ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Bücher  (3)
  • Artikel
  • Environmental Management.  (2)
  • Sustainability.
  • Englisch  (3)
  • Finnisch
  • Deutsch
  • Polnisch
  • Schwedisch
  • 2020-2024  (3)
  • 2010-2014
  • 2005-2009
  • 1985-1989
  • 1950-1954
  • 2020  (3)
  • 2014
  • 1988
  • 1987
  • 571.2  (3)
Sammlung
  • Bücher  (3)
  • Artikel
Sprache
  • Englisch  (3)
  • Finnisch
  • Deutsch
  • Polnisch
  • Schwedisch
Erscheinungszeitraum
  • 2020-2024  (3)
  • 2010-2014
  • 2005-2009
  • 1985-1989
  • 1950-1954
Jahr
  • 2020  (3)
  • 2014
  • 1988
  • 1987
DDC
  • 1
    Schlagwort(e): Plant physiology. ; Climatology. ; Agriculture. ; Environmental management. ; Plant Physiology. ; Climate Sciences. ; Agriculture. ; Environmental Management.
    Beschreibung / Inhaltsverzeichnis: 1. Climate change influences the interactive effects of the simultaneous impact of abiotic and biotic stresses on plants -- 2. Loss of Agro Bio-Diversity and Productivity Due To Climate Change in Continent Asia: A Review -- 3. Stress Implications and Crop Productivity -- 4. Impact of Climate Change on Postharvest Physiology of Edible Plant Products -- 5. Plant adaption and tolerance to environmental stresses: mechanisms and perspective -- 6. Crop growth responses towards elevated atmospheric CO2 environment -- 7. Coping with saline environment: learning from halophytes -- 8. Ecophysiology and responses of plants under drought -- 9. Strategies for drought tolerance in xerophytes -- 10. Ecophysiology and response of plants under high temperature stress -- 11. Adaptation and tolerance of wheat to heat stress -- 12. High-temperature tolerance of flowers -- 13. Assessing the effects of high night temperature on rice photosynthetic parameters: involvement of cellular membrane damage and ethylene response -- 14. Ecophysiological Responses of Plants under Metals/ Metalloids Toxicity -- 15. Ecophysiology of plants under cadmium toxicity: Photosynthetic and physiological responses -- 16. Ecophysiology and stress responses of aquatic macrophytes under metals/metalloids toxicity -- 17. Physiological, Biochemical and Molecular Responses of the plants against enhanced Ultraviolet B and Heavy Metal stress -- 18. Impact of UV radiation on photosynthetic apparatus: Adaptive and damaging mechanisms -- 19. UV-B and UV-B/white light induced inhibition of thylakoid electron transfer reactions studied by fluorescence induction and fluorescence decay: damage to donor and acceptor side components of PSII -- 20. Climate Change and Plant Abiotic Stress: Responses, Sensing and Signaling -- 21. Plant signaling under adverse environment -- 22. Plant-based Biostumulants and Plant Stress Responses -- 23. Transcription factors and plant abiotic stress responses -- 24. Ecophysiological Adaptation of Soybeans to Latitudes through Photoperiodic and Growth Habit Genes -- 25. Arsenic accumulation, compartmentation and complexation in Arthrocnemum indicum -- 26. Plant-Microbe Interactions under Adverse Environment -- 27. Breeding Plants for Future Climates -- 28. Adaptive physiological responses of plants under abiotic stresses: role of phytohormones -- 29. Biochemical and Molecular mechanism of Abiotic stress Tolerance in plants. .
    Kurzfassung: This book presents the state-of-the-art in plant ecophysiology. With a particular focus on adaptation to a changing environment, it discusses ecophysiology and adaptive mechanisms of plants under climate change. Over the centuries, the incidence of various abiotic stresses such as salinity, drought, extreme temperatures, atmospheric pollution, metal toxicity due to climate change have regularly affected plants and, and some estimates suggest that environmental stresses may reduce the crop yield by up to 70%. This in turn adversely affects the food security. As sessile organisms, plants are frequently exposed to various environmental adversities. As such, both plant physiology and plant ecophysiology begin with the study of responses to the environment. Provides essential insights, this book can be used for courses such as Plant Physiology, Environmental Science, Crop Production and Agricultural Botany. Volume 1 provides up-to-date information on the impact of climate change on plants, the general consequences and plant responses to various environmental stresses.
