ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (97)
  • 2020-2024  (65)
  • 1940-1944  (32)
  • Lower compact magazine  (96)
  • Pendulum room  (1)
Collection
  • Books  (97)
Language
Years
Year
Branch Library
  • 1
    Call number: S 99.0139(393)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 393
    Description / Table of Contents: In dieser Arbeit wird eine ganzheitliche Prozesskette zur flächenhaften Modellierung von Bodenbewegungen entwickelt und am Beispiel der niedersächsischen Landesfläche erprobt. Unter Verwendung von GNSS, Nivellement und der satellitengestützten Radarinterferometrie werden zunächst Bewegungen von Objektpunkten an der Erdoberfläche bestimmt. Um die heterogenen Beobachtungen der unterschiedlichen Messverfahren verarbeiten zu können, erfolgt die kinematische Modellierung in separaten Datenanalysen. Die resultierenden Geschwindigkeiten der Objektpunkte bilden die Grundlage zur flächenhaften Approximation von Bodenbewegungen, wobei die Vorzüge der jeweiligen Beobachtungsverfahren miteinander kombiniert werden.
    Description / Table of Contents: In this work, a holistic processing chain for the modeling of ground motions is developed and tested using Lower Saxony as an example. Using GNSS, levelling and satellite-based radar interferometry, movements of measurement points on the earth’s surface are first determined. In order to process the heterogeneous observations of the different measurement methods, kinematic modeling is performed in separate data analyses. The resulting velocities of the measurement points form the basis for the areal approximation of ground motions, using the advantages of the respective observation methods.
    Type of Medium: Series available for loan
    Pages: 229 Seiten , Illustrationen, Diagramme , 30 cm
    ISSN: 01741454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 393
    Language: German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2024 , 1 Einleitung 13 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2 Wissenschaftlicher Beitrag der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Grundlagen 19 2.1 Geodätische Bezugssysteme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Geometrische Bezugssysteme . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.2 Physikalische Höhenbezugssysteme . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Bodenbewegungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.1 Ursachen von Bewegungsvorgängen . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.2 Bisherige Untersuchungen in Niedersachsen . . . . . . . . . . . . . . . . . . . 27 2.3 Messverfahren zur Erfassung von Bodenbewegungen . . . . . . . . . . . . . . . . . . 29 2.3.1 Global Navigation Satellite System GNSS . . . . . . . . . . . . . . . . . . . . 30 2.3.2 Geometrisches Nivellement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.3 Radarinterferometrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 Prozesskette zur flächenhaften Modellierung von Bodenbewegungen . . . . . . . . . . 34 2.4.1 Anforderungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.2 Konzeption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.3 Datenanalyse unterschiedlicher Messverfahren . . . . . . . . . . . . . . . . . . 37 2.4.4 Flächenhafte Modellierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5 Ausgewählte Bodenbewegungsdienste . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6 Mathematische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.6.1 Stochastische Prozesse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.6.2 Parameterschätzung im Gauß-Markov-Modell . . . . . . . . . . . . . . . . . . 44 3 Fortgeschrittene Modellansätze zur Beschreibung von Bodenbewegungen 47 3.1 Bewegungsmodellierung von Objektpunkten . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Modellkonfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.2 Analyse periodischer Bewegungsanteile . . . . . . . . . . . . . . . . . . . . . . 52 3.2 Räumliche Ausreißeranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3 Multilevel B-Splines zur flächenhaften Bewegungsmodellierung . . . . . . . . . . . . 56 3.3.1 B-Spline Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.2 Multilevel B-Spline Approximation . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4 Geostatistik zur flächenhaften Bewegungsmodellierung . . . . . . . . . . . . . . . . . 62 3.4.1 Experimentelles Variogramm . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4.2 Theoretisches Variogramm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4.3 Ordinary Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4.4 Regressions-Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5 Modellvalidierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.5.1 Kreuzvalidierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5.2 Jackknife . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.5.3 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 Kinematische Bewegungsanalyse von Objektpunkten 79 4.1 Analyse von GNSS-Daten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.1 Prozesskette für das Koordinatenmonitoring des Referenzstationsnetzes . . . 80 4.1.2 Datengrundlage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.1.3 Ausreißerfilterung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.1.4 Zeitreihenanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.1.5 Berechnung von 3D-Geschwindigkeiten . . . . . . . . . . . . . . . . . . . . . . 92 4.1.6 Interpretation und Wertung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.2 Analyse von Nivellementdaten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.1 Modellansatz der kinematischen Höhenausgleichung . . . . . . . . . . . . . . 100 4.2.2 Datengrundlage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.2.3 Datenaufbereitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.4 Berechnung von Vertikalgeschwindigkeiten . . . . . . . . . . . . . . . . . . . . 110 4.2.5 Interpretation und Wertung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.3 Analyse von PSI-Daten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.3.1 Datengrundlage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.3.2 Zeitreihenanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.3.3 Berechnung von LOS-Geschwindigkeiten . . . . . . . . . . . . . . . . . . . . . 124 4.3.4 Räumliche Ausreißerfilterung . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.3.5 Interpretation und Wertung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5 Flächenhafte Modellierung von PSI-Daten 131 5.1 Multilevel B-Spline Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.1.1 Modellkonfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.1.2 Flächenhaftes Bewegungsmodell . