ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (30)
  • Data
  • Singapore :Springer Nature Singapore :  (30)
  • Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
  • 571.2  (30)
Collection
  • Books  (30)
  • Data
Publisher
Language
Years
DDC
  • 1
    Keywords: Plant physiology. ; Stress (Physiology). ; Plants. ; Plant molecular biology. ; Agronomy. ; Plant Physiology. ; Plant Stress Responses. ; Plant Molecular Biology. ; Agronomy.
    Abstract: This edited volume provides state-of–the-art overview of abiotic stress responses and tolerance mechanisms of different legume crops viz., chickpea, mung bean, lentil, black gram, cowpea, cluster bean, soybean and groundnut. Legumes play an important role in human nutrition and soil health through fixation of nitrogen. Legume production and productivity are vulnerable to different abiotic stresses. A proper understanding about the physiological and molecular basis of the legume crops is essential for genetic improvement of abiotic stress tolerance. This book consists of 15 chapters covering physiological and biochemical basis, molecular physiology, molecular breeding, genetics, genomics, transgenics, epigenetics of drought, saline, high temperature and nutrient deficiency stresses, and the role of microRNAs in abiotic stress tolerance. This volume offers new perspectives in legume crop abiotic stress management, and is useful for various stakeholders, including post graduates students, scientists, environmentalists and policymakers.
    Type of Medium: Online Resource
    Pages: XV, 390 p. 1 illus. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9789811958175
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Pharmacology. ; Plant biotechnology. ; Molecular biology. ; Ecology . ; Plant Physiology. ; Pharmacology. ; Plant Biotechnology. ; Molecular Biology. ; Ecology.
    Description / Table of Contents: Chapter 1. Medicinal plants and abiotic stress: An overview -- Chapter 2. Medicinal plants proteomics in response to abiotic stresses -- Chapter 3. Medicinal plants metabolomics in response to abiotic stresses -- Chapter 4. Secondary metabolite production in medicinal plants under abiotic stress -- Chapter 5. Effect of temperature (cold and hot) stress on medicinal plants -- Chapter 6. Effect of water stress (drought and waterlogging) on medicinal plants -- Chapter 7. Effects of gaseous pollutants on medicinal plants -- Chapter 8. Impact of salinity stress on medicinal plants -- Chapter 9. Impact of aridity on specialized metabolism: Concentration of natural products in plants -- Chapter 10.The role of PGPRs in medicinal plants under abiotic stress -- Chapter 11. Effect of mineral nutrition and PGRs on biosynthesis and distribution of secondary plant metabolites under abiotic stress -- Chapter 12. Impact of phytoprotectants on growth and yield of medicinal plants under abiotic stress -- Chapter 13. Biostimulants and phytohormones improve productivity and quality of medicinal plants under abiotic stress -- Chapter 14. Light (high light/UV radiation) modulates adaptation mechanisms and secondary metabolite production in medicinal plants -- Chapter 15. Recent Strategies to engineer alkaloid biosynthesis in medicinal plants -- Chapter 16. Genome-editing strategies for enhanced stress tolerance in medicinal plants -- Chapter 16. Phytoremediation potential of medicinal plants -- Chapter 17. Phytoremediation potential of medicinal plants.
    Abstract: This book provides a comprehensive overview of medicinal plants and their interaction with abiotic stress in terms of morphological, physiological, biochemical, and molecular variations, and explains the adaptation and tolerance mechanisms involved. It presents various mechanisms that become operative in medicinal plants to combat stressful situations. The book discusses the secondary metabolites and/or bioactive compounds produced in medicinal plants under abiotic stress conditions, and the use of biostimulants and/or phytoprotectants to alleviate the adverse effects of abiotic stresses on medicinal plants. Additionally, it is likely to address opportunities and challenges in molecular and omics studies of medicinal plants under abiotic stress conditions. Overall, the chapters are developed by eminent subject experts with due care and clarity and cover an up-to-date literature review with relevant illustrations. The book would cater to the need of graduate and post-graduate students, researchers as well as scientists, and may attract the attention of pharmaceutical companies/industrialists and health policymakers.
    Type of Medium: Online Resource
    Pages: XI, 469 p. 1 illus. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9789811956119
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Plant molecular biology. ; Plants Development. ; Plant Physiology. ; Plant Molecular Biology. ; Plant Development.
    Description / Table of Contents: UNIT I. TRANSPORT OF WATER AND NUTRIENTS -- 1. Concepts of Plant Water Relations -- 2. Essential and Functional Mineral Elements -- 3. Mechanisms of Water and Solute Transport -- UNIT II. METABOLISM -- 4. Concepts in Metabolism -- 5. Photosynthesis -- 6. Source-to-Sink Translocation of Photoassimilates -- 7. Respiration -- 8. ATP Synthesis -- 9. Metabolism of Storage Carbohydrates -- 10. Lipid Metabolism -- 11. Nitrogen Metabolism -- 12. Sulfur, Phosphorus and Iron Metabolism -- UNIT III. DEVELOPMENT -- 13. Light Perception and Transduction -- 14. Plant Growth regulators – An Overview -- 15. Auxins -- 16. Cytokinins -- 17. Gibberellins -- 18. Abscisic Acid -- 19. Ethylene -- 20. Brassinosteroids -- 21. Jasmonic Acid -- 22. Novel Plant Growth Regulators and Gaseous Signaling Molecules -- 23. Signal Perception and Transduction Mechanisms -- 24. Embryogenesis, Growth and Differentiation -- 25. Flowering -- 26. Pollination, Fertilization and Seed Development -- 27. Fruit Development and Ripening -- 28. Seed Dormancy and Germination -- 29. Plant Movements -- 30. Senescence and Programmed Cell Death -- UNIT IV. STRESS PHYSIOLOGY -- 31. Abiotic Stress -- 32. Biotic Interactions -- UNIT V. APPLIED PLANT PHYSIOLOGY -- 33. Secondary Metabolites -- 34. Crop Physiology and Biotechnology -- GLOSSARY -- SUBJECT INDEX.
    Abstract: This textbook is second edition of popular textbook of plant physiology and metabolism. The first edition of this book gained noteworthy acceptance (more than 4.9 Million downloads) among graduate and masters level students and faculty world over, with many Universities recommending it as a preferred reading in their syllabi. The second edition provides up to date and latest information on all the topics covered while also including the basic concepts. The text is supported with clear, easy to understand Figures, Tables, Box items, summaries, perspectives, thought-provoking multiple-choice questions, latest references for further reading, glossary and a detailed subject index. Authors have also added a number of key concepts, discoveries in the form of boxed- items in each chapter. Plant physiology deals with understanding the various processes, functioning, growth, development and survival of plants in normal and stressful conditions. The study involves analysis of the above-stated processes at molecular, sub-cellular, cellular, tissue and plant level in relation with its surrounding environment. Plant physiology is an experimental science, and its concepts are very rapidly changing through applications from chemical biology, cytochemical, fluorometric, biochemical and molecular techniques, and metabolomic and proteomic analysis. Consequently, this branch of modern plant biology has experienced significant generation of new information in most areas. The newer concepts so derived are being also rapidly put into applications in crop physiology. Novel molecules, such nanourea, nitric oxide, gaseous signalling molecules like hydrogen sulphide, are rapidly finding significant applications among crop plants. This textbook, therefore, brings forth an inclusive coverage of the field contained in 35 chapters, divided into five major units. It serves as essential reading material for post-graduate and undergraduate students of botany, plant sciences, plant physiology, agriculture, forestry, ecology, soil science, and environmental sciences. This textbook is also of interest to teachers, researchers, scientists, and policymakers. .
    Type of Medium: Online Resource
    Pages: XXVII, 899 p. 1 illus. , online resource.
    Edition: 2nd ed. 2023.
    ISBN: 9789819957361
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Plant physiology. ; Stress (Physiology). ; Plants. ; Ecology . ; Plant Physiology. ; Plant Stress Responses. ; Ecology.
    Description / Table of Contents: Chapter 1 - Cadmium toxicity in plants: uptake, translocation and phyto-remediation strategy -- Chapter 2 - Heavy metal/metalloid contamination: Their sources in environment and accumulation in food chain -- Chapter 3 - Heavy metal/metalloid contamination: Impact on human health and mitigation strategies -- Chapter 4 - Heavy Metal Pollution in the Environment: Impact on Air Quality and Human Health Implications -- Chapter 5 - Heavy Metals Contamination in Surface Water Bodies through Construction & Demolition Waste: a case study of city of lakes - Bhopal, Madhya Pradesh, India -- Chapter 6 - Soil Deterioration and Risk Assessment of Heavy Metal Contamination -- Chapter 7 - Heavy metal contamination in ground water: Environmental concerns and mitigation measures -- Chapter 8 - Effect of Heavy Metals on Roadside Vegetation -- Chapter 9 - Heavy Metal Pollution in Atmosphere from Vehicular Emission -- Chapter 10 - Life Cycle Assessment of Heavy Metal Toxicity in the Environment -- Chapter 11 - Metalliferous soil remediation through heavy metal resistant plant growth-promoting bacteria: prospects and paradigms -- Chapter 12 - Phytoremediation of Heavy Metals - Reaction mechanisms and selected efficient technologies of heavy metals contamination -- Chapter 13 - Industrial Wastewater Treatment Strategies -- Chapter 14 - Brassica Juncea L.: A Potential Crop for Phytoremediation of Various Heavy Metals -- Chapter 15 - Phytoremediation of Heavy Metals -- Chapter 16 - Bioremediation of mining sites - sustainable approach to restore healthy ecosystem -- Chapter 17 - Industrial Pollution Management Approach -- Chapter 18 - Harnessing Green Energy Along with Precious Metal Recovery from Wastewater in Bio-electrochemical Systems: A Win-Win Scenario -- Chapter 19 - Minimization of Cadmium Toxicity in Wheat by Exogenous Application of Hydroxamate Siderophore. Chapter 20-Microbial remediation of Heavy Metals.
