ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (6)
  • English  (6)
  • Italian
  • 2020-2024
  • 2015-2019
  • 2010-2014  (6)
  • 2000-2004
  • 1990-1994
  • 1965-1969
  • 1930-1934
  • 2014  (6)
  • AWI Reading room  (6)
Collection
  • Books  (6)
Language
Years
  • 2020-2024
  • 2015-2019
  • 2010-2014  (6)
  • 2000-2004
  • 1990-1994
  • +
Year
Branch Library
  • 1
    Monograph available for loan
    Monograph available for loan
    Chichester : Wiley Blackwell
    Call number: AWI A6-15-0020
    Description / Table of Contents: This book gives a coherent development of the current understanding of the fluid dynamics of the middle latitude atmosphere. lt is primarily aimed at post-graduate and advanced undergraduate level students and does not assume any previous knowledge of fluid mechanics, meteorology or atmospheric science. The book will be an invaluable resource for any quantitative atmospheric scientist who wishes to increase their understanding of the subject. The importance of the rotation of the Earth and the stable stratification of its atmosphere, with their implications for the balance of larger-scale flows, is highlighted throughout. Clearly structured throughout, the first of three themes deals with the development of the basic equations for an atmosphere on a rotating, spherical planet and discusses scale analyses of these equations. The second theme explores the importance of rotation and introduces vorticity and potential vorticity, as well as turbulence. In the third theme, the concepts developed in the first two themes are used to give an understanding of balanced motion in real atmospheric phenomena. lt starts with quasi-geostrophic theory and moves on to linear and nonlinear theories for mid-latitude weather systems and their fronts. The potential vorticity perspective on weather systems is highlighted with a discussion of the Rossby wave propagation and potential vorticity mixing covered in the final chapter.
    Type of Medium: Monograph available for loan
    Pages: XVIII, 408 Seiten , Illustrationen
    ISBN: 9780470795194
    Series Statement: Advancing weather and climate science
    Language: English
    Note: Contents: Series foreword. - Preface. - Select bibliography. - The authors. - 1 Observed flow in the Earth's midlalitudes. - 1.1 Vertical structure. - 1.2 Horizontal structure. - 1.3 Transient activity. - 1.4 Scales of motion. - 1.5 The Norwegian frontal model of cyclones. - Theme 1 Fluid dynamics of the midlatitude atmosphere. - 2 Fluid dynamics in an inertial frame of reference. - 2.1 Definition of fluid. - 2.2 Flow variables and the continuum hypothesis. - 2.3 Kinematics: characterizing fluid flow. - 2.4 Governing physical principles. - 2.5 Lagrangian and Eulerian perspectives. - 2.6 Mass conservation equation. - 2.7 First Law of Thermodynamics. - 2.8 Newton's Second Law of Motion. - 2.9 Bernoulli's Theorem. - 2.10 Heating and water vapour. - 3 Rotating frames of reference. - 3.1 Vectors in a rotating frame of reference. - 3.2 Velocity and Acceleration. - 3.3 The momentum equation in a rotating frame. - 3.4 The centrifugal pseudo-force. - 3.5 The Coriolis pseudo-force. - 3.6 The Taylor-Proudman theorem. - 4 The spherical Earth. - 4.1 Spherical polar coordinates. - 4.2 Scalar equations. - 4.3 The momentum equations. - 4.4 Energy and angular momentum.- 4.5 The shallow atmosphere approximation. - 4.6 The beta effect and the spherical Earth. - 5 Scale analysis and its applications. - 5.1 Principles of scaling methods. - 5.2 The use of a reference atmosphere. - 5.3 The horizontal momentum equations. - 5.4 Natural coordinates, geostrophic and gradient wind balance. - 5.5 Vertical motion. - 5.6 The vertical momentum equation. - 5.7 The mass continuity equation. - 5.8 The thermodynamic energy equation. - 5.9 Scalings for Rossby numbers that are not small. - 6 Alternative vertical coordinates. - 6.1 A general vertical coordinate. - 6.2 Isobaric coordinates. - 