ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4,931,745)
  • Articles: DFG German National Licenses  (4,883,138)
  • Articles and Proceedings (GFZpublic)  (48,607)
Collection
  • Articles  (4,931,745)
Source
Years
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters B 294 (1992), S. 466-478 
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters B 317 (1993), S. 474-484 
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-10-11
    Description: At the geothermal research platform Gross Schönebeck (NE German Basin), we analysed 3-D seismic reflection data to determine the degree and direction of azimuthal velocity anisotropy which is interpreted as the effect of sub-vertical fracturing. Above the Zechstein salt, the observed anisotropy roughly correlates to fault structures formed by an upwelling salt pillow. Below the salt, faults are not obvious and the direction of less pronounced anisotropy and interpreted fracturing follows the trend of the regional stress field. The fracturing in an extensional setting above salt pillows may cause higher permeability and better conditions for geothermal exploitation.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-18
    Description: Stratigraphy along the Brazilian Equatorial Margin is a crucial guide to the geodynamic history of rifting of Pangea and formation of the South Atlantic Ocean. Understanding the evolution of the Brazilian Equatorial Margin, which intersects the Saint Paul and Romanche Fracture Zones on the western margin of South Atlantic Ocean, is also key for reconstructing eustatic histories and natural resource exploration. In this study, we quantify the stratigraphic and subsidence histories of three sedimentary basins—Barreirinhas, Ceará, Potiguar—that sit within the margin. Stratigraphy was mapped using ca. 900-line-km of two-dimensional seismic data. Biostratigraphic and check-shot data from 23 wells drilled on the continental shelf, slope and in the distal parts of these basins were used to date and depth-convert stratigraphy. Check-shot data were also used to parameterise compaction. The mapped stratigraphy was backstripped to calculate subsidence histories for the basins. Subsidence curves were decompacted, water-loaded and corrected for palaeo-water depths using biostratigraphic data from well reports. The mapped stratigraphy of the Barreirinhas and Ceará Basins and theoretical subsidence curves indicate that stretching factors did not exceed 1.6. These values suggest that these basins can be regarded as failed rifts. In contrast, more distal stratigraphy mapped in the Potiguar Basin to the south indicates that it stretched by a factor of 5–6. Calculated subsidence histories indicate that this basin formed primarily because of Cretaceous rifting and Cretaceous to Recent post-rift thermal sag, with amplitudes governed by the amount of initial stretching.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-18
    Description: The Jinsha River basin in the upper reaches of the Yangtze River in China is prone to strong geological activities, with numerous large-scale landslides along its banks that can potentially trigger a cascade of flood hazards. Recent seismic events such as the Wenchuan and Luding earthquakes have heightened the likelihood of landslide collapses along the slopes of the Jinsha River, thereby increasing the risk of a large-scale landslide-dam-break-flood hazard chain. Among these landslides, the ancient Woda landslide is currently in a state of slow deformation, and if reactivated, it can potentially obstruct the river and trigger catastrophic outburst floods. This study uses the integrated continuum method to simulate the dynamic processes associated with large-scale slope failures and the formation of landslide dams. Furthermore, the outburst flood resulting from the dam breach is modeled by combining the dammed lake flow model and the shallow water equation, allowing for the simulation of long-distance flood propagation. The findings indicate that the Woda landslide has the potential to create a dam of approximately 68.1 m in height, with a corresponding dammed-lake volume of about 7.10 × 108 m3. The peak flow rate of the resulting outburst flood can reach 4.4 × 104 m3/s, leading to an extensive impact zone reaching 140 km downstream. This flood inundates several downstream villages, towns, and even the Sichuan-Tibet Railway which is under construction. Moreover, the study reveals that the resistance coefficient of landslides significantly influences the entire hazard chain evolution process. Lowering the resistance coefficient of landslides leads to a considerable increase in the height of the landslide dam, amplification of the peak flow rate of the outburst flood, and an elevated risk for downstream elements situated at greater distances.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-18