    Abstract: This contributed volume covers a comprehensive account of the sources, toxic biological as well as environmental impacts, and possible remediation strategies for contamination by heavy metals. In biological systems, toxic metals affect the integrity of cellular organelles and act as carcinogens causing chromosomal aberrations or as systemic toxicants leading to cardiovascular, neurobehavioral, and immunological disorders. In plants, they interfere with photosynthesis, fertility, metabolite, and chlorophyll synthesis. Toxicity induced by heavy metals involves mechanistic approaches that need to be understood properly. They cannot be degraded by biological or chemical means and thus can only be converted to less harmful forms. The conventional detection methods include biosensors, voltammetry, atomic absorption spectrometry, and inductively coupled plasma with atomic emission spectrometry. All such strategies for metal detection and mitigation strategies are covered in this title under one section. This book incorporates classical views along with modern scientific approaches to develop an understanding of the subject matter suitable for academicians, researchers, planners, policymakers, NGOs, and environmental consultancies and raise awareness on this concern. Topics representing diverse sections namely environmental impacts, biological effects, and methods used for detection and remediation have been included to address all possible contemporary issues on the topic in one concise volume. .
    Type of Medium: Online Resource
    Pages: XIII, 440 p. 1 illus. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9789819903979
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Plant genetics. ; Biodiversity. ; Plant Physiology. ; Plant Genetics. ; Biodiversity.
    Description / Table of Contents: Cowpea -- Chapter-1: Introduction -- Chapter-2: Genetic improvement and variability -- Chapter-3: Quality and nutrition -- Chapter-4: Cultivation -- Chapter-5: Plant Protection -- Chapter-6: Physiology and Abiotic stresses -- Chapter-7: Genetic markers and Biotechnology -- Horsegram -- Chapter-1: Introduction -- Chapter-2: Genetic improvement and variability -- Chapter-3: Quality and nutrition -- Chapter-4: Cultivation -- Chapter-5: Plant Protection -- Chapter-6: Physiology and Abiotic stresses -- Chapter-7: Genetic markers and Biotechnology -- Moth bean -- Chapter-1: Introduction -- Chapter-2: Genetic improvement and variability -- Chapter-3: Quality and nutrition -- Chapter-4: Cultivation -- Chapter-5: Plant Protection -- Chapter-6: Physiology and Abiotic stresses -- Chapter-7: Genetic markers and Biotechnology.
    Abstract: This authored book gives insight into the morphology, physiology, genetics, plant protection and biotechnology of three important arid legumes, viz., moth bean, cowpea and horse gram. There are seven chapters for each crop that provide in-depth information on cultivation, genetic improvement, plant protection measures, management of physiological and abiotic stresses along with related genetic markers and biotechnological advances pertaining to these legumes. The chapters present research findings and brief reviews concerning the advances made in the improvement of these legumes. Legumes are utilized as pulses or grains aiding as an important source of protein for both human and animal consumption and also provide raw materials to the food and feed industries. They are also valuable for soil building, improving soil quality and biological nitrogen fixation. Physiology and genetics provide an inimitable source of information on the distinct aspects of basic and applied legume research for general readers, students, academicians and researchers. Arid legumes are crops characterized by inherent features and capabilities to withstand adverse and harsh climatic conditions, significantly replenish the soil, as well as provide protein and micronutrients. Adaptability to several stresses including drought makes them key to agriculture in areas receiving scanty rainfall. This comprehensive book disseminates significant information on the genetic diversity, cultivation, manipulation through mutagenic techniques, molecular biology and other breeding techniques. The book, therefore, is of importance to teachers, researchers and policymakers who are interested to acquire knowledge about moth bean, cowpea and horse gram. It also serves as an additional reading material for MSc and PhD students of agriculture and environmental sciences. The book is also useful to national and international agricultural scientists and policymakers.
    Type of Medium: Online Resource
    Pages: XXI, 396 p. 4 illus., 3 illus. in color. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9789811999567
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Plant physiology. ; Stress (Physiology). ; Plants. ; Microbial ecology. ; Plant Physiology. ; Plant Stress Responses. ; Microbial Ecology.
    Description / Table of Contents: Chapter 1. Genetic and genomic resources of range grasses- status and future prospects -- Chapter 2. Forage genetic resources and scope for allele mining of abiotic stress tolerance -- Chapter 3. Breeding for developing higher productive tree-based forage under stress environments -- Chapter 4. Impact of Climate change on forage crop production with special emphasis on diseases and mitigation strategies through breeding and molecular approaches -- Chapter 5. Effect of nano-priming on maize under normal and stressful environment -- Chapter 6. Oxidative stress and antioxidant defense in mitigating abiotic stresses in forage crops: A physiological and biochemical perspective -- Chapter 7. Forage cropping under climate smart farming: a promising tool to ameliorate salinity threat in soils -- Chapter 8. Forage cultivation under challenging environment -- Chapter 9. Potentials and Opportunities of Agro-forestry Under Climate Change Scenario -- Chapter 10. Climate Change Impact on Forage Characteristics: An Appraisal for Livestock Production -- Chapter 11. Sustainable Use of Paddy Straw as Livestock Feed: A Climate Resilient Approach to Crop Residue Burning -- Chapter 12. Engineering Interventions for Climate Resilient Forage Production -- Chapter 13. Promotion of improved forage crop production technologies: Constraints and strategies with special reference to climate change. .
    Abstract: This edited book is collection of information on molecular interventions needed for climate-resilient forage crops. The main focus is to address the gap in the advanced scientific knowledge for the forage species. Agriculture is extremely vulnerable to climate, and even slight change in climatic factors such as temperature causes tremendous losses in yield potential. Forage crops are crucial in global food security and environmental sustainability and face several environmental challenges in field conditions. However, the research on forage crops is far-off compared to agricultural crops and causes a substantial gap in forage demand and productivity. Further, this gap is directly associated with animal health, reproduction, and productivity. Abiotic stresses mainly affect the plant's crucial processes, ultimately reducing the final yield. The problem of abiotic stresses is more frequent in forage crops as they are growing and cultivated in less productive soil and harsh conditions. This book discusses current aspects of crucial physiological, biochemical and molecular processes in forage crops, which are essential for forage crops improvement. The text's major focus is on the advanced technologies and approaches such as seed priming, bio-fortification, breeding, omics, transgenic and bioengineering of metabolic pathways in unique ways, which helps us develop innovative solutions for forage crops. This book covers all the crucial advance technologies, which help mitigate the abiotic stresses in forage crops. We believe that this book will initiate and introduce the readers to state-of-the-art developments and unique in this field of study. This book is of interest to teachers, researchers, climate change scientists, capacity builders, and policymakers. Also, the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences. National and international agricultural scientists and policymakers will also find this a worthwhile read.
    Type of Medium: Online Resource
    Pages: XXIV, 236 p. 1 illus. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9789819918584
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Plants Development. ; Stress (Physiology). ; Plants. ; Botanical chemistry. ; Plant Physiology. ; Plant Development. ; Plant Stress Responses. ; Plant Biochemistry.
    Description / Table of Contents: 1. Seed Quality: Variety Development to Planting – An Overview -- 2. Seed Development and Maturation -- 3. Seed Dormancy and Regulation of Germination -- 4. Seed Vigour and Invigoration -- 5. Seed Longevity and Deterioration -- 6. Principles of Quality Seed Production -- 7. Vegetable Seed Production -- 8. Principles of Variety Maintenance for Quality Seed Production -- 9. Hybrid Seed Production Technology -- 10. Seed Processing for Quality Upgradation -- 11. Seed Storage and Packaging -- 12. Role of Seed Certification in Seed Quality Assurance -- 13. Testing Seed for Quality -- 14. Seed Health: Testing and Management -- 15. Molecular Techniques for Testing Genetic Purity and Seed Health -- 16. Seed Quality Enhancement -- 17. Emerging Trends and Promising Technologies.
    Abstract: This open-access edited book is a collection of 17 chapters, synthesized primarily from the lectures delivered by eminent Indian and international experts during a series of capacity-building programmes organised in India during 2020 and 2021 under the aegis of 'Indo-German Cooperation on Seed Sector Development', a component of the Bilateral Cooperation between the Governments of India and Germany. Seed Science and Technology, a multi-disciplinary subject, is advancing rapidly keeping pace with the development of improved plant varieties and other climate-resilient technologies. Knowledge of the underlying biological processes and application of appropriate technologies for variety maintenance and seed production; quality assurance, testing and enhancement; processing, packaging and storage etc., are important in a seed programme. Chapters presented in the book is a blend of basic seed biology covering seed development, maturation, dormancy, germination, vigour and invigoration, and seed deterioration; variety maintenance and production of genetically pure seed of open-pollinated and hybrid varieties in a few key field crops and vegetables, and fundamentals of seed processing, packaging and storage; and seed quality assurance systems followed in different countries; testing the essential components of seed quality including seed health, application of molecular technologies for precision in testing, and enhancement of seed quality. It concludes by identifying the key areas of future seed research and technology development. The book covers the fundamentals and recent advances of seed science and technology with the latest research information and an exhaustive and updated list of references on different topics. It is expected to benefit the students as well as the scientists, faculty members and seed sector professionals, working in the public and private seed sectors, certification authorities and seed producing agencies in India, and elsewhere. .
    Type of Medium: Online Resource
    Pages: XVI, 430 p. 1 illus. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9789811958885
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Plant physiology. ; Agronomy. ; Botanical chemistry. ; Plant Physiology. ; Agronomy. ; Plant Biochemistry.
    Description / Table of Contents: Ch 1. Melatonin discovery and divergent biosynthetic pathways in plant -- Ch 2. Melatonin detection and quantification techniques -- Ch 3. Melatonin-mediated regulation of germination, plant establishment and vegetative development -- Ch 4. Regulatory role of melatonin in flowering, fruit setting and ripening -- Ch 5. Regulatory role of melatonin in photosynthesis and respiration -- Ch 6. Phytohormonal cross-talk with melatonin in plant -- Ch 7. Interaction of melatonin with reactive oxygen species in plants -- Ch 8. Reactive Nitrogen Species (RNS) and Melatonin Interaction in Plant -- Ch 9. Diverse functional role of melatonin in post-harvest biology -- Ch 10. Regulatory role of melatonin in post-harvest management of vegetables and fruits -- Ch 11. Synergistic effect of melatonin in plant growth and development in stress mitigation -- Ch 12. Melatonin mediated regulation of growth, production and protection in forest plant species -- Ch 13. Melatonin: A promising tool against climate change and food security for better plant survival.