6.3 Other pressure-based vertical coordinates. - 6.4 Isentropic coordinates. - 7 Variations of density and the basic equations. - 7.1 Boussinesq approximation. - 7.2 Anelastic approximation. - 7.3 Stratification and gravity waves. - 7.4 Balance, gravity waves and Richardson number. - 7.5 Summary of the basic equation sets. - 7.6 The energy of atmospheric motions. - Theme 2 Rotation in the atmosphere. - 8 Rotation in the atmosphere. - 8.1 The concept of vorticity. - 8.2 The vorticity equation. - 8.3 The vorticity equation for approximate sets of equations. - 8.4 The solenoidal term. - 8.5 The expansion/contraction term. - 8.6 The stretching and tilting terms. - 8.7 Friction and vorticity. - 8.8 The vorticity equation in alternative vertical coordinates. - 8.9 Circulation. - 9 Vorticity and the barotropic vorticity equation. - 9.1 The barotropic vorticity equation. - 9.2 Poisson's equation and vortex interactions. - 9.3 Flow over a shallow hill. - 9.4 Ekman pumping. - 9.5 Rossby waves and the beta plane. - 9.6 Rossby group velocity. - 9.7 Rossby ray tracing. - 9.8 Inflexion point instability. - 10 Potential vorticity. - 10.1 Potential vorticity. - 10.2 Alternative derivations of Ertel's theorem. - 10.3 The principle of invertibility. - 10.4 Shallow water equation potential vorticity. - 11 Turbulence and atmospheric flow. - 11.1 The Reynolds number . - 11.2 Three-dimensional flow at large Reynolds number. - 11.3 Two-dimensional flow at large Reynolds number. - 11.4 Vertical mixing in a stratified fluid. - 11.5 Reynolds stresses. - Theme 3 Balance in atmospheric flow. - 12 Quasi-geostrophic flows. - 12.1 Wind and temperature in balanced flows. - 12.2 The quasi-geostrophic approximation. - 12.3 Quasi-geostrophic potential vorticity. - 12.4 Ertel and quasi-geostrophic potential vorticities. - 13 The omega equation. - 13.1 Vorticity and thermal advection form. - 13.2 Sutcliffe Form. - 13.3 Q-vector form. - 13.4 Ageostrophic flow and the maintenance of balance. - 13.5 Balance and initialization. - 14 Linear theories of baroclinic instability. - 14.1 Qualitative discussion. - 14.2 Stability analysis of a zonal flow. - 14.3 Rossby wave interpretation of the stability conditions. - 14.4 The Eady model. - 14.5 The Charney and other quasi-geostrophic models. - 14.6 More realistic basic states. - 14.7 Initial value problem. - 15 Frontogenesis. - 15.1 Frontal scales. - 15.2 Ageostrophic circulation. - 15.3 Description of frontal collapse. - 15.4 The semi-geostrophic Eady model. - 15.5 The confluence model. - 15.6 Upper-level frontogenesis. - 16 The nonlinear development of baroclinic waves. - 16.1 The nonlinear domain. - 16.2 Semi-geostrophic baroclinic waves. - 16.3 Nonlinear baroclinic waves on realistic jetson the sphere. - 16.4 Eddy transports and zonal mean flow changes. - 16.5 Energetics of baroclinic waves. - 17 The potential vorticity perspective. - 17.1 Setting the scene. - 17.2 Potential vorticity and vertical velocity. - 17.3 Life cycles of some baroclinic waves. - 17.4 Alternative perspectives. - 17.5 Midlatitude blocking. - 17.6 Frictional and heating effects. - 18 Rossby wave propagation and potential vorticity mixing. - 18.1 Rossby wave propagation. - 18.2 Propagation of Rossby waves into the stratosphere. - 18.3 Propagation through a slowly varying medium. - 18.4 The Eliassen-Palm flux and group velocity. - 18.5 Baroclinic life cycles and Rossby waves. - 18.6 Variations of amplitude. - 18.7 Rossby waves and potential vorticity steps. - 18.8 Potential vorticity steps and the Rhines scale. - Appendices. - Appendix A: Notation. - Appendix B: Revision of vectors and vector calculus. - B.1 Vectors and their algebra. - B.2 Products of vectors. - B.3 Scalar fields and the grad operator. - B.4 The divergence and curl operators. - B.5 Gauss' and Stokes' theorems. - B.6 Some useful vector identities. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Berlin : Nordeuropa-Inst. der Humboldt-Univ.