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.2 Ordinary Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.2.1 Räumliche Strukturanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.2.2 Flächenhaftes Bewegungsmodell . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3 Regressions-Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3.1 Trendmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3.2 Signalmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3.3 Flächenhaftes Bewegungsmodell . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.4 Vergleich der Modellansätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6 Berechnung eines niedersächsischen Bodenbewegungsmodells 155 6.1 Aufnahmegeometrie von Radarsatelliten . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.2 Geodätische Modellkalibrierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.2.1 Bestimmung von Korrektionswerten . . . . . . . . . . . . . . . . . . . . . . . 157 6.2.2 Flächenhaftes Korrektionsmodell . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.2.3 Kalibriertes Bewegungsmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.3 Trennung der Bodenbewegungskomponenten . . . . . . . . . . . . . . . . . . . . . . . 164 6.3.1 Methodik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.3.2 Flächenhafte Vertikalbewegungen . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.3.3 Flächenhafte Horizontalbewegungen . . . . . . . . . . . . . . . . . . . . . . . 169 6.3.4 Interpretation und Wertung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7 Zusammenfassung und Ausblick 177 7.1 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.2 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Inhaltsverzeichnis 11 Anhang 180 A Kinematische Bewegungsanalyse von Objektpunkten 181 A.1 Analyse von GNSS-Daten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 A.2 Analyse von Nivellementdat
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Series available for loan
    Series available for loan
    Hannover : Fachrichtung Geodäsie und Geoinformatik der Leibniz-Universität Hannover
    Associated volumes
    Call number: S 99.0139(396)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 396
    Description / Table of Contents: With increasing urbanization, a well-functioning transport infrastructure that takes into account the needs of the society is becoming more and more important. In particular, a high proportion of motorized traffic can cause far-reaching problems that affect large parts of the urban population, such as traffic congestion or increased air pollution. To counteract this trend, an optimized distribution of traffic flows could improve the situation from a societal perspective. Since most routing decisions are made based on digital maps before the journey starts, clear and intuitive visualization is crucial for conveying the cartographic information to the traveler. While most existing services typically provide the most efficient routing options in terms of travel time, newer approaches attempt to guide drivers to societally favorable routes. These take into account societally relevant factors, which are referred to as scenarios in this thesis, and include environmental issues such as traffic congestion or air pollution. However, since such a societally favorable route is not necessarily efficient for the individual traveler, it is important to convince the traveler to choose a seemingly less efficient route. For this purpose, an automatic method for visualizing route maps is developed, which calculates societally favorable routes, and communicates them visually to the end user in such a way that the user would prefer to use them. For this communication, different visual variables of cartography are used, whose usage is adapted to the different scenarios and controlled by scenario-specific thresholds. Based on the goal of dynamic distribution of traffic flows, the proposed method recommends routes that are not necessarily the shortest or fastest, but rather those that seek to avoid unfavorable or hazardous paths or areas. The proposed design variants of route maps use a large variety of symbolization techniques; including classic visual variables of cartography such as color, size or pattern, but also more abstract methods that use cartographic generalization techniques.
    Description / Table of Contents: Mit zunehmender Verstädterung gewinnt eine gut funktionierende Verkehrsinfrastruktur, die den Bedürfnissen der Gesellschaft Rechnung trägt, immer mehr an Bedeutung. Insbesondere ein hoher Anteil an motorisiertem Verkehr kann weitreichende Probleme verursachen, die große Teile der Stadtbevölkerung betreffen, wie z.B. Verkehrsstaus oder erhöhte Luftverschmutzung. Um dieser Entwicklung entgegenzuwirken, könnte eine optimierte Verteilung der Verkehrsströme die Situation für die Gemeinschaft verbessern. Da die meisten Routing-Entscheidungen vor Reiseantritt auf der Grundlage digitaler Karten getroffen werden, ist eine klare und intuitive Visualisierung entscheidend für die Vermittlung kartografischer Informationen an den Reisenden. Während die meisten bestehenden Dienste in der Regel die effizientesten Routing-Optionen im Hinblick auf die Reisezeit bieten, versuchen neuere Ansätze, die Fahrer auf gesellschaftlich vorteilhafte Routen zu leiten. Diese berücksichtigen gesellschaftlich relevante Faktoren, die in dieser Arbeit als Szenarien bezeichnet werden. Darunter fallen Umweltprobleme wie Verkehrsstaus oder Luftverschmutzung. Da eine solche gesellschaftlich vorteilhafte Route für den einzelnen Reisenden jedoch nicht zwangsläufig effizient ist, ist es wichtig, den Reisenden davon zu überzeugen, eine scheinbar weniger effiziente Route zu wählen. Dazu wird im Rahmen der Arbeit ein automatisches Verfahren zur Visualisierung von Routenkarten entwickelt, welches gesellschaftlich vorteilhafte Routen berechnet und diese so visuell dem Endnutzer kommuniziert, dass dieser sie bevorzugt nutzen möchte. Für diese Kommunikation kommen verschiedene visuelle Variablen der Kartographie zum Einsatz, deren Verwendung auf die verschiedenen Szenarien angepasst sind und über Szenario-spezifische Schwellwerte gesteuert werden. Basierend auf dem Ziel einer dynamischen Verteilung der Verkehrsströme empfiehlt die vorgeschlagene Methode Routen, die nicht unbedingt die kürzesten oder schnellsten sind, sondern vielmehr solche Routen, die ungünstige oder gefährliche Wege oder Bereiche zu vermeiden versuchen. Die vorgeschlagenen Designvarianten von Routenkarten nutzen eine Vielzahl von Symbolisierungstechniken; darunter klassische, visuelle Variablen der Kartographie wie Farbe, Größe oder Muster, aber auch abstraktere Methoden, die kartographische Generalisierungstechniken verwenden.