    Abstract: This book highlights the multifunctional role of the ubiquitous molecule, melatonin, in crop plants. The major focus of this edition is to provide detailed insights into morphophysiological, biochemical, and molecular responses of melatonin in the growth and development of the plant. The inception of melatonin as an animal hormone and the subsequent discovery of its multifaceted function in the animal system has triggered the research on this pineal gland hormone. During the last decade, the discovery, quantification and functional studies of melatonin as phytohormone has emerged at a rapid pace. Recently, this phyto-protectant has become an integral component of lab and field-based research on the mitigation of adverse effects of climate-driven abiotic stresses and postharvest biology and technology. The book explores various biosynthetic pathways and detection of melatonin covering its role in flowering, fruit development, photosynthesis, respiration, hormonal crosstalk, post-harvest biology and reactive oxygen species and nitrogen cycles. This book is of high interest to postharvest industries, horticulturists, scientists, researchers, and students. .
    Type of Medium: Online Resource
    Pages: XVII, 300 p. 1 illus. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9789819967452
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Plant physiology. ; Plant diseases. ; Botanical chemistry. ; Plant Physiology. ; Plant Pathology. ; Plant Biochemistry.
    Description / Table of Contents: Ch 1. Evolution of melatonin as an oxidative stress mitigator in plant -- Ch 2. Melatonin-mediated drought stress mitigation by modulation of physiological and biochemical responses in plants -- Ch 3. Reprogramming of salt stress under the influence of melatonin -- Ch 4. Mechanistic insights on melatonin-mediated heat stress regulation in plant -- Ch 5. Melatonin a key regulator of cold stress in plants -- Ch 6. Illustrating recent development in melatonin-heavy metal research in plant -- Ch 7. Melatonin in Nutrient use efficiency of regulation in crop plants -- Ch 8. Melatonin-mediated signalling and regulation of viral and bacterial diseases -- Ch 9. Explicating the role of melatonin in the mitigation of fungal diseases in plants -- Ch 10. Role of melatonin in management of stress tolerance of forest tree species -- Ch 11. Emerging role of melatonin in integrated management of crop pathogens -- Ch 12. Exploring Melatonin's Potential as an Alternative Strategy for Protecting Plants from Biotic Stresses.
    Abstract: This edited book highlights the multifunctional role of the ubiquitous molecule, melatonin in crop plants. The major focus of this edition is to provide a comprehensive insight into the key focus is on Melatonin mediated alleviation of abiotic stresses and pathogens infection. The inception of melatonin as an animal hormone and the subsequent discovery of its multifaceted function in the animal system has revolutionized the research on this penial hormone. During the last decade, the discovery, quantification and functional studies of melatonin as phytohormone has emerged at a rapid pace. Recently, this phyto-protectant has become an integral component of lab and field-based research on the mitigation of adverse effects of climate-driven abiotic stresses and postharvest biology and technology. The book explores melatonin mediated management of various abiotic stresses such as drought, salinity, heat and cold temperature. The book also focuses on role of melatonin in heavy metal stress, viral, bacterial, and fungal diseases, and, also contains chapter on melatonin facilitated nutrient use efficiency in plants. This book is of interest to postharvest industries, horticulturists, scientists, researchers, and students.
    Type of Medium: Online Resource
    Pages: XVI, 242 p. 1 illus. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9789819967414
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Plant molecular biology. ; Plant cells and tissues. ; Botanical chemistry. ; Plant Physiology. ; Plant Molecular Biology. ; Plant Cell Biology. ; Plant Biochemistry.
    Description / Table of Contents: Chapter 1. Metabolic Engineering: New approaches in Pharmaceuticals Production -- Chapter 2. Ameliorating abiotic stress tolerance in crop plants by metabolic engineering -- Chapter 3. Enhancing Photosynthetic Efficiency of Crop Through Metabolic Engineering -- Chapter 4. Transcription factor mediated plant metabolite production in response to environmental stress factors: current understanding and future aspects -- Chapter 5. Secondary Metabolite Engineering for Plant Immunity against Various Pathogens -- Chapter 6. Role of metabolic engineering in enhancing crop nutritional quality -- Chapter 7. miRNA and RNAi Mediated Metabolic Engineering in Plants -- Chapter 8. CRISPR/Cas genome editing in engineering plant secondary metabolites of therapeutic benefits -- Chapter 9. Enhanced Production of plant aromatic compounds through metabolic engineering -- Chapter 10. Molecular Farming: Sustainable manufacturing of vaccines, antibodies and other therapeutic substances -- Chapter 11. CRISPR/Cas Mediated Genome Engineering for Abiotic Stress Resilience in Plants -- Chapter 12. CRISPR/Cas Mediated Genome Engineering for Abiotic Stress Resilience in Plants -- Chapter 13. Use of Metabolic Engineering/Biotechnology in Crops Breeding and Development of New Crops -- Chapter 14. Improving the quality of medicinal and aromatic plants through metabolic engineering -- Chapter 15. Polymeric composites: A promising tool for enhancing photosynthetic efficiency of crops -- Chapter 16. Metabolic engineering approaches to produce compounds of interest in plants -- Chapter 17. Carbon-based Nanomaterials: An efficient tool for improving the nutritional quality of crops -- Chapter 18. Plant Metabolic Engineering for a Futuristic Economy -- Chapter 19. Ethical perspectives and limitations of metabolic engineering technologies in plants.
    Abstract: This edited book highlights the plant and cell/organ culture systems, and environmental and genetic transformation-based modulation of biochemical pathways. Special focus is given to microRNA-based technology, heterologous systems expression of enzymes and pathways leading to products of interest, as well as applications using both model and non-model plant species. Metabolic engineering is usually defined as the re-routing of one or more enzymatic reactions to generate new compounds, increase the production of existing compounds, or facilitate the degradation of compounds. Plants are the foundation of numerous compounds which are synthesized via assimilated complex biosynthetic routes. Plants have evolved an incredible arrangement of metabolic pathways leading to molecules/compounds capable of responding promptly and effectively to stress situations imposed by biotic and abiotic factors, some of which supply the ever-growing needs of humankind for natural chemicals, such as pharmaceuticals, nutraceuticals, agrochemicals, food and chemical additives, biofuels, and biomass. However, in foreseeable future we will be forced to think about the accessibility of resources for the generations to come. For these reasons, the book proposes alternative options of food/food supplement, medicines and other essential items, by using plant metabolic engineering approach. This book is of interest to teachers, researchers and academic experts. Also, the book serves as additional reading material for undergraduate and graduate students of biotechnology and molecular biology of plants.
    Type of Medium: Online Resource
    Pages: XII, 413 p. 1 illus. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9789811672620
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Stress (Physiology). ; Plants. ; Botanical chemistry. ; Plant molecular biology. ; Plant Physiology. ; Plant Stress Responses. ; Plant Biochemistry. ; Plant Molecular Biology.
    Description / Table of Contents: Chapter 1. Role of Potassium in Plant Photosynthesis, Transport, Growth and Yield -- Chapter 2. Potassium Role in Plants Response to Abiotic Stresses. Chapter 3. Molecular Approaches to Potassium Uptake and Cellular Homeostasis in Plants under Abiotic Stress -- Chapter 4. Soil Potassium Availability and Role of Microorganisms in Influencing Potassium Availability to Plants -- Chapter 5. Crosstalk of Potassium and Phytohormones under Abiotic Stress -- Chapter 6. Potassium (K+) Regulation by Phytohormones under Abiotic Stress -- Chapter 7. Role of Potassium in Drought Adaptation: Insights into Physiological and Biochemical Characteristics of Plants -- Chapter 8. Role of Potassium in Heavy Metal Stress -- Chapter 9. Salt Stress Alleviation Strategies to Maintain K+ Homeostasis in Plants -- Chapter 10. Potassium ion Homeostasis, Signaling and Changes in Transcriptomes and Metabolomes Enduring Salinity Stress -- Chapter 11. Potassium: A Potent Modulator of Plant Responses under Changing Environment -- Chapter 12. An Overview of Potassium in Abiotic Stress: Emphasis on Potassium Transporters and Molecular Mechanism -- Chapter 13. Nitric Oxide Synthesis Affects Potassium and Nitrogen Homeostasis in Plants for Salt Tolerance.
    Abstract: This book on potassium in abiotic stress tolerance deals with the ongoing trend in increasing abiotic stresses and interlinked issues food security. As mineral nutrient potassium holds an important place in agriculture and is involved in various physiological and biochemical processes. It takes part in protein synthesis, carbohydrate metabolism, enzyme activation, cation-anion balance, osmoregulation, water movement, energy transfer, and regulates stomata and photosynthesis. Potassium plays an important role as abiotic stress buster. This book will deal with potassium relevance to plant functions and adaptations, range of its biological functions, role of potassium in abiotic stress tolerance, analyses of mechanisms responsible for perception and signal transduction of potassium under abiotic stress, critical evaluation of and cross-talks on nutrients and phytohormones signaling pathways under optimal and stressful conditions, and interaction of potassium with other nutrients for abiotic stress tolerance. This book will be of interest to teachers, researchers, scientists working on abiotic stresses. Also, the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, and environmental sciences. National and international agricultural scientists, policymakers will also find this to be a useful read.
    Type of Medium: Online Resource
    Pages: XV, 281 p. 1 illus. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9789811644610
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Plant molecular biology. ; Botanical chemistry. ; Stress (Physiology). ; Plants. ; Plant Physiology. ; Plant Molecular Biology. ; Plant Biochemistry. ; Plant Stress Responses.