    Call number: AWI P5-17-91081
    Description / Table of Contents: Iceland, Greenland and the Faroe Islands have in common their history as Danish dependencies within a historically and geographically coherent region. The complex aftermaths of Denmark's sovereignty over its North Atlantic territories and their ongoing nation building processes lie at the core of this book. Today, we are witnessing region building processes beyond bilateral links to Denmark. How do the countries position themselves, individually and collectively, vis-à-vis the European metropolitan centres, a larger transcontinental North Atlantic region, the "hot" Arctic, and global histories of colonialism and decolonisation? By examining the region from cultural, literary, historical, political, anthropological and linguistic perspectives, the articles in this book shed light on Nordic colonialism and its understanding as "exceptional", and challenge and modify established notions of postcolonialism. Iceland, Greenland and the Faroe Islands are shown to be both the (former) subjects as well as the producers of cultural hierarchisations in an entangled world.
    Type of Medium: Monograph available for loan
    Pages: 422 S.
    Edition: 1. Aufl.
    ISBN: 9783932406355
    Series Statement: Berliner Beiträge zur Skandinavistik 20
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Amsterdam : Elsevier
    Call number: AWI G2-18-91738
    Type of Medium: Monograph available for loan
    Pages: XI, 716 Seiten , Illustrationen
    Edition: third edition
    ISBN: 9780123877826
    Language: English
    Note: Contents: Preface. - Acknowledgments. - 1. Data Acquisition and Recording. - 1.1 Introduction. - 1.2 Basic Sampling Requirements. - 1.3 Temperature. - 1.4 Salinity. - 1.5 Depth or Pressure. - 1.6 Sea-Level Measurement. - 1.7 Eulerian Currents. - 1.8 Lagrangian Current Measurements. - 1.9 Wind. - 1.10 Precipitation. - 1.11 Chemical Tracers. - 1.12 Transient Chemical Tracers. - 2. Data Processing and Presentation. - 2.1 Introduction. - 2.2 Calibration. - 2.3 Interpolation. - 2.4 Data Presentation. - 3. Statistical Methods and Error Handling. - 3.1 Introduction. - 3.2 Sample Distributions. - 3.3 Probability. - 3.4 Moments and Expected Values. - 3.5 Common PDFs. - 3.6 Central Limit Theorem. - 3.7 Estimation. - 3.8 Confidence Intervals. - 3.9 Selecting the Sample Size. - 3.10 Confidence Intervals for Altimeter-Bias Estimates. - 3.11 Estimation Methods. - 3.12 Linear Estimation (Regression). - 3.13 Relationship between Regression and Correlation. - 3.14 Hypothesis Testing. - 3.15 Effective Degrees of Freedom. - 3.16 Editing and Despiking Techniques: The Nature of Errors. - 3.17 Interpolation: Filling the Data Gaps. - 3.18 Covariance and the Covariance Matrix. - 3.19 The Bootstrap and Jackknife Methods. - 4. The Spatial Analyses of Data Fields. - 4.1 Traditional Block and Bulk Averaging. - 4.2 Objective Analysis. - 4.3 Kriging. - 4.4 Empirical Orrhogonal Functions. - 4.5 Extended Empirical Orrhogonal Functions. - 4.6 Cyclostationary EOFs. - 4.7 Factor Analysis. - 4.8 Normal Mode Analysis. - 4.9 Self Organizing Maps. - 4.10 Kalman Filters. - 4.11 Mixed Layer Depth Estimation. - 4.12 Inverse Methods. - 5. Time Series Analysis Methods. - 5.1 Basic Concepts. - 5.2 Stochastic Processes and Stationarity. - 5.3 Correlation Functions. - 5.4 Spectral Analysis. - 5.5 Spectral Analysis (Parametric Methods). - 5.6 Cross-Spectral Analysis. - 5.7 Wavelet Analysis. - 5.8 Fourier Analysis. - 5.9 Harmonic Analysis. - 5.10 Regime Shift Detection. - 5.11 Vector Regression. - 5.12 Fractals. - 6. Digital Filters. - 6.1 Introduction. - 6.2 Basic Concepts. - 6.3 Ideal Filters. - 6.4 Design of Oceanographic Filters. - 6.5 Running-Mean Filters. - 6.6 Godin-Type Filters. - 6.7 Lanczos-window Cosine Filters. - 6.8 Butterworth Filters. - 6.9 Kaiser-Bessel Filters. - 6.10 Frequency-Domain (Transform) Filtering. - References. - Appendix A: Units in Physical Oceanography. - Appendix B: Glossary of Statistical Terminology. - Appendix C: Means, Variances and Moment,Generating Functions for Some Common Continuous Variables. - Appendix D: Statistical Tables. - Appendix E: Correlation Coefficients at the 5% and 1% Levels of Significance for Various Degrees of Freedom v. - Appendix F: Approximations and Nondimensional Numbers in Physical Oceanography. - Appendix G: Convolution. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: AWI Bio-20-93993