    Description: Forecasting eruptions is a fundamental goal of volcanology. However, difficulties in identifying eruptive precursors, fragmented approaches and lack of resources make eruption forecasting difficult to achieve. In this Review, we explore the first-order scientific approaches that are essential to progress towards forecasting the time and location of magmatic eruptions. Forecasting in time uses different monitoring techniques, depending on the conduit-opening mode. Ascending magma can create a new conduit (closed-conduit eruptions), use a previously open conduit (open-conduit eruptions) or flow below a solidified magma plug (semi-open-conduit eruptions). Closed-conduit eruptions provide stronger monitoring signals often detected months in advance, but they commonly occur at volcanoes with poorly known pre-eruptive behaviour. Open-conduit eruptions, associated with low-viscosity magmas, provide more subtle signals often detected only minutes in advance, although their higher eruption frequency promotes more testable approaches. Semi-open-conduit eruptions show intermediate behaviours, potentially displaying clear pre-eruptive signals days in advance and often recurring repeatedly. However, any given volcano can experience multiple conduit-opening modes, sometimes simultaneously, requiring combinations of forecasting approaches. Forecasting the location of vent opening relies on determining the stresses controlling magma propagation, deformation and seismic monitoring. The use of physics-based models to assimilate monitoring data and observations will substantially improve forecasting, but requires a deeper understanding of pre-eruptive processes and more extensive monitoring data.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-18
    Description: Beryllium isotopes have emerged as a quantitative tracer of continental weathering, but accurate and precise determination of the cosmogenic 10Be and stable 9Be in seawater is challenging, because seawater contains high concentrations of matrix elements but extremely low concentrations of 9Be and 10Be. In this study, we develop a new, time-efficient procedure for the simultaneous preconcentration of 9Be and 10Be from (coastal) seawater based on the iron co-precipitation method. The concentrations of 9Be, 10Be, and the resulting 10Be/9Be ratio for Changjiang Estuary water derived from the new procedure agree well with those obtained from the conventional procedure requiring separate preconcentration for 9Be and 10Be determinations. By avoiding the separate preconcentration, our newly developed procedure contributes toward more time-efficient handling of samples, less sample cross-contamination, and a more reliable 10Be/9Be ratio. Prior to this, we validated the iron co-precipitation method using artificial seawater and natural water samples from the Amazon Estuary regarding: (1) the “matrix effect” for Be analysis, (2) its extraction efficiency for pg g−1 levels Be in the presence and absence of organic matter, and (3) the data comparability with another preconcentration method. We calculated that for the determination of 9Be and 10Be in most open ocean seawater with typical 10Be concentrations of 〉 500 atoms g−1, good precisions (〈 5%) can be achieved using less than 3 liters of seawater compared to more than 20 liters routinely used previously. Even for coastal seawater with extremely low 10Be concentration (e.g., 100 atoms g−1), we estimate a maximum amount of 10 liters to be adequate.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-18
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-18
    Description: Accurate age estimates are crucial for assessing the life-histories of fish and providing management advice, but validation studies are rare for many species. We corroborated age estimates with annual cycles of oxygen isotopes (δ18O) in otoliths of 86 northern pike (Esox lucius) from the southern Baltic Sea, compared results with visual age estimates from scales and otoliths, and assessed bias introduced by different age-estimation structures on von Bertalanffy growth models and age-structured population models. Age estimates from otoliths were accurate, while age estimates from scales significantly underestimated the age of pike older than 6 years compared to the corroborated reference age. Asymptotic length () was larger, and the growth coefficient was lower for scale ages than for corroborated age and otolith age estimates. Consequentially, scale-informed population models overestimated maximum sustainable yield (), biomass at (), relative frequency of trophy fish (), and optimal minimum length limit but underestimated fishing mortality at (). Using scale-based ages to inform management regulations for pike may therefore result in conservative management and lost yield. The overestimated asymptotic length may instill unrealistic expectations of trophy potential in recreational anglers targeting large pike, while the overestimation in MSY would cause unrealistic expectations of yield potential in commercial fishers.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-12-22
    Description: Monitoring urban heat island (UHI) effect is critical because it causes health problems and excessive energy consumption more energy when cooling buildings. In this study, we propose an approach for UHI monitoring by fusing data from ground-based global navigation satellite system (GNSS), space-based GNSS radio occultation (RO), and radiosonde. The idea of the approach is as follows: First, the first and second grid tops are defined based on historical RO and radiosonde observations. Next, the wet refractivities between the first and second grid tops are fitted to higher-order spherical harmonics and they are used as the inputs of GNSS tomography. Then, the temperature and water vapor partial pressure are estimated by using best search method based on the tomography-derived wet refractivity. In the end, the UHI intensity is evaluated by calculating the temperature difference between the urban regions and nearby rural regions. Feasibility of the UHI intensity monitoring approach was evaluated with GNSS RO and radiosonde data in 2010–2019, as well as ground-based GNSS data in 2020 in Hong Kong, China, by taking synoptic temperature data as reference. The result shows that the proposed approach achieved an accuracy of 1.2 K at a 95% confidence level.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-01-15