    Description / Table of Contents: Chapter 1. An overview of roles of enzymatic and non-enzymatic antioxidants in plant -- Chapter 2. Functional Characterization of the Antioxidant Enzymes in Plants Exposed to Environmental Stresses -- Chapter 3. Gene expression and role of antioxidant enzymes in crop plants under stress -- Chapter 4. Proteomic and Genomic Approaches for Antioxidant Enzymes-Mediated Defence Analyses in Higher Plants -- Chapter 5. Genetic Engineering Applications in Inducing Stress Tolerance in Plants through Antioxidants -- Chapter 6. Kinase mediated signaling cascades in plants abiotic stress physiology -- Chapter 7. Plant peroxidases: biomarkers of environmental stresses and signaling in plants -- Chapter 8. Molecular mechanisms of superoxide dismutase (SODs)-mediated defense in controlling oxidative stress in plants -- Chapter 9. Glutathione in higher plants: biosynthesis and physiological mechanisms during heat and drought-induced oxidative stress. Chapter 10. Role of Tocopherol in Conferring Abiotic Stress Tolerance in Plants -- Chapter 11. Plant glutathione transferases and their role in the mitigation of abiotic stresses -- Chapter 12. Role of ascorbic acid in alleviating abiotic stress in crop plants -- Chapter 13. CRISPR/Cas Mediated Genome Editing Technologies in Plants for Stress Resilience -- Chapter 14. Decrypting drought stress tolerance of crop plants via photosynthesis and antioxidative defense mechanisms -- Chapter 15. Role of Brassinosteroids (BRs) in modulating antioxidative defense mechanism in plants growing under abiotic and biotic stress conditions -- Chapter 16. Selenium-mediated regulation of antioxidant defense system and improved heavy metals tolerance in plants -- Chapter 17. Antioxidant defense system in plants against biotic stress -- Chapter 18. Revisiting the crucial role of reactive oxygen species and antioxidant defense in plant under abiotic stress -- Chapter 19. Plant life under changing environment: An exertion of environmental factors in oxidative stress modulation -- Chapter 20. Beneficial role of phytochemicals in oxidative stress mitigation in plants.
    Abstract: This edited book highlights the molecular basis of various enzymatic and non-enzymatic antioxidants, defense mechanisms and adaptation strategies employed by plants to avoid the stressful conditions. Special focus is given to gene expression, omics and other latest technologies such as CRISPR-Cas mediated genome editing applications for defense related studies in plants. Environmental stresses such as drought, salinity or floods etc. induce the generation of reactive oxygen species (ROS) which causes severe damage to cell membrane integrity by accelerating lipid peroxidation. To counteract the detrimental effect of ROS, plants are inherited with an intricate and vibrant antioxidant defense system, comprised of enzymatic (catalase, peroxidase, superoxide dismutase, glutathione reductase, glutathione S-transferase, guaiacol peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase etc.), and non-enzymatic (glutathione, ascorbate, α-tocopherol, carotenoids, flavonoids etc.) antioxidants, which scavenge and/or reduce excess ROS and improve plant tolerance to various stresses. Stress tolerance in most crop plants is positively correlated with an efficient antioxidant system. Therefore, studying the efficiency of antioxidant defense systems in plants is necessary for facilitating the plant’s nature of adaptation against challenging environments. This book is of interest to teachers, researchers and academic experts. Also, the book serves as additional reading material for undergraduate and graduate students of biotechnology and molecular biology of plants.
    Type of Medium: Online Resource
    Pages: XVIII, 451 p. 1 illus. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9789811679810
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Stress (Physiology). ; Plants. ; Plants Disease and pest resistance. ; Botanical chemistry. ; Plant Physiology. ; Plant Stress Responses. ; Plant Immunity. ; Plant Biochemistry.
    Description / Table of Contents: Chapter 1. Introduction to UV-B Radiation -- Chapter 2. UV-B & Its Climatology -- Chapter 3. UV-B: Curse or boon? -- Chapter 4. Major influence on photosynthetic performance under UV-B exposure -- Chapter 5. Solar UV-B and Primary Producers in Aquatic Ecosystems -- Chapter 6. UV B and Crop research from past to new age -- Chapter 7. Plant Responses: UV-B avoidance strategies -- Chapter 8. Interaction of Salicylate and Jasmonate on the UV-B Induced Changes in Physiological and Biochemical Activities of Crop Plants -- Chapter 9. UVR8 discovery: A new vision in UV-B research -- Chapter 10. UVR8 signaling, mechanism and integration with other pathways -- Chapter 11. Acclimation of photosynthetic apparatus to UV-B radiation -- Chapter 12. Role of UV- B in regulating performance of photosystem I and II -- Chapter 13. Relationships of Oxidative stress and Ultraviolet-B radiation in Plants -- Chapter 14. Uv-B Stress And Plant Sexual Reproduction -- Chapter 15. Crosstalk Between Melatonin And Nitric Oxide In Plant Development And Uv-B Stress Response -- Chapter 16. Interaction of UV –B with Terrestrial ecosystem.
    Abstract: This book is an inclusive collection of topics on research on UVB for its impact on plants with a focus on its use as an emerging technology for crop growth and protection. This book covers role of UV-B on biological systems, and its transformation from generic stressor to specific regulator. It also explores the past research in UVB studies and the changing mind-sets regarding UV-B in recent time with respect to the plant growth. It also explores the discovery of specific UV-B photoreceptor, UVR8 and UVR8 mediated plants responses. This book is of interest to teachers, researchers, agriculture scientists and plant physiologists. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences.
    Type of Medium: Online Resource
    Pages: IX, 352 p. 1 illus. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9789811936203
    Series Statement: Plant Life and Environment Dynamics,
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Keywords: Plant physiology. ; Stress (Physiology). ; Plants. ; Plant molecular biology. ; Botanical chemistry. ; Plant biotechnology. ; Plant Physiology. ; Plant Stress Responses. ; Plant Molecular Biology. ; Plant Biochemistry. ; Plant Biotechnology.
    Description / Table of Contents: Heat stress in wheat: adaptation strategies -- Molecular markers mediated heat stress tolerance in crop plants -- Physiology of crop yield under heat stress -- Physiological traits for improving heat stress tolerance in plants -- Understanding the mechanism of high temperature stress effect and tolerance in wheat -- Reactive Oxygen Species – Friend or Foe -- CDPKs based signalling network: Protecting the wheat from heat -- Heat Shock Proteins: Catalytic Chaperones involved in Modulating Thermotolerance in Plants -- Starch metabolism under heat stress -- Heat stress and grain quality -- Omics tools and techniques for study of defense mechanism in plants -- Induced mutagenesis for high temperature tolerance in crop plants -- CRISPR/Cas-based genome editing to enhance heat stress tolerance in crop plants -- Genomics-enabled breeding for heat and drought stress tolerance in crop plants.
    Abstract: This book collates various aspects of stress tolerance in crop plants. It primarily focuses on the heat and temperature related stress, starting from the severity of the problem on quantity and quality of yield under the threat of global climate change. The content also explores other mechanistic dimensions such as physiochemical and molecular mechanism underlying thermotolerance, signaling mechanism under heat stress, role of heat shock proteins in modulating thermotolerance, omics approach for development of climate smart-crop. Chapters discuss different approaches used in the past to develop heat stress tolerant crop plants, list of developed thermotolerant agriculturally important crop plants, redox homeostasis under heat stress, nutrient uptake and use efficiency in plants under heat stress and much more. The book is a useful compilation for researchers working in the area of abiotic stress tolerance in crop plants, as well as for students of plant physiology and agricultural sciences.
    Type of Medium: Online Resource
    Pages: XIII, 321 p. 1 illus. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9789811938009
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Stress (Physiology). ; Plants. ; Agriculture. ; Botany. ; Plant Physiology. ; Plant Stress Responses. ; Agriculture. ; Plant Science.
    Description / Table of Contents: Chapter 1. Effect of low temperature stress on germination, growth and phenology of plants: A review -- Chapter 2. Plant water relationship under low temperature stress: A review -- Chapter 3. Effect of low temperature stress on photosynthesis and allied traits: A review -- Chapter 4. Low temperature stress and nitrogen metabolism in plants: A review -- Chapter 5. Lipid metabolism in plants under low temperature stress -- Chapter 6. Plant growth hormones in plants under low temperature stress: A review -- Chapter 7. Effect of low temperature on dry matter, partitioning and seed yield: A review.
    Abstract: This book is a collection of comprehensive reviewed chapters covering major physiological aspects, both production as well as biochemical aspects, of a plant under low temperature stress. Low temperature stress has been dealt in two parts, first between 10 to 00 C and secondly between 0 to -400 C. This book highlights the physiological aspects of plants under low temperature stress and explains the various adaptive measures plants undergo to tolerate low temperature stress. Essential information is provided on germination, growth and development, dry matter accumulation, partitioning and final yield of a crop plant. As physiology deals with morphological and biochemical aspect of all the basic processes, therefore an in depth understanding the major physiological issues in plants under high temperature will help plant breeders to tailor different crop plants with desirable physiological traits to do better under higher temperature. The present book is intended to cover the effects of low temperature stress on the various physiological aspects in plants. Not only in production physiology, this book also deals with major biochemical processes, like photosynthesis, nitrogen and lipid metabolism, mineral nutrition and plant growth hormones. Efforts have been made deal with different measures to mitigate the effects of low temperature stress on plants. This book will be an asset for post graduate students, faculty members, researchers engaged in not only in physiological studies but also agronomy, plant breeding and like subjects. In depth analysis of the major physiological processes in plants under low temperature stress that are presented in this book will help plant breeders for tailoring crops for desirable physiological traits needed to survive and to give better economic return under the threats of low temperature stress. This book is also helpful for policy planners and industries engaged in agribusiness in short term as well as long term gain.
    Type of Medium: Online Resource
    Pages: XIX, 734 p. 31 illus. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9789811690372
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Stress (Physiology). ; Plants. ; Symbiosis. ; Plant biotechnology. ; Plant Physiology. ; Plant Stress Responses. ; Plant Symbiosis. ; Plant Biotechnology.