    Type of Medium: Dissertations
    Pages: III, 127 Seiten , Illustrationen
    Language: English
    Note: Dissertation, Universität Potsdam, 2014 , Table of contents I - Abstract II - Zusammenfassung Chapter 1 - Introduction 1.1. Introduction 1.1.1 Motivation 1.1.2 Organisation of thesis 1.1 Scientific background 1.2.1 Arctic and wetland bryophytes 1.2.2 Bryophyte remains as palaeo-environmental indicators 1.2.3 Regional setting 1.3 Objectives ofthe thesis 1.4 Overview of the manuscripts 1.5 Contribution of the authors Chapter 2 - Manuscript #1 Abstract 2.1 Introduction 2.2 Geographic setting 2.3 Materials and methods 2.3.1 Fieldwork 2.3.2 Radiocarbon dating 2.3.3 Geochemical, stable carbon isotope, and granulometric analyses 2.3.4 Analyses of moss remains and vascular plant macrofossils 2.3.5 Pollen analysis 2.3.6 Diatom analysis 2.3.7 Statistical analysis 2.4 Results 2.4.1 High-resolution spatial characteristics oft the investigated polygon and vegetation pattern 2.4.2 Geochronology and age-depth relationships 2.4.3 General properties of the sedimentary fill 2.4.4 Bioindicators 2.4.5 Characterization oftwo different types of polygon pond sediment 2.5. Discussion 2.5.1 Small-scale spatial structure of polygons 2.5.2 Age-depth relationships 2.5.3 Proxy value of the analysed parameters 2.5.4 The general polygon development 2.5.5 Polygon development as a function of external controls and internal adjustment mechanisms 2.6 Conclusions Chapter 3 - Manuscript #11 Abstract 3.1 Introduction 3.2 Material und methods 3.2.1 Regional setting 3.2.3 Field methods and environmental data collection 3.2.4 Data analysis 3.3 Results 3.3.1 Major characteristics of the investigated polygons 3.3.2 Vegetation cover and its relationships with micro-relief and vegetation type 3.3.3 Vegetation alpha-diversity and its relationship with micro-relief and vegetation type 3.3.4 Vegetation composition and its relationship with micro-relief and vegetation type 3.4 Discussion 3.4.1 Patterns of cover, alpha-diversity and compositional turnover of vascular plants and bryophytes along the rim-pond transect (local-scale) 3.4.2 Patterns of cover, alpha-diversity and compositional turnover of vascular plants and bryophytes along the regional-scale forest-tundra transect 3.4.3 Indicator potential ofvascular plant and bryophyte remains from polygonal peats for the reconstruction of local hydrological and regional vegetation changes 3.4.4. Implications of the performed vegetation transect studies for future Arctic warming 3.5 Acknowledgements 2.4.4 Bioindicators 2.4.5 Characterization of two different types of polygon pond sediment 2.5. Discussion 2.5.1 Small-scale spatial structure of polygons 2.5.2 Age-depth relationships 2.5.3 Proxy value of the analysed parameters 2.5.4 The general polygon development 2.5.5 Polygon development as a function of external controls and internal adjustment mechanisms 2.6 Conclusions Chapter 3 - Manuscript #II Abstract 3.1 Introduction 3.2 Material und methods 3.2.1 Regional setting 3.2.3 Field methods and environmental data collection 3.2.4 Data analysis 3.3 Results 3.3.1 Major characteristics of the investigated polygons 3.3.2 Vegetation cover and its relationships with micro-relief and vegetation type 3.3.3 Vegetation alpha-diversity and its relationship with micro-relief and vegetation type 3.3.4 Vegetation composition and its relationship with micro-relief and vegetation type 3.4 Discussion 3.4.1 Patterns of cover, alpha-diversity and compositional turnover of vascular plants and bryophytes along the rim-pond transect (local-scale) 3.4.2 Patterns of cover, alpha-diversity and compositional turnover of vascular plants and bryophytes along the regional-scale forest-tundra transect 3.4.3 Indicator potential of vascular plant and bryophyte remains from polygonal peats for the reconstruction of local hydrological and regional vegetation changes 3.4.4. Implications of the performed vegetation transect studies for future Arctic warming 3.5 Acknowledgements Chapter 4 - Manuscript #3 Abstract 4.1 Introduction 4.2 Material and methods 4.2.1 Sites 4.2.2 Sampling 4.2.3 Investigated moss species 4.2.4 Measurements 4.2.5 Statistical Tests 4.3 