    Description: Situated within a 1.07 million-year-old meteorite crater, Lake Bosumtwi in Ghana stands as a pivotal location for comprehending climatic, ecological and environmental fluctuations within the sub-Saharan region of West Africa. The region's susceptibility to seasonal environmental shifts and climate oscillations is heightened by the annual movements of the tropical rain belt driven by atmospheric circulation. Yet, there is no satisfying age-depth model available for the entire sedimentary sequence strongly limiting our understanding of changes in this circulation pattern and associated (broad-scale) environmental responses during the last million years in the local to regional context of Lake Bosumtwi. To overcome this, we statistically examine the cyclicity in total natural gamma ray (NGR) data on a core from the lake's centre and create a cyclostratigraphic age-depth model. The calculated maximum age of 946 ka agrees well with the meteorite impact age (∼10 % offset). In order to refine this purely statistical approach, we also perform a correlative age-depth model using 33 tie points accounting for the complexity of climatic and environmental imprints to the NGR record that may exceed direct insolation related effects. Special attention is paid to the core's robustly dated (14C, OSL, U/Th) uppermost part covering the last 200 ka. Here, high NGR and co-varying K counts coincide with warm periods (except of the water-saturated and unconsolidated Holocene part) and the inverse for glacials and stadials. Based on this, we define tie points for correlating our NGR data to the age-depth model of a NE Atlantic SST record. Comparing our results to the correlation target, other global climate records and Sahara dust flux data reveals striking similarities and supports a proxy understanding with increased in wash of K-enriched terrigenous material from the crater rims in warm and moist periods (high NGR) and K-depleted dust input in stadials possibly contributing to low NGR values in addition to reduced input of K-enriched sediments from the crater rims. Our correlative age model results in precession amplitudes matching eccentricity well, providing further support especially because an over-tuning is unlikely with the used 33 tie points. Overall we provide crucial chronological context to numerous datasets along with environmental constrains that can be used to study the potential habitat availability of early anatomically modern humans in West Africa.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-01-15
    Description: The evolution of the local stress field of faults under tectonic stresses is crucial to predict earthquakes. In this study, we investigated the stress sensitivity of an analogue fault model with dimensions of 2 m × 1 m × 1 m, prepared from cement, gypsum, river sand, putty powder, and borax mixture. The angle between the fault strike and the maximum stress direction was varied, and the variation in the stress near the analogue fault (area 1200 × 400 mm; width 5 mm) was determined. The crack growth law of the analogue fault was found to be consistent with a simple Riedel shear model. A main strike-displacement zone was formed, and its direction was parallel to that of the analogue fault. Fault development was described by three stages based on stress–strain relationships: a nucleus stage, a stable growth, and an unstable growth stage. The deflection angle (the deflection angle of the local principal stresses) range of the local stress field was (− 45°, 45°), and it varied most significantly in the nucleus stage. The closer to the fault, the greater the variation range in the deflection angle. The variation range was greater in the fault compression quadrants than in the dilatation quadrants. The correlation between the deflection angle and the relative deformation velocity of the fault was stronger in the stable growth stage than in the other stages. In this stage, the angle–deformation–velocity correlation could be well fitted using a logistic trend model. These findings can be of importance to better understand the nucleation and mechanisms of fault slip-induced earthquakes under varying fault-strike-stress conditions.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-01-15
    Description: The yield and composition of tar depending on coal rank and pressure during underground coal gasification (UCG) were studied. Two coals were used in a series of ex-situ UCG experiments: a Welsh semi-anthracite (Six Feet) and a Polish bituminous coal (Wesoła). Four high-pressure gasification trials under two distinct pressure regimes (20 and 40 bar) were conducted. The tar samples were collected directly from the reactor outlet. The following groups of compounds were analysed by use of gas chromatography (GC-MS): light monoaromatic hydrocarbons (BTEX – benzene, toluene, ethylbenzene and xylenes), polycyclic aromatic hydrocarbons (PAHs) and phenols. A series of gasification experiments revealed significant differences in tar yields and composition depending on the coal rank and gasification pressure. Significant decreases in tar contents were observed with the increase in gasification pressure from 20 to 40 bar for both coals. The total yields of the analysed tar components per kg of gasified coal were 2.58 g and 0.41 g for the experiments conducted on the Six Feet samples at 20 bar and 40 bar, respectively. The corresponding values for the Wesoła coal amounted to 5.48 g and 0.95 g. In all experiments, BTEX was a dominant group of tar components, constituting 69–86 % of the total tar yield within the tested range of compounds. The present study further proves that gasification pressure has a significant effect on the chemical composition of the produced UCG tars for both coal samples under study.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-01-15