    Description / Table of Contents: Chapter 1. Ion homeostasis and its role in salt remediation by halophytes -- Chapter 2. Role of Transporters in Accumulating Salt Ions by Halophytes -- Chapter 3. Dual Role of Nitrogen: Essential Plant Mineral Element and Source of Inorganic Pollution -- Chapter 4. Synthesis and regulation of secondary metabolites in plants in conferring tolerance to toxic metals and inorganic pollutants -- Chapter 5. Bicarbonate toxicity and elevated pH in plants: Metabolism, regulation and tolerance -- Chapter 6. Antioxidant defense systems and remediation of metal toxicity in plants -- Chapter 7. Current Research on the Role of Plant Primary and Secondary Metabolites in Response to Cadmium Stress -- Chapter 8. The current scenario and prospects of immobilization remediation technique for the management of heavy metals contaminated soils -- Chapter 9. Inhibition of donor and acceptor side of Photosystem II by cadmium ions -- Chapter 10. Physiological and Molecular Mechanism of Metalloid Tolerance in Plants -- Chapter 11. Heavy metals-induced morphophysiological and biochemical changes in Mentha piperita L. -- Chapter 12. Heavy Metals-induced Physiological and Biochemical changes in Fenugreek (Trigonella foenum-graceum L.) -- Chapter 13. Copper-induced responses in different plant species -- Chapter 14. Concept and types of phytoremediation -- Chapter 15. Bioremediation of Heavy Metals Using the Symbiosis Between Leguminous Plants and Genetically Engineered Rhizobia -- Chapter 16. Metallothionein- and Phytochelatin-assisted mechanism of heavy metal detoxification in microalgae -- Chapter 17. Efficacy of Duckweeds for phytoremediation: Morpho-physiological and biochemical alterations -- Chapter 18. Metals Phytoextraction by Brassica species -- Chapter 19. Molecular Basis of Plant-Microbes Interaction in Remediating Metals and Inorganic Pollutants.
    Abstract: In this comprehensive book, plant biologists and environmental scientists present the latest information on different approaches to the remediation of inorganic pollutants. Highlighting remediation techniques for a broad range of pollutants, the book offers a timely compilation to help readers understand injury and tolerance mechanisms, and the subsequent improvements that can be achieved by plant-based remediation. Gathering contributions by respected experts in the field, the book represents a valuable asset for students and researchers, particularly plant physiologists, environmental scientists, biotechnologists, botanists, soil chemists and agronomists. .
    Type of Medium: Online Resource
    Pages: XIX, 403 p. 34 illus., 30 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9789811562211
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Biophysics. ; Radiology. ; Nuclear chemistry. ; Spectrum analysis. ; Materials science. ; Plant Physiology. ; Biophysics. ; Radiology. ; Nuclear Chemistry. ; Spectroscopy. ; Materials Science.
    Description / Table of Contents: Chapter 1. Introduction -- Part 1. Water in a Plant -- Chapter 2. Introduction -- Chapter 3 Water Specific Imaging -- Chapter 4. Real-Time Water Movement in a Plant -- Part 2. Elements in a Plant -- Chapter 5. Element specific distribution in a plant -- Chapter 6. Real-Time Element Movement in a Plant -- Chapter 7. Visualization of Gas fixation in a Plant -- Chapter 8. 3D images -- Chapter 9. Microautoradiography (MAR) -- Chapter 10. Other real-time movement -- Part 3. Conclusion -- Chapter 11. Summary and perspective. .
    Abstract: This open access book is only an introduction to show that radiation and radioisotopes (RI) are premier tools to study living plant physiology which leads to new findings. Who had ever imagined that we could see water in a plant? Who had ever imagined that we could see ions moving toward roots in solution? Who had ever imagined that we could see invisible gas (CO2) fixation and movement in a plant? These studies demonstrated for the first time that water, ions and gas can be visualized in living plants, which could be hardly seen by anyone before. This publication summarizes the results obtained by Nakanishi’s lab in The Univ. of Tokyo, based on her original concept and her original tools or systems. It is useful for professional scientists, plant physiologist, and those studying plant imaging. The chapters demonstrates the innovative imaging work of the author, using radioactive tracers and neutron beam to follow the absorption and transport manner of water as well as major, minor, and trace elements in plants. Through these studies the author developed a real-time macroscopic and microscopic imaging system able to apply commercially available gamma- and beta-ray emitters. The real-time movement of the elements is now possible by using 14C, 18F, 22Na, 28Mg, 32P, 33P, 35S, 42K, 45Ca, 48V, 54Mn, 55Fe, 59Fe, 65Zn, 86Rb, 109Cd, and 137Cs. The imaging methods was applied to study the effect of 137Cs following 3/11 Fukushima Daiichi nuclear plant accident, which has revealed the movements of radiocesium in the contaminated sites. .
    Type of Medium: Online Resource
    Pages: XIX, 218 p. 170 illus., 121 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9789813349926
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Ecology . ; Agriculture. ; Plant Physiology. ; Ecology. ; Agriculture.
    Description / Table of Contents: Chapter 1. Effect of soil water deficits on plant-water relationship -- Chapter 2. Effects of soil water deficit on carbon metabolism of plants: A review -- Chapter 3. Effect of soil water deficit on nitrogen metabolism in plants: A review -- Chapter 4. Mineral nutrition under soil water deficit condition: A review -- Chapter 5. Effects of soil water deficit on growth and development of plants: A review -- Chapter 6. Soil water deficit and role of plant growth hormones: A review -- Chapter 7. Dry matter production, partitioning and seed yield under soil water deficit: A review.
    Abstract: This book explores the impact of soil water deficiency on various aspects of physiological processes in plants. The book explains the effects under soil water deficit condition such as lowering of plant water content, disturbance in carbon metabolism such in photosynthesis, photorespiration and respiration as well as effects of soil water deficit on nitrogen metabolism. The book also educates the readers about, mineral nutrition under soil water deficit condition and roles of different nutrient to overcome water deficit. Changes in growth and development pattern of plant under soil water deficit condition and effects on growth and development are elaborated. This book is of interest to teachers, researchers, scientists in botany and agriculture. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences. National and international agricultural scientists, policy makers will also find this to be a useful read. The in depth description of the major physiological issues in plants under soil water deficit that are presented in this book will help breeders tailoring crops for desirable physiological survival traits in the face of increasing soil water deficit. This book is an impactful addition to the library of any faculty members, researchers, agricultural policy planner, post graduate or student studying in plant physiology, biochemistry, microbiology and other subjects related to crop husbandry.
    Type of Medium: Online Resource
    Pages: XXI, 702 p. 27 illus., 7 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9789813362765
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Keywords: Plant physiology. ; Stress (Physiology). ; Plants. ; Botanical chemistry. ; Plant Physiology. ; Plant Stress Responses. ; Plant Biochemistry.
    Description / Table of Contents: Chapter 1. Antioxidants in Plant-Microbe Interaction -- Chapter 2. Plant microbe symbiosis led synthesis of bioactive compounds -- Chapter 3. Plant-Rhizobacteria communications with antioxidant system -- Chapter 4. Association of Non-Enzymatic Antioxidants in Plant Holobiont -- 5. Carotenoids and flavonoids in plant stress management -- Chapter 6. PGPR-the redeemer of rice from abiotic stress -- Chapter 7. Impact of PGPR on plant health and antioxidant enzymes under water stress conditions -- Chapter 8. Rhizospheric plant-microbe interactions releasing antioxidants and phytostimulating compounds in polluted agroecosystems -- Chapter 9. Role of Antioxidant in plant and microbes based remediation of metal stress -- Chapter 10. Amelioration of drought stress through PGPR mediated regulation of Antioxidant defensive machinery -- Chapter 11. Potential of plant growth promoting microbes in disease reduction by influencing the antioxidant enzymes of medicinal and spice plants -- Chapter 12. Antioxidants in spices: a review of the antioxidant components and properties of some common african spices and their role in human nutrition and plant-microbe interactions -- Chapter 13. Impact of plant growth promoting microbes (PGPM) in plant disease management by inducing non-enzymatic antioxidant -- Chapter 14. Antioxidants as modulators of plant defense against soil-borne fungal pathogens upon microbial interaction -- Chapter 15. A Promising Approach of Managing Seed Borne Pathogens through Plant Growth Promoting Microbes -- Chapter 16. Antioxidant Potential of Plant Growth Promoting Rhizobacteria (PGPR) in Agricultural Crops Infected with Root Knot Nematodes -- Chapter 17. Disease management and the role of antioxidants in combating plant pathogens upon PGPR inoculation with special reference to legumes -- Chapter 18. Rhizobacters as remedy of stress tolerance in potato plant -- Chapter 19. Secondary metabolites, boon for plants; their role in defence mechanism and antioxidant activity of Anthocephalus cadamba -- Chapter 20. Role of PGPR in conferring drought stress tolerance in Rice -- Chapter 21. Fenugreek-rhizobium symbiosis and Flavonoids under stress condition -- Chapter 22. Datura stramonium: An overview of its antioxidant system for plant benefits -- Chapter 23. PGPR mediated regulation of antioxidants: Prospects for abiotic stress management in plants -- Chapter 24. Prospects of PGPRs mediated antioxidants and S and P metabolism in plants under drought stress -- Chapter 25. Prominence of Antioxidant Potential of Plants and its induction by interaction with microorganisms -- Chapter 26. Bio-molecular painstaking utilization and assimilation of phosphorus under indigent stage in agricultural crops -- Chapter 27. Plant Antioxidant System Regulates Communication Under Abiotic Stress For Enhanced Plant Productivity -- Chapter 28. Nematophagous fungi in antioxidant mediated defence against plant parasitic nematodes -- Chapter 29. Biopriming and Nanopriming: Green Revolution Wings to Increase Plant Yield, Growth and Development under Stress Condition and Forward Dimensions.
    Abstract: This edited book is focused on antioxidant compounds and their biosynthesis, up-regulation, mechanism of action for selective bioactivity, targeted role and the advancement of their bioactive potential during plant-microbe interaction and other stress conditions. This book also emphasizes on the role of antioxidants in recruiting beneficial microbes in plant surroundings. Antioxidants have multiple biological roles in plants especially in the signalling pathway. These compounds are secondary metabolites produced besides the primary biosynthetic pathway and are associated with growth and development. Besides they also have special role to play during oxidative stress produced via abiotic stimulants or pathogen attack. This understanding of the biosynthesis, signaling and function of antioxidant compounds in plants during stress condition is helpful in restoring plant ecosystem productivity and improve plant responses to a wide range of stress conditions. This book is a useful compilation for researchers and academicians in botany, plant physiology, plant biochemistry and stress physiology. Also the book serves as reading material for undergraduate and graduate students of environmental sciences, agricultural sciences and other plant science courses.