Results 4.4 Discussion Chapter 5 - Discussion 5.1 Bryophytes of polygonal landscapes in Siberia 5.1.1 Modern bryophytes in the Siberian Arctic 5.1.2 Biochemical and isotopic characteristics of mosses 5.1.3 Reliability and potential of fossil bryophyte remains as palaeoproxies 5.2 Dynamics of low-centred polygons during the late Holocene 5.3 Outlook Appendix I - Preliminary Report Motivation Material and methods Results and first interpretation Appendix II Additional tables and figures of manuscript #1 Appendix III Additional figures of manuscript #2 Appendix IV - Quantitative approach of Standard Moss Stem (SMS3) Bibliography Acknowledgements Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    New York, NY : Cambridge Univ. Press
    Call number: AWI A11-15-89031
    Description / Table of Contents: Thermodynamics, Kinetics and Microphysics of Clouds presents a unified theoretical foundation that provides the basis for incorporating cloud microphysical processes in cloud and climate models. In particular, the book provides: • a theoretical basis for understanding the processes of cloud particle formation, evolution and precipitation, with emphasis on spectral cloud microphysics based on numerical and analytical solutions of the kinetic equations for the drop and crystal size spectra along with the supersaturation equation; • the latest detailed theories and parameterizations of drop and crystal nucleation suitable for cloud and climate models derived from the general principles of thermodynamics and kinetics; • a platform for advanced parameterization of clouds in weather prediction and climate models; • the scientific foundation for weather and climate modification by cloud seeding. This book will be invaluable for researchers and advanced students engaged in cloud and aerosol physics, and air pollution and climate research.
    Type of Medium: Monograph available for loan
    Pages: XVIII, 782 S. : graph. Darst., Kt.
    ISBN: 978-1-107-01603-3
    Language: English
    Note: Contents: Preface. - 1. Introduction. - 1.1. Relations among Thermodynamics, Kinetics, and Cloud Microphysics. - 1.2. The Correspondence Principle. - 1.3. Structure of the Book. - 2. Clouds and Their Properties. - 2.1. Cloud Classification. - 2.2. Cloud Regimes and Global Cloud Distribution. - 2.2.1. Large-Scale Condensation in Fronts and Cyclones. - 2.2.2. Sc-St Clouds and Types of Cloud-Topped Boundary Layer. - 2.2.3. Convective Cloudiness in the Intertropical Convergence Zone. - 2.2.4. Orographic Cloudiness. - 2.3. Cloud Microphysical Properties. - 2.4. Size Spectra and Moments. - 2.4.1. Inverse Power Laws. - 2.4.2. Lognormal Distributions. - 2.4.3. Algebraic Distributions. - 2.4.4. Gamma Distributions. - 2.5. Cloud Optical Properties. - Appendix A.2. Evaluation of the Integrals with Lognormal Distribution. - 3. Thermodynamic Relations. - 3.1. Thermodynamic Potentials. - 3.2. Statistical Energy Distributions. - 3.2.1. The Gibbs Distribution. - 3.2.2. The Maxwell Distribution. - 3.2.3. The Boltzmann Distribution. - 3.2.4. Bose–Einstein Statistics. - 3.2.5. Fermi–Dirac Statistics. - 3.3. Phase Rules. - 3.3.1. Bulk Phases. - 3.3.2. Systems with Curved Interfaces. - 3.4. Free Energy and Equations of State. - 3.4.1. An Ideal Gas. - 3.4.2. Free Energy and the van der Waals Equation of State for a Non-Ideal Gas. - 3.5. Thermodynamics of Solutions. - 3.6. General Phase Equilibrium Equation for Solutions. - 3.6.1. General Equilibrium Equation. - 3.6.2. The Gibbs–Duhem Relation. - 3.7. The Clausius–Clapeyron Equation. - 3.7.1. Equilibrium between Liquid and Ice Bulk Phases. - 3.7.2. Equilibrium of a Pure Water Drop with Saturated Vapor. - 3.7.3. Equilibrium of an Ice Crystal with Saturated Vapor. - 3.7.4. Humidity Variables. - 3.8. Phase Equilibrium for a Curved Interface - The Kelvin Equation. - 3.9. Solution Effects and the Köhler Equation. - 3.10. Thermodynamic Properties of Gas Mixtures and Solutions. - 3.10.1. Partial Gas Pressures in a Mixture of Gases. - 3.10.2. Equilibrium of Two Bulk Phases around a Phase Transition Point. - 3.10.3. Raoult’s Law for Solutions. - 3.10.4. Freezing Point Depression and Boiling Point Elevation. - 3.10.5. Relation of Water Activity and Freezing Point Depression. - 3.11. A diabatic Processes. - 3.11.1. Dry Adiabatic Processes. - 3.11.2. Wet