    Materialart: Online-Ressource
    Seiten: XXI, 859 p. 87 illus., 54 illus. in color. , online resource.
    Ausgabe: 1st ed. 2020.
    ISBN: 9789811521560
    DDC: 571.2
    Sprache: Englisch
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Singapore :Springer Nature Singapore :
    Schlagwort(e): Plant physiology. ; Sustainability. ; Plant ecology. ; Soil science. ; Plant biotechnology. ; Plant Physiology. ; Sustainability. ; Plant Ecology. ; Soil Science. ; Plant Biotechnology.
    Beschreibung / Inhaltsverzeichnis: 1. Soil Carbon Sequestration in Crop Production -- 2. Soil Quality for Sustainable Agriculture -- 3. Integrated Nutrient Management for Sustainable Crop Production and Improving Soil Health -- 4. Management of Micronutrients in Soil for the Nutritional Security -- 5. Nitrogen Footprint: A Useful Indicator of Agricultural Sustainability -- 6. Strategies for Identification of Genes towards Enhancing Nitrogen Utilization Efficiency in Cereals -- 7. Improving the Nitrogen Cycling in Livestock Systems through Silvopastoral Systems -- 8. Enhanced Phosphorus Fertilizer Use Efficiency with Microorganisms -- 9. Use of organic and biological fertilizers as strategies to improve crop biomass and yields and physicochemical parameters of soil -- 10. Organic Fertilizers for Sustainable Soil and Environmental Management -- 11. Role of Nanotechnology for Enhanced Rice Production.
    Kurzfassung: The cropping system is one of the important components of sustainable agriculture, since it provides more efficient nutrient cycling. As such, balanced fertilization must be based on the concept of sustainable crop production. Feeding the rapidly growing world population using environmentally sustainable production systems is a major challenge, especially in developing countries. A number of studies have highlighted the fact that degradation of the world's cultivated soils is largely responsible for low and plateauing yields. Soil is lost rapidly but only formed over millennia, and this represents the greatest global threat to nutrient dynamics in agriculture. This means that nutrient management is essential to provide food and nutritional security for current and future generations. Nutrient dynamics and soil sustainability imply the maintenance of the desired ecological balance, the enhancement and preservation of soil functions, and the protection of biodiversity above and below ground. Understanding the role of nutrient management as a tool for soil sustainability and nutritional security requires a holistic approach to a wide range of soil parameters (biological, physical, and chemical) to assess the soil functions and nutrient dynamics of a crop management system within the desired timescale. Further, best nutrient management approaches are important to advance soil sustainability and food and nutritional security without compromising the soil quality and productive potential. Sustainable management practices must allow environmentally and economically sustainable yields and restore soil health and sustainability. This book presents soil management approaches that can provide a wide range of benefits, including improved fertility, with a focus on the importance of nutrient dynamics. Discussing the broad impacts of nutrients cycling on the sustainability of soil and the cropping systems that it supports, it also addresses nutrient application to allow environmentally and economically sustainable agroecosystems that restore soil health. Arguing that balanced fertilization must be based on the concept of INM for a cropping system rather than a crop, it provides a roadmap to nutrient management for sustainability. This richly illustrated book features tables, figures and photographs and includes extensive up-to-date references, making it a valuable resource for policymakers and researchers, as well as undergraduate and graduate students of Soil Science, Agronomy, Ecology and Environmental Sciences.
    Materialart: Online-Ressource
    Seiten: VIII, 350 p. 61 illus., 58 illus. in color. , online resource.
    Ausgabe: 1st ed. 2020.
    ISBN: 9789811386602
    DDC: 571.2
    Sprache: Englisch
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Schlagwort(e): Plant physiology. ; Climatology. ; Agriculture. ; Environmental management. ; Plant Physiology. ; Climate Sciences. ; Agriculture. ; Environmental Management.