    Type of Medium: Online Resource
    Pages: XII, 655 p. 52 illus., 46 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9789811613500
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Plant ecology. ; Stress (Physiology). ; Plants. ; Plant Physiology. ; Plant Ecology. ; Plant Stress Responses.
    Description / Table of Contents: Chapter 1: Introduction -- Chapter 2: Carbon dioxide -- Chapter 3: Methane -- Chapter 4: Nitrous Oxide -- Chapter 5: Ozone -- Chapter 6: Temperature -- Chapter 7: The Plant Water Status -- Chapter 8: Summary.
    Abstract: Global climate change is one of the most serious threats to the environment of the earth and to the crop production. Crop’s vulnerability to climate change stress caused by the greenhouse gases emission is a serious concern. This book describes various technologies and methods including the simulation of the future climate changes, studying the response of crop plants and characterizing their responses physiologically and biochemically. It includes the latest information of protocols and technologies for climate change research on agriculture. This book is of interest to teachers, researchers, climate change scientists, capacity builders and policymakers. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences. National and international agricultural scientists, policy makers will also find this to be a useful read.
    Type of Medium: Online Resource
    Pages: XVII, 134 p. 19 illus., 7 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9789811602047
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Keywords: Plant physiology. ; Botanical chemistry. ; Cytology. ; Environment. ; Environmental engineering. ; Biotechnology. ; Bioremediation. ; Plant Physiology. ; Plant Biochemistry. ; Cell Biology. ; Environmental Sciences. ; Environmental Engineering/Biotechnology.
    Description / Table of Contents: Chapter 1. Introduction -- PART I: Photosynthesis and Biomass Production under Changing World -- Chapter 2. Climate Change: Challenges to Reduce Global Warming and Role of Biofuels -- Chapter 3. The multifaceted connections between photosynthesis and mitochondrial metabolism -- Chapter 4. Regulation of assimilatory processes and distribution of energy for improved productivity -- Chapter 5. Strategies to enhance photosynthesis for the improvement of crop yields -- Chapter 6. Photosynthetic Acclimation and Adaptation to Cold Ecosystems -- Chapter 7. What is the limiting factor? – The key question for grain yield of maize as a renewable resource under salt stress -- PART II: Microalgae and engineered crops for production of biofuels and high-value products -- Chapter 8. Bio-production from microalgal resources -- Chapter 9. Hydrogen photoproduction in green algae: novel insights and future perspectives -- Chapter 10. Synthetic Biofuels and Green-House Gas Mitigation -- Chapter 11. Synthetic biology and future production of biofuels and high-value products -- PART III: Genetic resources and engineering methods to improve crop plants -- Chapter 12. Kinetics, genetics and heterosis -- Chapter 13. Genome information resources to improve plant biomass productivity -- Chapter 14. RNA interference: formproving traits and disease management in plants -- Chapter 15. Current transformation methods for genome editing applications in energy crop sugarcane -- Chapter 16. Development of transgenic sugarcane for insect resistance -- Chapter 17. Rapid Agrobacterium-mediated transformation of tobacco cotyledons using toothpicks Yuan-Yeu Yau, Mona Easterling and Lindsey Brennan -- Chapter 18. Genetic improvement of Jatropha curcas through conventional and biotechnological tools -- Chapter 19. Plant cell manipulation technology for bio-refinery. .
    Abstract: The use of fossil fuels results in rising CO2 and other greenhouse gas (GHG) emissions, causing global temperature rise and climate change that will negatively impact human health, the food supply, and eventually worsen hunger and misery. Presently, fossil fuels meet 88% of the energy demand, resulting in rising CO2/GHG emissions at alarming rates. The increased use of biofuels would help to mitigate climate change. Efficiently designing methods for the production of biofuels and plant-derived high-value products requires a deeper understanding of photosynthetic processes as a prerequisite for applying novel biotechnologies. Accordingly, this book provides ample information and a wealth of illustrative examples. The book’s eighteen richly illustrated chapters are divided into three thematic parts. I: Photosynthesis and Biomass Production under Changing Conditions, II: Microalgae and Engineered Crops for Production of Biofuels and High-value Products, and III: Genetic Resources and Engineering Methods to Improve Crop Plants. Readers will find the latest information on the molecular basis of photosynthetic processes in plants (including the regulatory principles that allow plants to maintain homeostasis under changing conditions), stress resistance and synthetic pathways. In addition, the basic principles of important biotechnologies, as well as examples of specially designed crops capable of growing under stress conditions with improved productivity, are presented. The book sets the course for future research in the field of biofuel development and production and provides both general and specific information for students, teachers, academic researchers, industrial teams, and general readers who are interested in new developments concerning the production of biofuels with value-added properties.
    Type of Medium: Online Resource
    Pages: XXVII, 490 p. 142 illus., 99 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811552281
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Keywords: Plant physiology. ; Botanical chemistry. ; Plants Development. ; Agriculture. ; Plant Physiology. ; Plant Biochemistry. ; Plant Development. ; Agriculture.
    Description / Table of Contents: Chapter 1: Reproductive Ecology of Flowering Plants: An Introduction -- Chapter 2: Climate Change and Vegetation Phenology -- Chapter 3: The Pistil: Structure in Relation to its Function -- Chapter 4: Pollen-Pistil Interaction and Fertilization -- Chapter 5: Olfactory Cues as Functional Traits in Plant Reproduction -- Chapter 6: A Snapshot of Evolutionary History of Floral Nectaries across Angiosperm Lineages -- Chapter 7: Floral Symmetry – What it is, How it Forms, and Why it Varies -- Chapter 8: Resource Allocation in Flowering Plants: Concept and Implications -- Chapter 9: Dynamics of Eco-evolutionary Forces in Shaping Dioecy -- Chapter 10: Secondary Pollen Presentation in Flowering Plants -- Chapter 11: Outbreeding in Angiosperms: Floral Architecture and Sexuality -- Chapter 12: Sexual Selection in Angiosperms: Paradox Re-visited -- Chapter 13: Role of Apomixis in Perpetuation of Flowering Plants: Ecological Perspective -- Chapter 14: Biotic Seed Dispersal Mechanisms Of Tropical Rain Forests – Bats, Fishes And Migratory Birds -- Chapter 15: (Trans)gene Flow: Mechanisms, Biosafety Concerns and Mitigation for Containment -- Chapter 16: ‘Global Pollinator Crisis’ and its Impact on Crop Productivity and Sustenance of Plant Diversity.
    Abstract: Sexual reproduction is the predominant mode of perpetuation for flowering plant species. Investigating the reproductive strategies of plants has grown to become a vast area of research and, in crop plants, covers events from flowering to fruit and seed development; in wild species, it extends up to seed dispersal and seedling recruitment. Thus, reproduction determines the extent of yield in crop plants and, in wild plants, also determines the efficacy of recruiting new adults to the population, making this field important both from fundamental and applied plant biology perspectives. Moreover, in light of the growing concerns regarding food and nutritional security for the growing population and preserving biological diversity, reproductive biology of flowering plants has acquired special significance. Extensive studies on various facets of reproduction are being carried out around the world. However, these studies are scattered across research journals and reviews from diverse areas of biology. The present volume covers the whole spectrum of reproductive ecology, from phenology and floral biology, to sexuality and pollination biology/ecology including floral rewards, breeding systems, apomixis and seed dispersal. In turn, transgene flow, its biosafety and mitigation approaches, and the ‘global pollinator crisis’, which has become a major international concern in light of the urgent need to sustain crop yield and biodiversity, are discussed in detail. Given its scope, the book offers a valuable resource for students, teachers and researchers of botany, zoology, ecology, agriculture and forestry, as well as conservation biologists.
    Type of Medium: Online Resource
    Pages: XVII, 413 p. 38 illus., 24 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811542107
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Keywords: Plant physiology. ; Climatology. ; Agriculture. ; Environmental management. ; Plant Physiology. ; Climate Sciences. ; Agriculture. ; Environmental Management.
    Description / Table of Contents: 1. Climate change influences the interactive effects of the simultaneous impact of abiotic and biotic stresses on plants -- 2. Loss of Agro Bio-Diversity and Productivity Due To Climate Change in Continent Asia: A Review -- 3. Stress Implications and Crop Productivity -- 4. Impact of Climate Change on Postharvest Physiology of Edible Plant Products -- 5. Plant adaption and tolerance to environmental stresses: mechanisms and perspective -- 6. Crop growth responses towards elevated atmospheric CO2 environment -- 7. Coping with saline environment: learning from halophytes -- 8. Ecophysiology and responses of plants under drought -- 9. Strategies for drought tolerance in xerophytes -- 10. Ecophysiology and response of plants under high temperature stress -- 11. Adaptation and tolerance of wheat to heat stress -- 12. High-temperature tolerance of flowers -- 13. Assessing the effects of high night temperature on rice photosynthetic parameters: involvement of cellular membrane damage and ethylene response -- 14. Ecophysiological Responses of Plants under Metals/ Metalloids Toxicity -- 15. Ecophysiology of plants under cadmium toxicity: Photosynthetic and physiological responses -- 16. Ecophysiology and stress responses of aquatic macrophytes under metals/metalloids toxicity -- 17. Physiological, Biochemical and Molecular Responses of the plants against enhanced Ultraviolet B and Heavy Metal stress -- 18. Impact of UV radiation on photosynthetic apparatus: Adaptive and damaging mechanisms -- 19. UV-B and UV-B/white light induced inhibition of thylakoid electron transfer reactions studied by fluorescence induction and fluorescence decay: damage to donor and acceptor side components of PSII -- 20. Climate Change and Plant Abiotic Stress: Responses, Sensing and Signaling -- 21. Plant signaling under adverse environment -- 22. Plant-based Biostumulants and Plant Stress Responses -- 23. Transcription factors and plant abiotic stress responses -- 24. Ecophysiological Adaptation of Soybeans to Latitudes through Photoperiodic and Growth Habit Genes -- 25. Arsenic accumulation, compartmentation and complexation in Arthrocnemum indicum -- 26. Plant-Microbe Interactions under Adverse Environment -- 27. Breeding Plants for Future Climates -- 28. Adaptive physiological responses of plants under abiotic stresses: role of phytohormones -- 29. Biochemical and Molecular mechanism of Abiotic stress Tolerance in plants. .