    Description: Traditionally, the emplacement of the Large Igneous Provinces (LIPs) is considered to have caused continental break-up. However, this does not always seem to be the case, as illustrated by, for example, the Siberian Traps, one of the most voluminous flood basalt events in Earth history, which was not followed by lithospheric rupture. Moreover, the classical model of purely active (plume-induced) rifting and continental break-up often fails to do justice to widely varying tectonic impacts of Phanerozoic LIPs. Here, we show that the role of the LIPs in rupture of the lithosphere ranges from initial dominance (e.g., Deccan LIP) to activation (e.g., Central Atlantic Magmatic Province, CAMP) or alignment (e.g., Afar LIP). A special case is the North Atlantic Igneous Province (NAIP), formed due to the “re-awakening” of the Iceland plume by the lateral propagation of the spreading ridge and the simultaneous approach of the plume conduit to adjacent segments of the thinner overlying lithosphere. The proposed new classification of LIPs may provide useful guidance for future research, particularly with respect to some inherent limitations of the common paradigm of purely passive continental break-up and the assumption of a direct link between internal mantle dynamics and the timing of near-surface magmatism.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-01-15
    Description: Probing source mechanisms of natural and induced earthquakes is a powerful tool to unveil associated rupture kinematics. The source processes of failure and slip instability driven by stress loading are affected by fault geometry, but the source ruptures of injection-induced seismicity in relation to fault structures and local stress states remain poorly understood. We have conducted a series of fault reactivation and slip experiments on sandstone samples containing faults with different surface roughness (smooth saw-cut fault and fractured rough fault). We impose progressive fluid injection to induce fault slip, and simultaneously monitor the associated acoustic emission (AE) activity. Using high-resolution AE recordings, we perform full moment tensor inversion of all located AE sources, and investigate the changes of AE source characteristics associated with induced fault slip and their relation to fault roughness. For the complex and rough fault, we observe significant non-double-couple components of AE sources and a high degree of focal mechanism heterogeneity. The temporal changes of AE mechanisms associated with injection-induced fault slip on the smooth fault reveal increasing proportions of double-couple components and decreasing variability of AE focal mechanisms when approaching the onset of slip events. The observed inconsistency between the nodal planes of AE sources and the macroscopic fault plane orientation is attributed to the development of secondary fracture networks surrounding the principal slip surface. We analyze changes in the magnitude-frequency characteristics and source mechanisms of AEs with fault-normal distance, showing that for the smooth (mature) fault, Gutenberg–Richter b-value of on-fault seismicity is lower and focal mechanisms are less heterogeneous, compared to off-fault seismicity. Our results emphasize the important role of roughness-related changes in local fault geometry and associated stress heterogeneity for source mechanisms and rupture kinematics of injection-induced seismicity.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-01-15
    Description: In this article, a high-resolution acoustic emission sensor, accelerometer, and broadband seismometer array data set is made available and described in detail from in situ experiments performed at Äspö Hard Rock Laboratory in May and June 2015. The main goal of the hydraulic stimulation tests in a horizontal borehole at 410m depth in naturally fractured granitic rock mass is to demonstrate the technical feasibility of generating multi-stage heat exchangers in a controlled way superiorly to former massive stimulations applied in enhanced geothermal projects. A set of six, sub-parallel hydraulic fractures is propagated from an injection borehole drilled parallel to minimum horizontal in situ stress and is monitored by an extensive complementary sensor array implemented in three inclined monitoring boreholes and the nearby tunnel system. Three different fluid injection protocols are tested: constant water injection, progressive cyclic injection, and cyclic injection with a hydraulic hammer operating at 5 Hz frequency to stimulate a crystalline rock volume of size 30m30m30m at depth. We collected geological data from core and borehole logs, fracture inspection data from an impression packer, and acoustic emission hypocenter tracking and tilt data, as well as quantified the permeability enhancement process. The data and interpretation provided through this publication are important steps in both upscaling laboratory tests and downscaling field tests in granitic rock in the framework of enhanced geothermal system research. Data described in this paper can be accessed at GFZ Data Services under https://doi.org/10.5880/GFZ.2.6.2023.004 (Zang et al., 2023).