    Beschreibung / Inhaltsverzeichnis: 1. Salinity stress management in field crops: An Overview of the Agronomic approaches -- 2. Improving cotton crop tolerance to drought stress through molecular approaches -- 3. Mechanisms of Plant Adaptation and Tolerance to Heat Stress -- 4. Molecular Mechanism of Plant Adaptation and Tolerance to Cold Stress -- 5. Mechanism of waterlogging stress tolerance in pigeonpea plants: Biochemical and anatomical adaptation under waterlogging -- 6. Mechanisms of Plant Adaptation and Tolerance to Metal/ Metalloid Toxicity -- 7. Arsenic Tolerance Mecahnisms in Plants and Potential Role of Arsenic Hyper- Accumulating Plants for Phytoremediation of Arsenic Contaminated Soil -- 8. Adaptive Strategies of Plants under Adverse Environment: Mitigating Effects of Antioxidant System -- 9. Biochemical and Molecular Mechanisms of Abiotic Stress Tolerance -- 10. Use of Biostimulants in Conferring Tolerance to Environmental Stress -- 11. Use of Phytohormones in Conferring Tolerance to Environmental Stress -- 12. Proline and Abiotic Stresses: Responses and Adaptation -- 13. Physiological Role of Gamma Aminobutyric Acid (GABA) in Salt Stress Tolerance -- 14. Sulfur Mediated Physiological and Biochemical Alterations to Improve Abiotic Stress Tolerance in Food Crops -- 15. Magnetic fields, temperature and exogenous selenium effect on reactive oxygen species metabolism of plants under flooding and metal toxicity -- 16. Grafting plants to improve abiotic stress tolerance -- 17. Role of Molecular Tools and Biotechnology in Climate Resilient Agriculture -- 18. Transcriptomics in deciphering stress tolerance in plants -- 19. Regulatory role of transcription factors in abiotic stress responses in plants -- 20. Molecular Marker Tools for Breeding Program in Crops/Plants -- 21. Plant-microbe interactions in developing environmental stress resistance in plants -- 22. Role of Plant Endophytes in Conferring Abiotic Stress Tolerance -- 23. Dark septate endophytic fungi (DSE) response to global change and soil contamination -- 24. Can mycorrhizal symbiosis mitigate the adverse effects of climate change on crop production? -- 25. Plant-microbe interactions in wastewater-irrigated soils -- 26. Phytoremediation of Heavy Metals: An Overview and New Insight on Green Approaches -- 27. Phytoremediation of metal contaminated sites -- 28. Current trends of phytoremediation in wetlands: Mechanisms and applications -- 29. Mechanisms of arsenic hyperaccumulation by plants -- 30. Biochar- a sustainable product for remediation of contaminated soils -- 31. Phytoremediation potential of Oil seed crops for Lead and Nickel contaminated soil -- 32. Adaptation of halophytes to the gradient conditions on the northern seas coast.
    Kurzfassung: This book presents the state-of-the-art in plant ecophysiology. With a particular focus on adaptation to a changing environment, it discusses ecophysiology and adaptive mechanisms of plants under climate change. Over the centuries, the incidence of various abiotic stresses such as salinity, drought, extreme temperatures, atmospheric pollution, metal toxicity due to climate change have regularly affected plants and, and some estimates suggest that environmental stresses may reduce the crop yield by up to 70%. This in turn adversely affects the food security. As sessile organisms, plants are frequently exposed to various environmental adversities. As such, both plant physiology and plant ecophysiology begin with the study of responses to the environment. Provides essential insights, this book can be used for courses such as Plant Physiology, Environmental Science, Crop Production and Agricultural Botany. Volume 2 provides up-to-date information on the impact of climate change on plants, the general consequences and plant responses to various environmental stresses.
    Materialart: Online-Ressource
    Seiten: XXII, 861 p. 59 illus., 41 illus. in color. , online resource.
    Ausgabe: 1st ed. 2020.
    ISBN: 9789811521720
    DDC: 571.2
    Sprache: Englisch
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...