    Abstract: This book presents the state-of-the-art in plant ecophysiology. With a particular focus on adaptation to a changing environment, it discusses ecophysiology and adaptive mechanisms of plants under climate change. Over the centuries, the incidence of various abiotic stresses such as salinity, drought, extreme temperatures, atmospheric pollution, metal toxicity due to climate change have regularly affected plants and, and some estimates suggest that environmental stresses may reduce the crop yield by up to 70%. This in turn adversely affects the food security. As sessile organisms, plants are frequently exposed to various environmental adversities. As such, both plant physiology and plant ecophysiology begin with the study of responses to the environment. Provides essential insights, this book can be used for courses such as Plant Physiology, Environmental Science, Crop Production and Agricultural Botany. Volume 1 provides up-to-date information on the impact of climate change on plants, the general consequences and plant responses to various environmental stresses.
    Type of Medium: Online Resource
    Pages: XXI, 859 p. 87 illus., 54 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811521560
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Botanical chemistry. ; Plants Development. ; Agriculture. ; Plant Physiology. ; Plant Biochemistry. ; Plant Development. ; Agriculture.
    Description / Table of Contents: Chapter 1. Abiotic Stress in Plants: An Overview -- Chapter 2. Silicon: A Plant Nutritional ‘Non-Entity’ for Mitigating Abiotic Stresses -- Chapter 3. Plant Morphological, Physiological Traits Associated with Adaptation Against Heat Stress in Wheat and Maize -- Chapter 4.Breeding and Molecular Approaches for Evolving Drought Tolerant Soybeans -- Chapter 5. Plant Roots and Mineral Nutrition: An Overview of Molecular Basis of Uptake and Regulation, and Strategies to Improve Nutrient Use Efficiency (NUE) -- Chapter 6. Plant Growth Promoting Rhizobacteria: Mechanisms and Alleviation of Cold Stress in Plants -- Chapter 7. Microbe-mediated mitigation of abiotic stress in plants -- Chapter 8. Orchestration of microRNAs and transcription factors in regulation of plant abiotic stress response -- Chapter 9. Phytohormones:A Promising Alternative in Boosting Salinity Stress Tolerance in Plants -- Chapter 10. Microbe-Mediated Biotic Stress Signaling and Resistance Mechanisms in Plants -- Chapter 11. Role of Wrkytranscription Factor Super Family in Plant Disease Management -- Chapter 12. Unraveling the Molecular Mechanism of Magnaporthe Oryzae Induced Signaling Cascade in Rice -- Chapter 13. The Role of Endophytic Insect-Pathogenic Fungi in Biotic Stress Management -- Chapter 14. Biological Overview and Adaptability Strategies of Tamarix Plants, T. articulata and T. gallica to Abiotic Stress -- Chapter 15. Plant Synthetic Biology: A Paradigm Shift Targeting Stress Mitigation, Reduction of Ecological Footprints and Sustainable Transformation in Agriculture -- Chapter 16. Role of Calcium Signalling During Plant-Herbivore Interaction. .
    Abstract: Plants growing in the natural environment battle with a variety of biotic (pathogens infection) and abiotic (salinity, drought, heat and cold stresses etc.) stresses. These physiological stresses drastically affect plant growth and productivity under field conditions. These challenges are likely to grow as a consequences of global climate change and pose a threat to the food security. Therefore, acquaintance with underlying signalling pathways, physiological, biochemical and molecular mechanisms in plants and the role of beneficial soil microorganisms in plant’s stress tolerance are pivotal for sustainable crop production. This volume written by the experts in the stress physiology and covers latest research on plant’s tolerance to abiotic and biotic stresses. It elaborates on the potential of plant-microbe interactions to avoid the damage caused by these stresses. With comprehensive information on theoretical, technical and experimental aspects of plant stress biology, this extensive volume is a valuable resource for researchers, academician and students in the broad field of plant stress biology, physiology, microbiology, environmental and agricultural science.
    Type of Medium: Online Resource
    Pages: XVI, 510 p. 45 illus., 41 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811593802
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Keywords: Plant physiology. ; Agriculture. ; Plant biotechnology. ; Plant genetics. ; Botanical chemistry. ; Climatology. ; Plant Physiology. ; Agriculture. ; Plant Biotechnology. ; Plant Genetics. ; Plant Biochemistry. ; Climate Sciences.
    Description / Table of Contents: 1.The Plant Family Brassicaceae: Introduction, Biology and Importance -- 2. Agricultural, Economic and Societal Importance of Brassicaceae Plants -- 3.Arabidopsis thaliana: Model Plant for the Study of Abiotic Stress Responses -- 4. Newly Revealed Promising Gene Pools of Neglected Brassica Species to Improve Stress-Tolerant Crops -- 5. Improved Tolerance to Stresses of Different Origin in Camelina sativa: Conventional Breeding and Biotechnology -- 6. Brassicaceae Plants Response and Tolerance to Salinity -- 7. Brassicaceae Plants Response and Tolerance to Drought Stress: Physiological and Molecular Interventions -- 8.Rapeseed: Biology and Physiological Responses to Drought stress -- 9. Responses and Tolerance of Brassicas to High Temperature -- 10.Brassicaceae Plants Response and Tolerance to Waterlogging and Flood etc. .
    Abstract: This book provides all aspects of the physiology, stress responses and tolerance to abiotic stresses of the Brassicaceae plants. Different plant families have been providing food, fodder, fuel, medicine and other basic needs for the human and animal since the ancient time. Among the plant families, Brassicaceae has special importance for their agri-horticultural importance and multifarious uses apart from the basic needs. Interest understanding the response of Brassicaceae plants toward abiotic stresses is growing considering the economic importance and the special adaptive mechanisms. The knowledge needs to be translated into improved elite lines that can contribute to achieve food security. The physiological and molecular mechanisms acting on Brassicaceae introduced in this book are useful to students and researchers working on biology, physiology, environmental interactions and biotechnology of Brassicaceae plants.
    Type of Medium: Online Resource
    Pages: XIV, 531 p. 29 illus., 26 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811563454
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Sustainability. ; Plant ecology. ; Soil science. ; Plant biotechnology. ; Plant Physiology. ; Sustainability. ; Plant Ecology. ; Soil Science. ; Plant Biotechnology.
    Description / Table of Contents: 1. Soil Carbon Sequestration in Crop Production -- 2. Soil Quality for Sustainable Agriculture -- 3. Integrated Nutrient Management for Sustainable Crop Production and Improving Soil Health -- 4. Management of Micronutrients in Soil for the Nutritional Security -- 5. Nitrogen Footprint: A Useful Indicator of Agricultural Sustainability -- 6. Strategies for Identification of Genes towards Enhancing Nitrogen Utilization Efficiency in Cereals -- 7. Improving the Nitrogen Cycling in Livestock Systems through Silvopastoral Systems -- 8. Enhanced Phosphorus Fertilizer Use Efficiency with Microorganisms -- 9. Use of organic and biological fertilizers as strategies to improve crop biomass and yields and physicochemical parameters of soil -- 10. Organic Fertilizers for Sustainable Soil and Environmental Management -- 11. Role of Nanotechnology for Enhanced Rice Production.
    Abstract: The cropping system is one of the important components of sustainable agriculture, since it provides more efficient nutrient cycling. As such, balanced fertilization must be based on the concept of sustainable crop production. Feeding the rapidly growing world population using environmentally sustainable production systems is a major challenge, especially in developing countries. A number of studies have highlighted the fact that degradation of the world's cultivated soils is largely responsible for low and plateauing yields. Soil is lost rapidly but only formed over millennia, and this represents the greatest global threat to nutrient dynamics in agriculture. This means that nutrient management is essential to provide food and nutritional security for current and future generations. Nutrient dynamics and soil sustainability imply the maintenance of the desired ecological balance, the enhancement and preservation of soil functions, and the protection of biodiversity above and below ground. Understanding the role of nutrient management as a tool for soil sustainability and nutritional security requires a holistic approach to a wide range of soil parameters (biological, physical, and chemical) to assess the soil functions and nutrient dynamics of a crop management system within the desired timescale. Further, best nutrient management approaches are important to advance soil sustainability and food and nutritional security without compromising the soil quality and productive potential. Sustainable management practices must allow environmentally and economically sustainable yields and restore soil health and sustainability. This book presents soil management approaches that can provide a wide range of benefits, including improved fertility, with a focus on the importance of nutrient dynamics. Discussing the broad impacts of nutrients cycling on the sustainability of soil and the cropping systems that it supports, it also addresses nutrient application to allow environmentally and economically sustainable agroecosystems that restore soil health. Arguing that balanced fertilization must be based on the concept of INM for a cropping system rather than a crop, it provides a roadmap to nutrient management for sustainability. This richly illustrated book features tables, figures and photographs and includes extensive up-to-date references, making it a valuable resource for policymakers and researchers, as well as undergraduate and graduate students of Soil Science, Agronomy, Ecology and Environmental Sciences.
    Type of Medium: Online Resource
    Pages: VIII, 350 p. 61 illus., 58 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811386602
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Keywords: Plant physiology. ; Climatology. ; Agriculture. ; Environmental management. ; Plant Physiology. ; Climate Sciences. ; Agriculture. ; Environmental Management.