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-12-18
    Description: Inorganic geochemistry is a powerful tool in paleolimnology. It has become one of the most commonly used techniques to analyze lake sediments, particularly due to the development and increasing availability of XRF core scanners during the last two decades. It allows for the reconstruction of the continuous processes that occur in lakes and their watersheds, and it is ideally suited to identify event deposits. How earth surface processes and limnological conditions are recorded in the inorganic geochemical composition of lake sediments is, however, relatively complex. Here, we review the main techniques used for the inorganic geochemical analysis of lake sediments and we offer guidance on sample preparation and instrument selection. We then summarize the best practices to process and interpret bulk inorganic geochemical data. In particular, we emphasize that log-ratio transformation is critical for the rigorous statistical analysis of geochemical datasets, whether they are obtained by XRF core scanning or more traditional techniques. In addition, we show that accurately interpreting inorganic geochemical data requires a sound understanding of the main components of the sediment (organic matter, biogenic silica, carbonates, lithogenic particles) and mineral assemblages. Finally, we provide a series of examples illustrating the potential and limits of inorganic geochemistry in paleolimnology. Although the examples presented in this paper focus on lake and fjord sediments, the principles presented here also apply to other sedimentary environments.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-10-20
    Description: Application of Aquifer Thermal Energy Storage with High Temperatures (HT-ATES) ranging from 60–90 is a promising technique to store large amounts of energy in urban areas. However, these areas typically lack information on hydrogeological and thermal parameters of the subsurface to determine the potential for energy storage. Moreover, conventional exploration methods as pumping tests do not account for the variation in density caused by the high temperature gradients or changes in salinity as encountered in HT-ATES operation. The objective of this study is therefore to develop best practices for characterizing the hydrogeological and thermal properties of groundwater wells and their surrounding formation that determine the potential performance of HT-ATES-systems. In addition to conventional pumping tests, a set of Push–Pull tracer Tests (PPTs) with cold and hot water are proposed and scrutinized using Berlin as case study. There, the research well Gt BChb 1/2015, which is characterized by a reservoir temperature of 17 at a depth between 220 und 230 m below ground surface was tested. In 2017, seven Slug-Withdrawal Tests (SWTs), a Step-Rate-Test (SRT), a production tests, and two Push–Pull tracer Tests (PPTs) with hot and cold water were performed during a period of 40 days. These tests were accompanied by Distributed-Temperature-Sensing (DTS) monitoring. The temperature measurements provide indications of injection areas based on the warmback period during a PPT with 81 hot water. The determined aquifer transmissibility , the related Productivity Index (), and maximum flow rates of about indicate that the aquifer has potential for HT-ATES. However, the PPT and the DTS monitoring revealed cross flow between the target aquifer and an overlying aquifer. Thus, a new well with a design avoiding cross flow is required to utilize the aquifer’s energy storage potential. A set of best practices for characterizing HT-ATES potential was derived from the experiences in this study.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-12-21
    Description: Interface problems exist widely in various engineering problems and their high-precision simulation is of great importance. A new computational approach for dealing with interface problems is proposed based on the recently developed integral-generalized finite difference (IGFD) scheme. In this method, the research domain is divided into several subdomains by interfaces, and discretization schemes are established independently in each subdomain. A new cross-subdomain integration scheme is introduced to connect these subdomains. Several two-dimensional elasticity models containing material interfaces are studied to test the effectiveness of the proposed method. The results show that the recently proposed approach without the help of discontinuous functions or auxiliary equations that are commonly used in other numerical methods (e.g., extended finite element method and boundary element method) enables obtaining high accuracy and efficiency in interface problems. The proposed method has great potential in the application of material interface problems in solid mechanics and, furthermore, weak discontinuity problems in various fields.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-12-21
    Description: In space geodetic techniques, the mapping functions (MFs) provide the relationship between zenith and slant tropospheric delays. The MFs are determined under the assumption of spherically layered atmosphere. However, the atmosphere is not spherically layered, and the asymmetry should be considered. Therefore, tropospheric gradients are taken into account. Nevertheless, tropospheric gradients alone can not fully represent the deviation from a spherically layered atmosphere, and hence cm level errors arise especially for low elevation angles. In this study, we present new approaches to modify the wet MF to reduce mismodelling of tropospheric delays. The delays in the study were calculated using ray-tracing algorithm based on ECMWF’s ERA5 dataset. We first analyzed the performances of the new approaches. Then, two Precise Point Positioning (PPP) simulation studies and a real case study were carried out for two different regions namely Germany and Türkiye. According to the results, the proposed approaches reduce the modelling errors up to by a factor 6 for both regions. Besides, simulation studies show that the approaches improve the accuracies of the ZTDs and heights. In the practical application however, we could not find a clear improvement in the PPP analyze and this might be related to the ERA5 which can not be regarded error-free.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-01-17