Adiabatic Processes. - Appendix A.3. Calculation of Integrals with the Maxwell Distribution. - 4. Properties of Water and Aqueous Solutions. - 4.1. Properties of Water at Low Temperatures and High Pressures. - 4.1.1. Forms of Water at Low Temperatures. - 4.1.2. Forms of Water at High Pressures. - 4.2. Theories of Water. - 4.3. Temperature Ranges in Clouds and Equivalence of Pressure and Solution Effects. - 4.4. Parameterizations of Water and Ice Thermodynamic Properties. - 4.4.1. Saturated Vapor Pressures. - 4.4.2. Heat Capacity of Water and Ice. - 4.4.3. Latent Heats of Phase Transitions. - 4.4.4. Surface Tension between Water and Air or Vapor. - 4.4.5. Surface Tension between Ice and Water or Solutions. - 4.4.6. Surface Tension between Ice and Air or Vapor. - 4.4.7 Density of Water. - 4.4.8. Density of Ice. - 4.5. Heat Capacity and Einstein-Debye Thermodynamic Equations of State for Ice. - 4.6. Equations of State for Ice in Terms of Gibbs Free Energy. - 4.7. Generalized Equations of State for Fluid Water. - 4.7.1. Equations of the van der Waals Type and in Terms of Helmholtz Free Energy. - 4.7.2. Equations of State Based on the Concept of the Second Critical Point. - Appendix A.4. Relations among Various Pressure Units. - 5. Diffusion and Coagulation Growth of Drops and Crystals. - 5.1. Diffusional Growth of Individual Drops. - 5.1.1. Diffusional Growth Regime. - 5.1.2. The Kinetic Regime and Kinetic Corrections to the Growth Rate. - 5.1.3. Psychrometric Correction Due to Latent Heat Release. - 5.1.4. Radius Growth Rate. - 5.1.5. Ventilation Corrections. - 5.2. Diffusional Growth of Crystals. - 5.2.1. Mass Growth Rates. - 5.2.2. Axial Growth Rates. - 5.2.3. Ventilation Corrections. - 5.3. Equations for Water and Ice Supersaturations. - 5.3.1. General Form of Equations for Fractional Water Supersaturation. - 5.3.2. Supersaturation Relaxation Times and Their Limits. - 5.3.3. E quation for Water Supersaturation in Terms of Relaxation Times. - 5.3.4. Equivalence of Various Forms of Supersaturation Equations. - 5.3.5. Equation for Fractional Ice Supersaturation. - 5.3.6. Equilibrium Supersaturations over Water and Ice. - Liquid Clouds. - Ice Clouds. - Mixed Phase Clouds. - 5.3.7. A diabatic Lapse Rates with Non zero Supersaturations. - 5.4. The Wegener–Bergeron–Findeisen Process and Cloud Crystallization. - 5.5. Kinetic Equations of Condensation and Deposition in the Adiabatic Process. - 5.5.1. Derivation of the Kinetic Equations. - 5.5.2. Some Properties of Regular Condensation. - 5.5.3. Analytical Solution of the Kinetic Equations of Regular Condensation. - 5.5.4. Equation for the Integral Supersaturation. - 5.6. Kinetic Equations of Coagulation. - 5.6.1. Various Forms of the Coagulation Equation. - 5.6.2. Collection Kernels for Various Coagulation Processes. - Brownian Coagulation. - Gravitational Coagulation. - 5.7. Thermodynamic and Kinetic Equations for Multidimensional Models. - 5.8. Fast Algorithms for Microphysics Modules in Multidimensional Models. - 6. Wet Aerosol Processes. - 6.1. Introduction. - 6.1.1. Empirical Parameterizations of Hygroscopic Growth. - 6.1.2. Empirical Parameterizations of Droplet Activation. - 6.2. Equilibrium Radii. - 6.2.1. Equilibrium Radii at Subsaturation. - 6.2.2. Equilibrium Radii of Interstitial Aerosol in a Cloud. - 6.3. Critical Radius and Supersaturation. - 6.4. Aerosol Size Spectra. - 6.4.1. Lognormal and Inverse Power Law Size Spectra. - 6.4.2. Approximation of the Lognormal Size Spectra by the Inverse Power Law. - 6.4.3. Examples of the Lognormal Size Spectra, Inverse Power Law, and Power Indices. - 6.4.4. Algebraic Approximation of the Lognormal Distribution. - 6.5. Transformation of the Size Spectra of Wet Aerosol at Varying Humidity. - 6.5.1. Arbitrary Initial Spectrum of Dry Aerosol. - 6.5.2. Lognormal Initial Spectrum of Dry Aerosol. - 6.5.3. Inverse Power Law Spectrum. - 6.5.4. Algebraic Size Spectra. - 6.6. CCN Differential Supersaturation Activity Spectrum. - 6.6.1. A rbitrary Dry Aerosol Size Spectrum. - 6.6.2. Lognormal Activity Spectrum. - 6.6.3. Algebraic Activity Spectrum. - 6.7. Droplet Concentration and the Modified Power Law for Drops Activation. - 6.7.1. Lognormal and Algebraic CCN Spectra. - 6.7.2. Modified Power Law for the Drop Concentration. - 6.7.3. Supersaturation Dependence of Power Law