    Type of Medium: Series available for loan
    Pages: 207 Seiten , Illustrationen, Diagramme , 30 cm
    ISSN: 01741454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 396
    Language: English
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2024 , 1 Introduction 1.1 Motivation and problem statemen 1.2 Research objectives and key hypotheses 1.3 Structure of the thesis 2 Theoretical background 2.1 Visual communication with maps 2.2 Route choice factors 2.3 Cartographic symbolization 2.3.1 Visual variables 2.3.1.1 Levels of organization of visual variables 2.3.1.2 ‘Original visual variables’ as proposed by Bertin 2.3.1.3 Visual variable additions 2.3.1.4 Experimental visual variables 2.3.1.5 Conjunctions of visual variables 2.3.1.6 Dynamic visual variables 2.3.2 Cartographic design tools 2.3.3 Visual metaphor 2.3.4 Cartographic generalization and map abstraction 2.3.4.1 Insights from cognitive mapping research 2.3.4.2 Elementary processes of cartographic generalization 2.3.4.3 Cartographic generalization algorithms 2.4 Nudging 2.5 Maps and emotions 2.5.1 Classifying emotions 2.5.2 Instruments for measuring emotions 2.6 Map-related usability testing 2.6.1 Types of user study designs 2.6.2 Statistical analysis of user survey results 2.6.2.1 Descriptive statistics 2.6.2.2 Basic statistical tests and models 2.6.2.3 Sophisticated statistical models for non-parametric data 2.6.2.4 Statistical significance 2.6.2.5 Main effect and post-hoc tests 2.6.2.6 Effect sizes 2.6.2.7 Inter-rater reliability 2.6.2.8 Software for statistical analysis 3 Related work 3.1 Visual route communication using visual variables 3.2 Cartographic generalization for route map communication 3.3 Map-based visualization of environmental hazards 3.4 The role of emotions in map-based communication 3.5 Research gap addressed in this thesis 4 Framework and data preprocessing 4.1 Research framework 4.2 Scenarios 4.2.1 Traffic 4.2.2 Air quality 4.3 Routing 4.3.1 Data basis for route calculation 4.3.2 Calculation of favorable routes 4.3.3 Routing results 5 Visualization concepts for designing ‘social’ route maps 5.1 Map symbols 5.2 Data-based calculation of graphical differences in symbolization 5.3 Visually modified geometry 5.3.1 Line distortion and simplification 5.3.1.1 Line distortion 5.3.1.2 Line simplification 5.3.1.3 Combined approach 5.3.1.4 Topological issues and further adaptions 5.3.2 Length distortion using PUSH 5.3.3 Application to discrete areas: Geometric deformation of risk zones 5.4 Examples of route map design variants 5.4.1 Design variants for symbolizing route favorability 5.4.2 Application of the methodology to discrete objects 6 Usability evaluation of proposed route map design variants 6.1 User study 1: Subjective usability – Attractiveness, intuitiveness and suitability of design variants 6.1.1 Sub-hypotheses 6.1.2 Study design 6.1.3 Participants 6.1.4 Results – Intuitiveness and suitability 6.1.5 Results – Attractiveness 6.1.6 Discussion and conclusion – User study 1 6.2 User study 2: Objective usability – Effectiveness of line objects for influencing route choice in the traffic scenario 6.2.1 Common design specifications in user study 2 and user study 3 6.2.2 Sub-hypotheses 6.2.3 Route maps ............................................................................................................ 109 6.2.4 Design variants ...................................................................................................... 110 6.2.5 Calculation of graphical differences among design variants and modification intensities …………………………………………………………………………………… 112 6.2.6 Study design .......................................................................................................... 115 6.2.7 Participants ............................................................................................................ 117 6.2.8 Results – User study 2 ........................................................................................... 117 6.2.8.1 Influencing route choice ......................................................................... 117 6.2.8.2 Decision time .......................................................................................... 120 6.2.8.3 Route characteristics ............................................................................... 121 6.2.8.4 Map use habits ........................................................................................ 123 6.2.9 Discussion – User study 2 ..................................................................................... 124 6.2.9.1 Effectiveness for influencing route choice behavior .............................. 124 6.2.9.2 The role of time during decision making ................................................ 125 6.2.9.3 Relations between route choice and route characteristics ...................... 125 6.2.9.4 Transferability of the findings to real world applications ...................... 126 6.2.10 Conclusion – User study 2 .................................................................................... 126 6.2.11 Modification of line objects using dynamic visual variables ................................ 127 6.3 User study 3: Objective usability – The impact of visual communication and emotions on route choice decision making using modification of line and area objects .................................. 128 6.3.1 Sub-hypotheses ...................................................................................................... 