    Description: Climate change poses a significant threat to the distribution and composition of forest tree species worldwide. European forest tree species’ range is expected to shift to cope with the increasing frequency and intensity of extreme weather events, pests and diseases caused by climate change. Despite numerous regional studies, a continental scale assessment of current changes in species distributions in Europe is missing due to the difficult task of modeling a species realized distribution and to quantify the influence of forest disturbances on each species. In this study we conducted a trend analysis on the realized distribution of 6 main European forest tree species (Abies alba Mill., Fagus sylvatica L., Picea abies L. H. Karst., Pinus nigra J. F. Arnold, Pinus sylvestris L. and Quercus robur L.) to capture and map the prevalent trends in probability of occurrence for the period 2000–2020. We also analyzed the impact of forest disturbances on each species’ range and identified the dominant disturbance drivers. Our results revealed an overall trend of stability in species’ distributions (85% of the pixels are considered stable by 2020 for all species) but we also identified some hot spots characterized by negative trends in probability of occurrence, mostly at the edges of each species’ latitudinal range. Additionally, we identified a steady increase in disturbance events in each species’ range by disturbance (affected range doubled by 2020, from 3.5% to 7% on average) and highlighted species-specific responses to forest disturbance drivers such as wind and fire. Overall, our study provides insights into distribution trends and disturbance patterns for the main European forest tree species. The identification of range shifts and the intensifying impacts of disturbances call for proactive conservation efforts and long-term planning to ensure the resilience and sustainability of European forests.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-12-19
    Description: The Altiplano-Puna Plateau of the Central Andes hosts numerous lakes, playa-lakes, and salars with a great diversity and abundance of carbonates forming under extreme climatic, hydrologic, and environmental conditions. To unravel the underlying processes controlling the formation of carbonates and their geochemical signatures in hypersaline systems, we investigated coupled brine-carbonate samples in a high-altitude Andean lake using a wide suite of petrographic (SEM, XRD) and geochemical tools (δ2H, δ18O, δ13C, δ11B, major and minor ion composition, aqueous modelling). Our findings show that the inflow of hydrothermal springs in combination with strong CO2 degassing and evaporation plays an important role in creating a spatial diversity of hydro-chemical sub-environments allowing different types of microbialites (microbial mounds and mats), travertines, and fine-grained calcite minerals to form. Carbonate precipitation occurs in hot springs triggered by a shift in carbonate equilibrium by hydrothermal CO2 degassing and microbially-driven elevation of local pH at crystallisation. In lakes, carbonate precipitation is induced by evaporative supersaturation, with contributions from CO2 degassing and microbiological processes. Lake carbonates largely record the evaporitic enrichment (hence salinity) of the parent water which can be traced by Na, Li, B, and δ18O, although other factors (such as e.g., high precipitation rates, mixing with thermal waters, groundwater, or precipitation) also affect their signatures. This study is of significance to those dealing with the fractionation of oxygen, carbon, and boron isotopes and partitioning of elements in natural brine-carbonate environments. Furthermore, these findings contribute to the advancement in proxy development for these depositional environments.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-01-29
    Description: The hazardous plasma environment surrounding Earth poses risks to satellites due to internal charging and surface charging effects. Accurate predictions of these risks are crucial for minimizing damage and preparing for system failures of satellites. To forecast the plasma environment, it is essential to know the current state of the system, as the accuracy of the forecast depends on the accuracy of the initial condition of the forecast. In this study, we use data assimilation techniques to combine observational data and model predictions, and present the first global validation of a data-assimilative electron ring current nowcast during a geomagnetic storm. By assimilating measurements from one satellite and validating the results against another satellite in a different magnetic local time sector, we assess the global response and effectiveness of the data assimilation technique for space weather applications. Using this method, we found that the simulation accuracy can be drastically improved at times when observations are available while eliminating almost all of the bias previously present in the model. These findings contribute to the construction of improved operational models in estimating surface charging risks and providing realistic ’source’ populations for radiation belt simulations.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-01-25
    Description: The Varved Sediments Database (VARDA) was launched in 2020 and aimed to establish a community database for annually resolved chronological archives with their associated high-resolution proxy records. This resource would support reproducibility through accessible data for the paleoclimate and modelling communities. In this paper, VARDA has been extended by a dataset of European tephra geochemical data and metadata to enable the synchronisation of varve records during the Last Glacial–Interglacial Transition (LGIT; here defined as 25 to 8 ka; Beckett et al., 2022). Geochemical data from 49 known individual tephra layers across 19 lake records have been included, with Lago di Grande Monticchio being the single biggest contributor of geochemical data with 28 tephra layers. The Vedde Ash and Laacher See tephra are the most common layers found in six different records. This highlights the potential of refining the absolute age estimates for these tephra layers using varve chronologies and for synchronising regional paleoclimate archives. This is the first stage in a 5-year plan funded by the Past Global Changes (PAGES) Data Stewardship Scholarship to incorporate a global dataset of tephra geochemical data into varve records. Further stages of this project will focus on different regions and timescales. Data collated for this project are available open access at https://doi.org/10.5880/fidgeo.2023.015 (Beckett et al., 2022).