Parameters. - Appendix A.6. Solutions of Cubic Equations for Equilibrium and Critical Radii. - 7. Activation of Cloud Condensation Nuclei into Cloud Drops. - 7.1. Introduction. - 7.2. Integral Supersaturation in Liquid Clouds with Drop Activation. - 7.3. Analytical Solutions to the Supersaturation Equation. - 7.4. Analytical Solutions for the Activation Time, Maximum Supersaturation, and Drop Concentration. - 7.5. Calculations of CCN Activation Kinetics. - 7.6. Four Analytical Limits of Solution. - 7.7. Limit #1: Small Vertical Velocity, Diffusional Growth Regime. - 7.7.1. Lower Bound. - 7.7.2. Upper Bound. - 7.7.3. Comparison with Twomey’s Power Law. - 7.8. Limit #2: Small Vertical Velocity, Kinetic Growth Regime. - 7.8.1. Lower Bound. - 7.8.2. Upper Bound. - 7.9. Limit #3: Large Vertical Velocity, Diffusional Growth Regime. - 7.9.1. Lower Bound. - 7.9.2. Upper Bound. - 7.10. Limit #4: Large Vertical Velocity, Kinetic Growth Regime. - 7.10.1. Lower Bound. - 7.10.2. Upper Bound. - 7.11. Interpolation Equations and Comparison with Exact Solutions. - Appendix A.7. Evaluation of the Integrals J2 and J3 for Four Limiting Cases. - 8. Homogeneous Nucleation. - 8.1. Metastable States and Nucleation of a New Phase. - 8.2. Nucleation Rates for Condensation and Deposition. - 8.2.1. Application of Boltzmann Statistics. - 8.2.2. The Fokker–Planck
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Washington : National Academies Press
    Call number: AWI P5-14-0057
    Description / Table of Contents: Once ice-bound, difficult to access, and largely ignored by the rest of the world, the Arctic is now front and center in the midst of many important questions facing the world today. Our daily weather, what we eat, and coastal flooding are all interconnected with the future of the Arctic. The year 2012 was an astounding year for Arctic change. The summer sea ice volume smashed previous records, losing approximately 75 percent of its value since 1980 and half of its areal coverage. Multiple records were also broken when 97 percent of Greenland's surface experienced melt conditions in 2012, the largest melt extent in the satellite era. Receding ice caps in Arctic Canada are now exposing land surfaces that have been continuously ice covered for more than 40,000 years. What happens in the Arctic has far-reaching implications around the world. Loss of snow and ice exacerbates climate change and is the largest contributor to expected global sea level rise during the next century. Ten percent of the world's fish catches comes from Arctic and sub-Arctic waters. The U.S. Geological Survey estimated that up to 13 percent of the world's remaining oil reserves are in the Arctic. The geologic history of the Arctic may hold vital clues about massive volcanic eruptions and the consequent release of massive amount of coal fly ash that is thought to have caused mass extinctions in the distant past. How will these changes affect the rest of Earth? What research should we invest in to best understand this previously hidden land, manage impacts of change on Arctic communities, and cooperate with researchers from other nations? The Arctic in the Anthropocene reviews research questions previously identified by Arctic researchers, and then highlights the new questions that have emerged in the wake of and expectation of further rapid Arctic change, as well as new capabilities to address them. This report is meant to guide future directions in U.S. Arctic research so that research is targeted on critical scientific and societal questions and conducted as effectively as possible. The Arctic in the Anthropocene identifies both a disciplinary and a cross-cutting research strategy for the next 10 to 20 years, and evaluates infrastructure needs and collaboration opportunities. The climate, biology, and society in the Arctic are changing in rapid, complex, and interactive ways. Understanding the Arctic system has never been more critical; thus, Arctic research has never been more important. This report will be a resource for institutions, funders, policy makers, and students. Written in an engaging style, The Arctic in the Anthropocene paints a picture of one of the last unknown places on this planet, and communicates the excitement and importance of the discoveries and challenges that lie ahead.