    Description / Table of Contents: 1. Salinity stress management in field crops: An Overview of the Agronomic approaches -- 2. Improving cotton crop tolerance to drought stress through molecular approaches -- 3. Mechanisms of Plant Adaptation and Tolerance to Heat Stress -- 4. Molecular Mechanism of Plant Adaptation and Tolerance to Cold Stress -- 5. Mechanism of waterlogging stress tolerance in pigeonpea plants: Biochemical and anatomical adaptation under waterlogging -- 6. Mechanisms of Plant Adaptation and Tolerance to Metal/ Metalloid Toxicity -- 7. Arsenic Tolerance Mecahnisms in Plants and Potential Role of Arsenic Hyper- Accumulating Plants for Phytoremediation of Arsenic Contaminated Soil -- 8. Adaptive Strategies of Plants under Adverse Environment: Mitigating Effects of Antioxidant System -- 9. Biochemical and Molecular Mechanisms of Abiotic Stress Tolerance -- 10. Use of Biostimulants in Conferring Tolerance to Environmental Stress -- 11. Use of Phytohormones in Conferring Tolerance to Environmental Stress -- 12. Proline and Abiotic Stresses: Responses and Adaptation -- 13. Physiological Role of Gamma Aminobutyric Acid (GABA) in Salt Stress Tolerance -- 14. Sulfur Mediated Physiological and Biochemical Alterations to Improve Abiotic Stress Tolerance in Food Crops -- 15. Magnetic fields, temperature and exogenous selenium effect on reactive oxygen species metabolism of plants under flooding and metal toxicity -- 16. Grafting plants to improve abiotic stress tolerance -- 17. Role of Molecular Tools and Biotechnology in Climate Resilient Agriculture -- 18. Transcriptomics in deciphering stress tolerance in plants -- 19. Regulatory role of transcription factors in abiotic stress responses in plants -- 20. Molecular Marker Tools for Breeding Program in Crops/Plants -- 21. Plant-microbe interactions in developing environmental stress resistance in plants -- 22. Role of Plant Endophytes in Conferring Abiotic Stress Tolerance -- 23. Dark septate endophytic fungi (DSE) response to global change and soil contamination -- 24. Can mycorrhizal symbiosis mitigate the adverse effects of climate change on crop production? -- 25. Plant-microbe interactions in wastewater-irrigated soils -- 26. Phytoremediation of Heavy Metals: An Overview and New Insight on Green Approaches -- 27. Phytoremediation of metal contaminated sites -- 28. Current trends of phytoremediation in wetlands: Mechanisms and applications -- 29. Mechanisms of arsenic hyperaccumulation by plants -- 30. Biochar- a sustainable product for remediation of contaminated soils -- 31. Phytoremediation potential of Oil seed crops for Lead and Nickel contaminated soil -- 32. Adaptation of halophytes to the gradient conditions on the northern seas coast.
    Abstract: This book presents the state-of-the-art in plant ecophysiology. With a particular focus on adaptation to a changing environment, it discusses ecophysiology and adaptive mechanisms of plants under climate change. Over the centuries, the incidence of various abiotic stresses such as salinity, drought, extreme temperatures, atmospheric pollution, metal toxicity due to climate change have regularly affected plants and, and some estimates suggest that environmental stresses may reduce the crop yield by up to 70%. This in turn adversely affects the food security. As sessile organisms, plants are frequently exposed to various environmental adversities. As such, both plant physiology and plant ecophysiology begin with the study of responses to the environment. Provides essential insights, this book can be used for courses such as Plant Physiology, Environmental Science, Crop Production and Agricultural Botany. Volume 2 provides up-to-date information on the impact of climate change on plants, the general consequences and plant responses to various environmental stresses.
    Type of Medium: Online Resource
    Pages: XXII, 861 p. 59 illus., 41 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811521720
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Keywords: Plant physiology. ; Agriculture. ; Plant biotechnology. ; Botanical chemistry. ; Plant genetics. ; Climatology. ; Plant Physiology. ; Agriculture. ; Plant Biotechnology. ; Plant Biochemistry. ; Plant Genetics. ; Climate Sciences.
    Description / Table of Contents: 1. The biology of legumes and their agronomic, economic and social impact -- 2.Tropical Legumes: Status, Distribution, Biology and Importance -- 3.Nitrogen fixation of legumes: Biology and physiology -- 4.Nitrogen fixation of legumes under the family Fabaceae: Adverse effect of abiotic stresses and mitigation strategies -- 5.Genetic engineering and genome editing for the improvement of Fabaceae for abiotic stress tolerance -- 6.GWAS and genomic approaches in Legumes, an expanding toolkit for examining responses to abiotic stresses -- 7.Use of Osmolytes for Improving Abiotic Stress Tolerance in Fabaceae Plants -- 8.Role of biostimulants for enhancing abiotic stress tolerance in Fabaceae plants -- 9.Abiotic and biotic stresses interaction in Fabaceae plants. Contributions from the grain legumes–soilborne vascular diseases–drought stress triangle -- 10.Leguminosae (nom. alt. Fabaceae) – Its Diversity, Use and Role in Environmental Conservation in the Harsh Environs of the Cold Deserts of North West India -- 11.Morphological, physiobiochemical and molecular adaptability of legumes of Fabaceae to drought stress, with special reference to Medicago sativa L. -- 12.Phaseolus species responses and tolerance to drought -- 13.Fabaceae plants responses and tolerance to high temperature stress -- 14.Legume responses and adaptations to nutrient deficiencies -- 15.Nutrient Management for improving abiotic stress tolerance in legumes of the family Fabaceae -- 16.Fabaceous Plants Under Abiotic Stresses and Biochemical Functions of Micronutrients -- 17.Response and tolerance of Fabaceae plant to metal/metalloid toxicity -- 18.Oxidative stress and antioxidant defense in Fabaceae plants under abiotic stresses -- 19.Threat imposed by O3 induced ROS on defence, nitrogen fixation, physiology, biomass allocation and yield of legumes -- 20.Salinity Stress Responses in Three Popular Field Crops Belonging to Fabaceae Family: Current Status and Future Prospect. .
    Abstract: This book comprehensively introduces all aspects of the physiology, stress responses and tolerance to abiotic stresses of the Fabaceae plants. Different plant families have been providing food, fodder, fuel, medicine and other basic needs for the human and animal since the ancient time. Among the plant families Fabaceae have special importance for their agri-horticultural importance and multifarious uses apart from the basic needs. Interest in the response of Fabaceae plants toward abiotic stresses is growing considering the economic importance and the special adaptive mechanisms. Recent advances and developments in molecular and biotechnological tools has contributed to ease and wider this mission. This book provides up-to-date findings that will be of greater use for the students and researchers, particularly Plant Physiologists, Environmental Scientists, Biotechnologists, Botanists, Food Scientists and Agronomists, to get the information on the recent advances on this plant family in regard to physiology and stress tolerance.
    Type of Medium: Online Resource
    Pages: XIX, 541 p. 35 illus., 34 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811547522
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Keywords: Plant physiology. ; Cytology. ; Proteins . ; Proteins. ; Plant Physiology. ; Cell Biology. ; Protein Biochemistry. ; Proteins.
    Description / Table of Contents: Introduction of plant reproduction and cell-cell communication -- Methods and materials -- Results -- Conclusions and discussions.
    Abstract: This book summarizes the latest studies on plant reproduction and multiple aspects of signaling in reproductive development. It also presents the most advanced processes in CrRLK1L receptor and RALF peptide studies during plant development. Focusing on signaling in pollen tube integrity and sperm release regulation, it provides significant insights into the BUPS-ANX receptor complex and the corresponding ligands RALF4/19 to promote pollen tube growth with proper cell integrity. It also proposes a working model of female tissue-derived RALF34 competing with RALF4/19 from the BUPS-ANX to trigger pollen tube rupture and sperm release. Offering a detailed overview of the spatiotemporal regulation mechanism underlying the control of pollen tube integrity and sperm release, the book fills a major gap in our understanding of plant reproductive processes, and as such is a valuable resource for those working in the area of plant signaling.
    Type of Medium: Online Resource
    Pages: XX, 71 p. 27 illus., 23 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811554919
    Series Statement: Springer Theses, Recognizing Outstanding Ph.D. Research,
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Plant physiology. ; Water. ; Hydrology. ; Microbial ecology. ; Microbiology. ; Botanical chemistry. ; Plant Physiology. ; Water. ; Microbial Ecology. ; Microbiology. ; Plant Biochemistry.
    Description / Table of Contents: Part 1. Photosynthesis and Energy Transfer -- Chapter 1. Molecular mechanism of photosynthesis driven by red-shifted chlorophylls -- Chapter 2. Cyanobacterial NDH-1-photosystem I supercomplex -- Chapter 3. Recent progress on the LH1-RC complexes of purple photosynthetic bacteria -- Chapter 4. Composition, organisation, and function of purple photosynthetic machinery -- Chapter 5. Redox potentials of quinones in aqueous solution: Relevance to redox potentials in protein environments -- Chapter 6. Photosynthesis in Chlamydomonas reinhardtii: what we have learned so far? -- Part 2. Photosynthesis and the Environment -- Chapter 7. Photosynthetic performances of marine microalgae under influences of rising CO2 and solar UV radiation -- Chapter 8. Acquisition of Inorganic Carbon by Microalgae and Cyanobacteria -- Chapter 9. Circadian Clocks in Cyanobacteria -- Chapter 10. Iron Deficiency in Cyanobacteria -- Chapter 11. Adaptive Mechanisms of the Model Photosynthetic Organisms, Cyanobacteria, to Iron Deficiency -- Chapter 12. The roles of sRNAs in regulating stress responses in cyanobacteria -- Part 3. Artificial Photosynthesis and Light-driven Biofactory -- Chapter 13. Mimicking the Mn4CaO5-cluster in Photosystem II -- Chapter 14. Photosynthetic improvement of industrial microalgae for biomass and biofuel production -- Chapter 15. Self-assembly, organisation, regulation, and engineering of carboxysomes: CO2-fixing prokaryotic organelles. .
    Abstract: As the largest scale chemical reaction, photosynthesis supplies all of the organic carbon and oxygen for life on Earth. It is estimated that the photosynthetic activity of microorganisms is responsible for more than 50% of the primary production of molecular oxygen on Earth. This book highlights recent breakthroughs in the multidisciplinary areas of microbial photosynthesis, presenting the latest developments in various areas of microbial photosynthesis research, from bacteria to eukaryotic algae, and from theoretical biology to structural biology and biophysics. Furthermore, the book discusses advances in photosynthetic chassis, such as in the context of metabolic engineering and green chemical production. Featuring contributions by leading authorities in photosynthesis research, the book is a valuable resource for graduate students and researchers in the field, especially those studying biological evolution and the origin of life. .
    Type of Medium: Online Resource
    Pages: VIII, 343 p. 83 illus., 70 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811531101
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...