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-02-05
    Description: Geothermal energy is one of the most viable sources of renewable heat. However, the potential risk of induced seismicity associated with geothermal operations may slow down the growth of the geothermal sector. Previous research has led to significant progress in understanding fluidinjection- induced seismicity in geothermal reservoirs. However, an in-depth assessment of thermal effects on the seismic risk was generally considered to be of secondary importance. This study aims to investigate the relative influence of temperature and key geological and operational parameters on the slip tendency of pre-existing faults. This is done through coupled thermo-hydro-mechanical simulations of the injection and production processes in synthetic geothermal reservoir models of the most utilized and potentially exploitable Dutch geothermal reservoir formations: Slochteren sandstone, Delft sandstone and Dinantian limestone. In our study, changes in the slip tendency of a fault can largely be attributed to thermo-elastic effects, which confirms the findings of recent studies linking thermal stresses to induced seismicity. While the direct pore pressure effect on slip tendency tends to dominate over the early phase of the operations, once pore pressure equilibrium is established in a doublet system, it is the additional stress change associated with the growing cold-water front around the injection well that has the greatest influence. Therefore, the most significant increase in the slip tendency was observed when this low-temperature front reached the fault zone. The distance between an injection well and a pre-existing fault thus plays a pivotal role in determining the mechanical stability of a fault. A careful selection of a suitable target formation together with an appropriate planning of the operational parameters is also crucial to mitigate the risk of induced seismicity. Besides the well-known relevance of the in situ stress field and local fault geometry, rock-mechanical properties and operation conditions exert a major influence on induced stress changes and therefore on the fault (re)activation potential during geothermal operations.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  Geomechanics for Energy and the Environment
    Publication Date: 2024-02-05
    Description: The CNSC, the Canadian regulator for the nuclear industry, participated in DECOVALEX-2023 Task G that focuses on the thermo (T) - hydro (H)- mechanical (M) behaviour of rock joints. Joints are omnipresent in rock masses and are planes of weakness in the host rock. When deep geological repositories (DGRs) for radioactive waste are being considered in areas where rock joints are present, the joints could be preferential pathways for radionuclide migration. Therefore, their THM behaviour must be better understood to assess the safety of the DGR. Under different possible internal and external perturbations, a joint can move by shear and dilation. If the joint crosses the emplacement area of a waste container, the heat generated from the waste can itself induce shearing of the joint. Excessive shear movement can in turn lead to failure of the container, resulting in earlier release of radionuclides. Furthermore, dilation that might accompany shear, results in an increase in the joint aperture creating a faster flow path for radionuclide transport. Mathematical models are important tools that need to be developed and employed, in order to assess joint shear and dilation under different loading conditions, such as the heat generated from the emplaced waste. The authors have developed such a mathematical model based on a macroscopic formulation within the framework of elasto-plasticity. It is verified against analytical solutions and validated against shear under constant normal load tests and thermal shearing tests of joints in granite.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-02-05
    Description: The deflection and the control of the effects of the complex urban seismic wavefield on the built environment is a major challenge in earthquake engineering. The interactions between the soil and the structures and between the structures strongly modify the lateral variability of ground motion seen in connection to earthquake damage. Here we investigate the idea that flexural and compressional resonances of tall turbines in a wind farm strongly influence the propagation of the seismic wavefield. A large-scale geophysical experiment demonstrates that surface waves are strongly damped in several distinct frequency bands when interacting at the resonances of a set of wind turbines. The ground-anchored arrangement of these turbines produces unusual amplitude and phase patterns in the observed seismic wavefield, in the intensity ratio between stations inside and outside the wind farm and in surface wave polarization while there is no metamaterial-like complete extinction of the wavefield. This demonstration is done by setting up a dense grid of 400 geophones and another set of radial broadband stations outside the wind farm to study the properties of the seismic wavefield propagating through the wind farm. Additional geophysical equipment (e.g., an optical fiber, rotational and barometric sensors) was used to provide essential explanatory and complementary measurements. A numerical model of the turbine also confirms the mechanical resonances that are responsible for the strong coupling between the wind turbines and the seismic wavefield observed in certain frequency ranges of engineering interest.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  Journal of Geophysical Research: Solid Earth
    Publication Date: 2024-02-05