129 6.3.2 Route maps ............................................................................................................ 130 6.3.3 Design variants ...................................................................................................... 133 6.3.3.1 Line modifications .................................................................................. 135 6.3.3.2 Area modifications ................................................................................. 136 6.3.3.3 Line + area modifications ....................................................................... 136 6.3.4 Study design .......................................................................................................... 137 6.3.5 Participants ............................................................................................................ 139 6.3.6 Results – User study 3 ........................................................................................... 139 6.3.6.1 H1: Shift towards choosing the societally favorable route ..................... 139 6.3.6.2 H2: Scenario-dependent willingness to adapt route choice behavior ..... 143 6.3.6.3 H3: Scenario-dependent effectiveness of symbolization dimensions ..... 144 6.3.6.4 H4: Influence of combining multiple visual variables in one representation …………………………………………………………………………. 144 6.3.6.5 H5: Emotional responses to map symbols .............................................. 146 6.3.6.6 H6: Effect of emotions on route choice decision making ....................... 150 6.3.6.7 Helpfulness of map visualizations .......................................................... 152 6.3.6.8 Route choice strategies ........................................................................... 153 6.3.6.9 Text-based sentiment analysis ................................................................ 154 6.3.6.10 Suitability of visualizations .................................................................. 156 6.3.6.11 Further factors influencing route choice ............................................... 156 6.3.7 Discussion – User study 3 ...................................................................................... 157 6.3.7.1 Influence of different design variants on route choice ............................ 157 6.3.7.2 The effect of emotions on route choice................................................... 158 6.3.7.3 Limitations of the study design ............................................................... 159 6.3.7.4 Outlook ................................................................................................... 160 6.3.8 Conclusion – User study 3 .........................................................................
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Series available for loan
    Series available for loan
    Hannover : Fachrichtung Geodäsie und Geoinformatik der Leibniz Unviersität Hannover
    Associated volumes
    Call number: S 99.0139(395)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 395
    Description / Table of Contents: Die hochgenaue, geometrische Erfassung von Objekten und deren Umfeld mit geodätischen Messsystemen wie Lasertrackern und 3D Laserscannern wird bereits seit einigen Jahren durchgeführt. Bei langgezogenen Profilen, z. B. Führungs-, Fahr-, und Leitschienen, mit Längen von bis zu mehreren hundert Metern, wie sie bei Kranbahnen oder Hochregallagern vorkommen, ist bisher eine punktuelle, linienhafte Erfassung üblich. Aus den Messdaten werden Zustandsgrößen abgeleitet, die in Richtlinien, wie z. B. der VDI 3576 beschrieben sind. Zur Reduzierung der Absturzgefahr beim Signalisieren hochliegender Schienenprofile und zur Beschleunigung des Messprozesses, können motorisierte Plattformen für den Transport von Reflektoren eingesetzt werden. Es wird ein Bewegungs- und Auswertemodell für ein mit hoher Abtastrate messendes kinematisches System erarbeitet, so dass die tatsächliche Lage von Führungs-, Fahr-, und Leitschienen mit einer Unsicherheit im Submillimeterbereich bestimmt werden kann. Damit die Messung für die Praxis relevant wird, können die Ergebnisse unmittelbar ausgewertet werden. Aus den Messdaten lassen sich für eine objektive Beurteilung des Zustands von Profilen und Befestigungen folgende Zustandsparameter ableiten: Lage, Z-Werte, Neigung und Zustand der Schiene und deren Befestigung. Die Qualität der Messungen und Zustandsparameter lässt sich qualitätsgesichert durch Auflösung und Standardabweichung nachweisen.
    Description / Table of Contents: The high-precision, geometric capture of objects and their surroundings with geodetic measurement systems such as laser trackers and 3D laser scanners has already been carried out for several years. In the case of elongated profiles, e.g. guide rails, carriage rails and guard rails, with lengths of up to several hundred meters, such as those found in crane runways or high-bay warehouses, a point-by-point, line-by-line recording has been common practice up to now. Condition variables are derived from the measurement data, which are described in guidelines such as VDI 3576. To reduce the risk of falling when signaling high-lying profiles and to speed up the measurement process, motorized platforms can be used to transport reflectors. A motion and evaluation model for a kinematic system measuring at a high sampling rate will be developed, so that the actual position of guide rails can be determined with an uncertainty in the submillimeter range. To make the measurement relevant for practical applications, the results can be evaluated immediately.
