2; PS2164-4; PS2165-3; PS2166-2; PS2167-2; PS2168-1; PS2170-1; PS2171-1; PS2172-1; PS2174-4; PS2175-3; PS2176-4; PS2177-1; PS2178-2; PS2179-1; PS2180-1; PS2181-3; PS2182-1; PS2183-1; PS2184-1; PS2185-3; PS2186-5; PS2187-1; PS2189-1; PS2190-3; PS2192-1; PS2193-2; PS2194-1; PS2195-4; PS2196-2; PS2198-1; PS2200-2; PS2200-5; PS2209-1; PS2210-1; PS2212-5; PS2213-1; PS2214-1; PS2215-2; Quaternary Environment of the Eurasian North; QUEEN; S5-77-BS-17; SEA5-125A; SEA-5-76-174; Svalbard; SW Greenland; Ungava Bay; W Greenland; WhiteBearHazel18; Yermak Plateau
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Weber, Michael E; Bonani, Georges; Fütterer, Dieter K (1994): Sedimentation processes within channel-ridge systems, southeastern Weddell Sea, Antarctica. Paleoceanography, 9(6), 1027-1048, https://doi.org/10.1029/94PA01443
    Publication Date: 2024-07-01
    Description: On the continental margin of the southeastern Weddell Sea, Antarctica, several channel-ridge systems can be traced on the eastern side of the Crary Fan. Swath mapping of the bathymetry reveals three southwest-northeast trending ridges up to 300 m high with channels on their southeastern side. The structures occur on a terrace of the continental slope in water depths of 2000 - 3300 m. We carried out sedimentological studies on cores from three sites. Two of the studied cores are from ridges, one is from the northwestern part of the terrace. The stratigraphy of the recovered sediments is based on accelerator mass spectrometer 14C determinations, stable oxygen and carbon isotopes analyses and paleomagnetic measurements. The sediments represent a period from the last glacial maximum (LGM) to recent time. They are composed predominantly of terrigenous components. We distinguish four different sedimentary facies and assign them to processes controlling sedimentation. Microlaminated muds and cross-stratified coarse-silty sediments originated from contour currents. Bioturbated sediments reflect the increasing influence of hemipelagic sedimentation. Structureless sediments with high contents of ice-rafted debris characterize slumps. The inferred contour currents shaping the continental slope during the LGM were canalized within the channels and supplied microlaminated mud to the western sedimentary ridges due to deflection to the left induced by the Coriolis force. The lamination of the sediments is attributed to seasonal variations of current velocities. The thermohaline bottom currents were directed to the northeast and hence opposite to the Weddell Gyre. Cross-stratified coarse-silty contourites on the ridges are intercalated with the muds and indicate spillover of faster thermohaline flows. Average sedimentation rates on the terrace of the continental slope were unusually high (250 cm/ka) during the LGM, indicating active growth phases of the Crary Fan during glacial intervals. A substantial environmental change at 19.5 - 20 ka is documented in the sediments by a gradual change from lamination to bioturbation. During the recent interglacial, bioturbated sediments were deposited in all parts of the terrace. Because of a reduction of the contour current velocities (4-7 cm/s), the water masses of the Weddell Gyre, supplying fine-grained sediments from northeast, gain a greater influence on sedimentation on the continental slope. Higher percentages of microfossils indicate enhanced biogenic productivity. Increased iceberg activity is documented by greater amounts of ice-rafted debris. The interglacial sedimentation rates decrease to a few cm/ka and indicate that the Crary Fan became relatively sediment-starved during interglacial intervals.
    Keywords: ANT-VI/3; ANT-VIII/5; AWI_Paleo; Gravity corer (Kiel type); Halley Bay; Lyddan Island; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS12; PS12/319; PS1599-3; PS16; PS16/409; PS16/410; PS1789-1; PS1790-1; SL
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...