    Type of Medium: Monograph available for loan
    Pages: xiii, 210 Seiten , Illustrationen
    Edition: [Final report]
    ISBN: 9780309301831 , 0-309-30183-1
    Language: English
    Note: Contents: SUMMARY. - 1 INTRODUCTION. - Study Context and Charge to the Committee. - Study Approach and Methodology. - Report Organization. - 2 RATIONALE FOR CONTINUED ARCTIC RESEARCH. - 3 EMERGING QUESTIONS. - Evolving Arctic. - Will Arctic communities have greater or lesser influence on their futures?. - Will the land be wetter or drier, and what are the associated implications for surface water, energy balances, and ecosystems?. - How much of the variability of the Arctic system is linked to ocean circulation?. - What are the impacts of extreme events in the new ice-reduced system?. - How will primary productivity change with decreasing sea ice and snow cover?. - How will species distributions and associated ecosystem structure change with the evolving cryosphere?. - Hidden Arctic. - What surprises are hidden within and beneath the ice?. - What is being irretrievably lost as the Arctic changes?. - Why does winter matter?. - What can "break or brake" glaciers and ice sheets?. - How unusual is the current Arctic warmth?. - What is the role of the Arctic in abrupt change?. - What has been the Cenozoic evolution of the Arctic Ocean Basin?. - Connected Arctic. - How will rapid Arctic warming change the jet stream and affect weather patterns in lower latitudes?. - What is the potential for a trajectory of irreversible loss of Arctic land ice, and how will its impact vary regionally?. - How will climate change affect exchanges between the Arctic Ocean andsubpolar basins?. - How will Arctic change affect the long-range transport and persistence of biota?. - How will changing societal connections between the Arctic and the rest of the world affect Arctic communities?. - Managed Arctic. - How will decreasing populations in rural villages and increasing urbanization affect Arctic peoples and societies?. - Will local, regional, and international relations in the Arctic move toward cooperation or conflict?. - How can 21st-century development in the Arctic occur without compromising the environment or indigenous cultures while still benefiting global and Arctic inhabitants?. - How can we prepare forecasts and scenarios to meet emerging management needs?. - What benefits and risks are presented by geoengineering and other large-scale technological interventions to prevent or reduce climate change and associated impacts in the Arctic?. - Undetermined Arctic. - Priority Setting. - 4 MEETING THE CHALLENGES. - Enhancing Cooperation. - Interagency. - International. - Interdisciplinary. - Intersectoral. - Cooperation through Social Media. - Sustaining Long-Term Observations. - Rationale for Long-Term Observations. - Coordinating Long-Term Observation Efforts. - Managing and Sharing Information. - Preserving the Legacy of Research through Data Preservation and Dissemination. - Creating a Culture of Data Preservation and Sharing. - Infrastructure to Ensure Data Flows from Observation to Users, Stakeholders, and Archives. - Data Visualization and Analysis. - Maintaining and Building Operational Capacity. - Mobile Platforms. - Fixed Platforms and Systems. - Remote Sensing. - Sensors. - Power and Communication. - Models in Prediction, Projection, and Re-Analyses. - Partnerships with Industry. - Growing Human Capacity. - Community Engagement. - Investing in Research. - Comprehensive Systems and Synthesis Research. - Non-Steady-State Research. - Social Sciences and Human Capacity. - Stakeholder-Initiated Research. - International Funding Cooperation. - Long-Term Observations. - 5 BUILDING KNOWLEDGE AND SOLVING PROBLEMS. - REFERENCES. - APPENDIXES. - A Acronyms and Abbreviations. - B Speaker and Interviewee Acknowledgments. - C Summary of Questionnaire Responses. - D Biographical Sketches of Committee Members.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...