    Type of Medium: Series available for loan
    Pages: 158 Seiten , Illustrationen, Tabellen, Diagramme , 30 cm
    ISSN: 01741454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 395
    Language: German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2024 , Abkürzungsverzeichnis ix 1 Einleitung 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Zielsetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Stand der Technik im Bereich der Vermessung von Schienenanlagen der Intralogistik 5 2.1 Elemente von Schienenanlagen der Intralogistik . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Schienen und Profilstähle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Schienenlagerungssysteme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Schienenstöße, Festpunkte, Endbegrenzer, An- und Einbauten . . . . . . . . . 11 2.1.4 Schienengebundene Krane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Rechtlicher Rahmen, Richtlinien und klassische Zustandsgrößen . . . . . . . . . . . . 16 2.2.1 Rechtlicher Rahmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Richtlinien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Klassische Zustandsgrößen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 Kritische Betrachtung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Vermessung von Schienenanlagen der Intralogistik . . . . . . . . . . . . . . . . . . . 19 2.3.1 Koordinatensystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Vermessung mit Theodolit, Bandmaß und Nivellier . . . . . . . . . . . . . . . 21 2.3.3 Alignierverfahren mit Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.4 Vermessung mit Tachymeter oder Lasertracker . . . . . . . . . . . . . . . . . 25 2.3.5 Automatisierte Systeme mit georeferenzierendem Sensor . . . . . . . . . . . . 25 3 Grundlagen zur Bestimmung der geometrischen Zustandsgrößen von Profilen 31 3.1 Rekursive Filterung im Zustandsraum . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1 Wahrscheinlichkeiten, Satz von Bayes, Verteilungen . . . . . . . . . . . . . . . 31 3.1.2 Bayes Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1.3 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.4 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.5 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.6 Unscented Rauch Tung Striebel Smoother . . . . . . . . . . . . . . . . . . . . 39 3.1.7 Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Geometrische Modellierung von Kurven . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.1 Polynome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.2 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.3 B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Profilvermessungssystem 49 4.1 Neue Zustandsgrößen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Sensorik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.1 Georeferenzierender Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.2 Profillaserscanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.3 Kameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 xii Inhaltsverzeichnis 4.2.4 Inklinometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.5 Inertiale Messeinheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.6 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.7 Ultraschallsensoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.8 Sensorintegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 Profilvermessungssystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.1 Plattform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.2 Antriebseinheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.3 Seitenführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3.4 Schwingen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.5 Halterung Sensorik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.6 Drehvorrichtung für Reflektor . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4 Erreichbare Messunsicherheiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.5 Datensynchronisierung und Datenhaltungskonzept . . . . . . . . . . . . . . . . . . . 65 4.5.1 Anforderung an die Synchronisierung . . . . . . . . . . . . . . . . . . . . . . . 66 4.5.2 Synchronisierung über die Zeit . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.5.3 Synchronisierung im Objektraum . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.5.4 Datenhaltungskonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.6 Kalibrierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6.1 Komponentenkalibrierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6.2 Systemkalibrierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5 Zustandsgrößen einer überarbeiteten VDI 3576 83 5.1 Messdatenerfassung und -aufbereitung . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.1.1 Messdatenerfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.1.2 Orientierungsparameter aus Positionsdaten . . . . . . . . . . . . . . . . . . . 83 5.1.3 Aufbereitung der Lasertracker- oder Tachymeterdaten . . . . . . . . . . . . . 86 5.1.4 Korrektur der Beschleunigungswerte von der Erdschwere . . . . . . . . . . . . 88 5.1.5 Korrektur der Inklinometermesswerte von Beschleunigungseinflüssen . . . . . 89 5.1.6 Korrektur der Längs- und Querablage . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Sensorfusion für die Georeferenzierung des Profilmesswagens . . . . . . . . . . . . . . 89 5.2.1 Quaternionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.2 Adaptive Filterung der Inertial Measurment Unit (IMU)-Messwerte . . . . . 92 5.2.3 Funktionales Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.2.4 Stochastisches Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2.5 Steigerung der Zuverlässigkeit der Filterung . . . . . . . . . . . . . . . . . . . 99 6 Testmessung und Validierung des kinematischen Multisensorsystems 101 6.1 Durchführung einer kinematischen Schienenmessung mit dem Profilvermessungssystem101 6.2 Qualitätssicherung des Messprozesses . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3 Messkampagne I: Messung unter Laborbedingungen . . . . . . . . . . . . . . . . . . 102 6.3.1 Auswertung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.3.2 Einfacher Ansatz zum Finden weiterer Zustandsgrößen . . . . . . . . . . . . . 111 6.3.3 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.4 Messkampagne II: Messung unter realen Bedingungen . . . . . . . . . . . . . . . . . 113 6.4.1 Messumgebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4.2 Messkonzept und Netzplanung . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4.3 Ergebnisse und Bewertung der Netzmessung . . . . . . . . . . . . . . . . . . . 115 6.5 Qualitätsaussagen zu dem Profilvermessungssystem . . . . . . . . . . . . . . . . . . . 116 6.5.1 Bewertung der Kalibrierparameter . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5.
