ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:579  (3)
  • Hoboken, USA  (3)
  • English  (3)
  • 2020-2023  (3)
  • 2000-2004
Collection
Publisher
Language
  • English  (3)
Years
  • 2020-2023  (3)
  • 2000-2004
Year
  • 1
    Publication Date: 2022-04-04
    Description: Harmful algal blooms (HABs) are globally increasing in number and spatial extent. However, their propagation dynamics along environmental gradients and the associated interplay of abiotic factors and biotic interactions are still poorly understood. In this study, a nutrient gradient was established in a linear meta‐ecosystem setup of five interconnected flasks containing an artificially assembled phytoplankton community. The harmful dinoflagellate Alexandrium catenella was introduced into different positions along the nutrient gradient to investigate dispersal and spatial community dynamics. Overall, total algal biovolume increased, while community evenness decreased with increasing nutrient concentrations along the gradient. Alexandrium was able to disperse through all flasks. On the regional scale, diatoms dominated the community, whereas on the local scale the dinoflagellate showed higher contributions at low nutrient concentrations and dominated the community at the lowest nutrient concentration, but only when initiated into this flask. A control treatment without dispersal revealed an even stronger dominance of Alexandrium at the lowest nutrient concentration, indicating that dispersal and the associated nutrient exchange may weaken dinoflagellate dominance under low nutrient conditions. This study presents a first approach to experimentally investigate spatial dynamics and ecological interactions of a harmful dinoflagellate along an environmental gradient in a meta‐ecosystem setup, which has the potential to substantially enhance our understanding of the relevance of dispersal for HAB formation and propagation in combination with local environmental factors.
    Description: Volkswagen Foundation http://dx.doi.org/10.13039/501100001663
    Keywords: ddc:579 ; ddc:550.724
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-04
    Description: Microbial organic matter decomposition is a critical ecosystem function, which can be negatively affected by chemicals. Although the majority of organic matter is stored in sediments, the impact of chemicals has exclusively been studied in benthic systems. To address this knowledge gap, we assessed the impact of a fungicide mixture at three concentrations on the decomposition of black alder leaves in the benthic and hyporheic zone. We targeted two sediment treatments characterized by fine and coarse grain sizes (1–2 vs. 2–4 mm). Besides microbial communities' functioning (i.e., decomposition), we determined their structure through microbial biomass estimates and community composition. In absence of fungicides, leaf decomposition, microbial biomass estimates and fungal sporulation were lower in the hyporheic zone, while the importance of bacteria was elevated. Leaf decomposition was reduced (40%) under fungicide exposure in fine sediment with an effect size more than twice as high as in the benthic zone (15%). These differences are likely triggered by the lower hydraulic conductivity in the hyporheic zone influencing microbial dispersal as well as oxygen and nutrient fluxes. Since insights from the benthic zone are not easily transferable, these results indicate that the hyporheic zone requires a higher recognition with regard to ecotoxicological effects on organic matter decomposition.
    Description: German Research Foundation, Project AQUA‐REG http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:550.724 ; ddc:579
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-01
    Description: Light is a fundamental resource for phytoplankton. To utilize the available light, most phytoplankton species possess pigments in taxon‐specific combinations and quantities, which in turn result in a specific use of certain wavelengths. This optimizes the light use efficiency, allows for a complementary use of light, and may be an additional driver for community structure. While the effects of light intensity on phytoplankton biomass production and community composition have been intensively studied, here we focused on the effects of specific light spectrum quality (thus light color) on a natural phytoplankton community. In a controlled mesocosm experiment we reduced the supplied wavelength range to its blue, green, or red part of the light spectrum and compared the responses of each treatment to a full spectrum control over 28 d. Highest community growth rates were observed under blue, lowest under red light. Light absorption by the communities showed adaptation toward the supplied wavelength range. Community composition was significantly affected by light quality treatments, driven by Bacillariophyta and Chlorophyta, whereas pigment composition was not. Furthermore, lower species richness but higher evenness occurred when communities were exposed to red light compared to the full spectrum. We expected the response of phytoplankton communities to changes in the light spectrum to be driven by a combination of species sorting and pigment acclimation; however, the effect of species sorting turned out to be stronger. Our study showed that, even if species might acclimate, changes in the available light spectrum affect primary production and phytoplankton community composition.
    Keywords: ddc:579
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...