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: S 94.0499(15)
    In: Geowissenschaftliche Mitteilungen von Thüringen
    Type of Medium: Series available for loan
    Pages: 59 Seiten , Illustrationen, Diagramme, Karten
    Series Statement: Geowissenschaftliche Mitteilungen von Thüringen Band 15
    Language: German
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Series available for loan
    Series available for loan
    Jena : Thüringer Landesamt für Umwelt, Bergbau und Natuschutz (TLUBN)
    Associated volumes
    Call number: S 94.0499(16)
    In: Geowissenschaftliche Mitteilungen von Thüringen
    Type of Medium: Series available for loan
    Pages: 94 Seiten , Illustrationen, Karten
    Edition: Stand: September 2023
    Series Statement: Geowissenschaftliche Mitteilungen von Thüringen Band 16
    Language: German
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Series available for loan
    Series available for loan
    Hannover : Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover
    Associated volumes
    Call number: S 99.0139(394)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 394
    Type of Medium: Series available for loan
    Pages: 105 Seiten , Illustrationen, Diagramme
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 394
    Language: English
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2023 , Sprache der Zusammenfassungen: Englisch, Deutsch
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Series available for loan
    Series available for loan
    Hannover : Fachrichtung Geodäsie und Geoinformatik der Leibniz Unviersität Hannover
    Associated volumes
    Call number: S 99.0139(387)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 387
    Type of Medium: Series available for loan
    Pages: xii, 108 Seiten , Illustrationen, Diagramme
    ISBN: 978-3-7696-5315-1 , 9783769653151
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 387
    Language: English
    Note: Contents 1 Introduction 2 Normal Points and LLR Analysis Description 2.1 Distribution of Normal Points 2.1.1 Observatories 2.1.2 Reflectors 2.1.3 Synodic Angle and Wavelength of Laser Signals 2.2 Uncertainty of Normal Points 2.3 LLR Analysis Description 3 Data Reduction and Parameter Estimation 3.1 Uncertainty of Estimated Parameters 3.1.1 Sensitivity Analysis 3.1.2 Validation by Resampling 3.2 Geocenter Motion 3.3 Loading 3.3.1 Atmospheric Loading 3.3.2 Non-Tidal Loading 4 Ephemeris Calculation 4.1 2-way Calculation 4.1.1 Calculated Ephemeris 4.1.2 LLR Residuals 4.1.3 Estimated Parameters 4.1.4 Correlations 4.2 Dynamical Model 4.2.1 DE440 Ephemeris based updates 4.2.2 Undistorted Total MOI of the Moon 4.3 Effect of Additional Asteroids 4.4 Comparison of Results: LUNAR vs INPOP and DE 5 Earth Rotation Parameters Estimation 5.1 A-priori Data 5.2 Selection of Nights 5.3 Uncertainty Estimation 5.4 Earth Rotation Phase Estimation 5.4.1 Estimated Values 5.4.2 Correlations 5.5 Terrestrial Pole Coordinates Estimation 5.5.1 Estimated Values 5.5.2 Correlations 6 Relativistic Tests with LLR 6.1 Equivalence of Active and Passive Gravitational Mass 6.1.1 Determination of the Lunar Angular Acceleration 6.1.2 Limit on Equivalence of Active and Passive Mass 7 Conclusions and Outlook 7.1 Conclusions 7.2 Outlook A List of Fitted Parameters B List of Biases List of Figures List of Tables List of Abbreviations Bibliography
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Series available for loan
    Series available for loan
    Hannover : Fachrichtung Geodäsie und Geoinformatik der Leibniz Unviersität Hannover
    Associated volumes
    Call number: S 99.0139(391)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 391
    Description / Table of Contents: The Earth’s gravity field and its temporal variation reveal important information for many disciplines, especially for geosciences. Satellite gravity missions like GOCE, GRACE and GRACE-FO successfully recovered global gravity field models. But the temporal and spa- tial resolution of the gravity field solutions have to be improved in order to meet the user requirements. New concepts for future satellite missions to recover the global gravity field are investigated by means of comprehensive simulations. In terms of sensor behavior, ac- celerometers are one major limiting factor. Thus, this dissertation focuses on them. Cold Atom Interferometry (CAI) accelerometers are promising candidates for future missions due to their long-term stability.
    Type of Medium: Series available for loan
    Pages: vi, 161 Seiten , Illustrationen, Diagramme
    ISBN: 978-3-7696-5328-1 , 9783769653281
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 391
    Language: English
    Note: Contents 1 Introduction 2 Satellite Gravity Missions 2.1 Fundamentals of Gravity Field Recovery with Satellites 2.1.1 Motion of a Satellite in Space 2.1.2 Representation of the Earth’s Gravity Field 2.1.3 Orbit Design of Satellite Gravity Missions 2.2 Previous Satellite Gravity Missions 2.2.1 Missions and Measurement Concepts 2.2.2 State-of-the-art Sensors 2.2.3 State-of-the-art Control Systems 2.2.4 State-of-the-art Accelerometer Calibration 2.3 Concepts for Future Satellite Gravity Missions 2.3.1 Challenges of Satellite Gravity Missions and Requirements for Future Satellite Missions 2.3.2 Developments in the Sensor Technology 2.3.3 Concepts for Orbit Design 3 Evaluation of Simulation Environment 3.1 Overview of the Simulation Environment 3.2 Modeling of Non-gravitational Forces 3.3 Modeling of the Sensor Behavior 3.3.1 Classical Electrostatic Accelerometer 3.3.2 Cold Atom Interferometry Accelerometer 3.3.3 Ranging Measurement Instruments 3.4 Modeling of Control System Behavior 3.4.1 Drag-free Control 3.4.2 Attitude Control 3.5 Time-variable Background Modeling Errors 3.6 Gravity Field Recovery 3.6.1 Least-squares Adjustment 3.6.2 Range Accelerations 3.6.3 Gradiometry 3.6.4 Combination of Range Accelerations and Gravity Gradients 3.7 Summary 4 Impact of New Measurement Concepts on Gravity Field Recovery 4.1 Selection of Simulation Scenarios 4.2 Drag Compensation Analysis 4.2.1 Drag Compensation Requirements due to Accelerometer Imperfections for ll-SST Missions 4.2.2 Drag Compensation Requirements for Gradiometry due to Accelerometer Imperfections 4.2.3 Saturation of the Accelerometer 4.2.4 Propellant Consumption 4.3 Cold Atom Interferometry Accelerometer Analysis 4.4 Gravity Field Solutions using Different Accelerometer Types for ll-SST Missions 4.5 Gravity Field Solutions using Different Accelerometer Types for Gradiometry Missions 4.6 Combined Gravity Field Solutions from ll-SST and Cross-track Gradiometry 4.7 Summary 5 Summary and Outlook A Appendix A.1 Reference Frames A.2 Satellite Reference Attitudes for Attitude Control A.3 Simulation results - Gravity Field Solutions for ll-SST Missions A.3.1 Instrument-only scenarios A.3.2 Scenarios including AOD and Ocean-tide Error A.4 Simulation results - Combined Gravity Field Solutions from ll-SST and Crosstrack Gradiometry Bibliography List of Figures List of Tables Acronyms Acknowledgments
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Series available for loan
    Series available for loan
    Hannover : Fachrichtung Geodäsie und Geoinformatik, Univ. Hannover
    Associated volumes
    Call number: S 99.0139(369)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover
    Type of Medium: Series available for loan
    Pages: 155 Seiten , Illustrationen, Diagramme
    ISBN: 978-3-7696-5279-6 , 9783769652796
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 369
    Language: English
    Note: Contents 1. Introduction 1.1. Motivation 1.2. Main Contributions 1.3. Thesis Outline 2. Basics 2.1. Feature based Image Matching 2.1.1. Overview: What is Feature based Image Matching? 2.1.2. Desired Properties for Detected Features and Descriptors 2.1.3. Scale-Invariant Feature Detection 2.1.4. Feature Affine Shape Estimation 2.1.5. Feature Orientation Assignment 2.1.6. Feature Description 2.1.7. Descriptor Matching 2.2. Convolutional Neural Network (CNN) 2.2.1. Architecture of CNN 2.2.2. Training of CNN 2.3. Siamese Convolutional Neural Network 3. Related Work 3.1. Local Feature Detection 3.1.1. Translation and Rotation Invariant Features 3.1.2. Scale Invariant Features 3.1.3. Detectors based on a Comparison of Grey Values or Saliency 3.1.4. Detectors based on Machine Learning 3.2. Feature Orientation and Affine Shape Estimation 3.2.1. Orientation Assignment 3.2.2. Affine Shape Estimation 3.3. Local Feature Description 3.3.1. Hand Crafted Descriptors 3.3.2. Machine Learning based Descriptors 3.4. An Application: Orientation of Oblique Aerial Images 3.5. Discussion 3.5.1. Orientation Assignment and Affine Shape Estimation 3.5.2. Descriptor Learning 3.5.3. An Aerial Photogrammetric Benchmark 3.5.4. Ability to Transfer Learned Modules 4. Deep Learning Feature Representation 4.1. Overview of the Methodology 4.2. Descriptor Learning using Active Weak Match Finder - WeMNet 4.2.1. Descriptor Learning Architecture 4.2.2. Generation of Training Pairs 4.2.3. Loss Function 4.2.4. Weak Match Branch 4.3. Self Supervised Feature Affine Shape Learning - MoNet 4.3.1. Affine Transformation Decomposition 4.3.2. Self Supervised Affine Shape Estimation Module 4.4. Self Supervised Orientation Assignment Module - MGNet 4.5. Full Affine Estimation Network - Full-AfFNet 4.5.1. Full Affine Network 4.5.2. Training Loss 4.5.3. Data Augmentation 4.6. Inference based on the Trained Networks 4.7. Discussion 4.7.1. Descriptor Learning 4.7.2. Affine Shape Estimation 4.7.3. Orientation Assignment Learning 4.7.4. The Inference Pipeline 5. Experiments and Results 5.1. Datasets 5.1.1. Datasets for Training 5.1.2. Datasets for Testing 5.2. Evaluation and Analysis Criteria 5.2.1. Task A: Patch based Image Matching 5.2.2. Task B: Descriptor Distance Analysis 5.2.3. Task C: Feature based Image Matching 5.2.4. Task D: Image Orientation 5.2.5. Summary of Tasks and Involved Datasets 5.3. Descriptor Learning and Patch Based Image Matching 5.3.1. Parameter Study for WeMNet 5.3.2. Comparison to Related Work 5.4. Descriptor Distance Analysis 5.4.1. Translation 5.4.2. Rotation 5.4.3. Affine Shape Transformation 5.5. Image Matching Analysis 5.5.1. Parameter Study for Affine Shape Learning 5.5.2. Image Matching for Rotation Dataset 5.5.3. Image Matching for Hpatches Affine Dataset 5.6. Image Orientation 5.6.1. Determination of Image Orientation 5.6.2. Experiment Setup Details 5.6.3. Orientation Result of Different Blocks 5.6.4. Matching Quality Analysis 6. Discussion 6.1. Descriptor Learning and Patch Based Image Matching 6.1.1. Parameter Study 6.1.2. Comparison to Related Works 6.2. Descriptor Distance Analysis 6.2.1. Translation 6.2.2. Rotation 6.2.3. Affine Shape Transformation 6.3. Feature based Image Matching 6.3.1. Parameter Study 6.3.2. Rotation Set 6.3.3. Affine Set 6.4. Image Orientation 7. Conclusion and Outlook Bibliography A. Affine Shape Adaptation Theory A.l. transformation of affine Gaussian scale-space A.2. Local affine distortion measurement A.3. More affine transformation
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Series available for loan
    Series available for loan
    Hannover : Fachrichtung Geodäsie und Geoinformatik, Univ. Hannover
    Associated volumes
    Call number: S 99.0139(370)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover
    Type of Medium: Series available for loan
    Pages: x, 126 Seiten , Illustrationen, Diagramme
    ISBN: 978-3-7696-5286-4 , 9783769652864
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 370
    Language: English
    Note: Contents 1 Introduction 1.1 Motivation 1.2 Objective & Research Questions 1.3 Outline of the Thesis 2 Related Work and Theory 2.1 GNSS Positioning 2.1.1 GNSS Constellations 2.1.2 Position Estimation 2.1.3 Measurement Errors in GPS Measurements 2.2 Reliability 2.3 Integrity 2.3.1 Conventional RAIM 2.3.2 Advanced RAIM 2.3.3 Augmentation Systems 2.3.4 Derivation of Conventional RAIM 2.3.5 Protection Level 2.4 Interval Mathematics 2.4.1 Basic Interval Mathematical Operations 2.4.2 Interval Vectors and Matrices 2.4.3 Interval Functions 2.4.4 Set Inversion via Interval Analysis 2.4.5 Contractors 2.4.6 Application of Interval Analysis to Navigation 2.5 Determination of Observation Interval Bounds 2.5.1 Probabilistic Approaches with a Priori Integrity Risk 2.5.2 Sensitivity Analysis of the Measurement Correction 2.5.2.1 Concept 2.5.2.2 Klobuchar Ionospheric Model 2.5.2.3 Saastamoinen Tropospheric Model 2.5.3 Expert Knowledge and Desired Size of the Bounding Zone 3 Integrity Approaches Based on Interval Mathematics and Set Theory 3.1 Interval Extension of Least-Squares Adjustment 3.2 Set Inversion Via Interval Analysis 3.3 Linear Programming Bounding Method 3.4 Developed Method Based on Primal-Dual Poly tope and Intervals 3.4.1 Polytopes and Zonotopes 3.4.2 Formulation and Methodology 3.4.3 Interpretation of Bounding Zones and Related Consistency Measures 3.4.4 Minimum Detectable Bias Definition 3.4.5 Integrity Measures Via Zonotopes and Polytopes 4 Performance Analysis of the Developed Methods by Monte Carlo Simulations 4.1 Introduction 4.2 Characterization of a Nominal Behavior 4.3 Proposal to Select the Critical Value of the Polytope Tests 4.4 Impact of Biases 4.4.1 Introductory Example 4.4.2 Impact of Different Biased Satellites and Observation Interval Bounds 4.4.3 Impact of Different Biased Satellites and Satellite Geometry 4.5 Analysis of the Polytope Global and Local Tests 4.5.1 General Proceeding 4.5.2 Critical Detection Scenarios - Correlated Satellites 4.5.3 Critical Detection Scenarios - Bad Geometry 4.6 Probabilistic Test Statistic Results 4.6.1 Results of Probabilistic Test Statistics 4.7 Comparison Between Probabilistic Tests and Polytopal Test 4.7.1 Good Satellite Geometry 4.7.2 Bad Satellite Geometry 4.8 Analysis of Protection Levels 4.8.1 Zonotopal Horizontal and Vertical Protection Levels 4.8.2 Statistical Based Horizontal and Vertical Protection Level 5 Real Data Analysis 5.1 Introduction 5.2 Positioning Analysis 5.2.1 Results from Scenario 1 - Urban Area 5.2.2 Results from Scenario 2 - Semi-Urban Area 5.3 Fault Detection and Exclusion 5.4 Minimum Detectable Bias 5.5 Protection Level 6 Conclusions and Outlook Bibliography Acknowledgments Curriculum Vitae
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...