    Description: Teleseismic back-projection imaging has emerged as a powerful tool for understanding the rupture propagation of large earthquakes. However, its application often suffers from artifacts related to the receiver array geometry. We developed a teleseismic back-projection technique that can accommodate data from multiple arrays. Combined processing of P and pP waveforms may further improve the resolution. The method is suitable for defining arrays ad-hoc to achieve a good azimuthal distribution for most earthquakes. We present a catalog of short-period rupture histories (0.5–2.0 Hz) for all earthquakes from 2010 to 2022 with MW ≥ 7.5 and depth less than 200 km (56 events). The method provides automatic estimates of rupture length, directivity, speed, and aspect ratio, a proxy for rupture complexity. We obtained short-period rupture length scaling relations that are in good agreement with previously published relations based on estimates of total slip. Rupture speeds were consistently in the sub-Rayleigh regime for thrust and normal earthquakes, whereas a tenth of strike-slip events propagated at supershear speeds. Many rupture histories exhibited complex behaviors, for example, rupture on conjugate faults, bilateral propagation, and dynamic triggering by a P wave. For megathrust earthquakes, ruptures encircling asperities were frequently observed, with downdip, updip, and balanced patterns. Although there is a preference for short-period emissions to emanate from central and downdip parts of the megathrust, emissions updip of the main asperity are more frequent than suggested by earlier results.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-01-26
    Description: Premise The rise of angiosperm-dominated tropical rainforests has been proposed to have occurred shortly after the Cretaceous–Paleogene transition. Paleocene fossil wood assemblages are rare yet provide important data for understanding these forests and whether their wood anatomical features can be used to document the changes that occurred during this transition. Methods We used standard techniques to section 11 fossil wood specimens of Paleocene-age, described the anatomy using standard terminology, and investigated their affinities to present-day taxa. Results We report here the first middle Paleocene fossil wood specimens from Myanmar, which at the time was near the equator and anchored to India. Some fossils share affinities with Arecaceae, Sapindales (Anacardiaceae, Meliaceae) and Moraceae and possibly Fabaceae or Lauraceae. One specimen is described as a new species and genus: Compitoxylon paleocenicum gen. et sp. nov. Conclusions This assemblage reveals the long-lasting presence of these aforementioned groups in South Asia and suggests the early presence of multiple taxa of Laurasian affinity in Myanmar and India. The wood anatomical features of the dicotyledonous specimens reveal that both “modern” and “primitive” features (in a Baileyan scheme) are present with proportions similar to features in specimens from Paleocene Indian localities. Their anatomical diversity corroborates that tropical flora display “modern” features early in the history of angiosperms and that their high diversity remained steady afterward.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-02-07
    Description: Biophotonic nanostructures rarely withstand fossilization processes occurring after burial over geologic time. Even more distinctive is a change introduced to the optical properties during diagenetic processes resulting in a different optical appearance. Here, we report and explain the optical appearance of centric diatom frustules obtained from ash-bearing carbonate-cemented concretions on the Greifswalder Oie island (Pomeranian Bay, Germany, southern Baltic Sea). The ultrastructural and mineralogical analysis of the fossil frustules were carried out using electron microscopy techniques and were correlated to the macroscopic and microscopic optical appearance of the frustules before and after acid etching. The unique optical properties of the fossil diatoms were associated with diagenetic nanocrystalline calcite filling the frustules’ areolae. This fill created the macroscopic pale-yellow colour of many frustules, a microscopic iridescence probably associated with diffraction grating behaviour, and microscopic colour rings. The results highlight the unique permineralization process of diatom frustules and might be an addition to the emerging studies on frustule optics and photonics.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-02-07
    Description: Scientific drilling expeditions offer a unique op- portunity to characterize microbial communities in the sub- surface that have long been isolated from the surface. With subsurface microbial biomass being low in general, biologi- cal contamination from the drilling fluid, sample processing, or molecular work is a major concern. To address this, char- acterization of the contaminant populations in the drilling fluid and negative extraction controls are essential for assess- ing and evaluating such sequencing data. Here, rock cores down to 2250 m depth, groundwater-bearing fractures, and the drilling fluid were sampled for DNA to characterize the microbial communities using a broad genomic approach. However, even after removing potential contaminant popu- lations present in the drilling fluid, notorious contaminants were abundant and mainly affiliated with the bacterial order Burkholderiales. These contaminant microorganisms likely originated from the reagents used for isolating DNA despite stringent quality standards during the molecular work. The detection of strictly anaerobic sulfate reducers such as Candi- datus Desulforudis audaxviator suggested the presence of au- tochthonous deep biosphere taxa in the sequenced libraries, yet these clades represented only a minor fraction of the se- quence counts (〈 0.1 %), hindering further ecological inter- pretations. The described methods and findings emphasize the importance of sequencing extraction controls and can support experimental design for future microbiological stud- ies in conjunction with continental drilling operations.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-02-07
    Description: Most of in-situ stress data in the Australian continent comes from wellbore stress analysis in deep hydrocarbon reservoirs, and earthquake focal mechanism solutions near the Australian plate boundaries, where geophysical tools facilitate understanding of the present-day stress patterns. This resulted in a paucity of stress information in many other regions such as the northern Bowen Basin, which is an active mining province, but with low seismicity rates and limited deep petroleum exploration. The mining industry runs several hundred kilometres of image logs annually to characterise geotechnical attributes. These logs provide an image from the borehole wall, which facilitates analysis of stress-related borehole deformations for in-situ stress characterisation. This paper examines the orientation of horizontal in-situ stress using different types of image logs in mine boreholes across the northern Bowen Basin. Analyses of 128 km of image logs in 680 vertical boreholes resulted in the interpretation of 9046 pairs of stress-related indicators including 735 drilling induced fractures and 8311 borehole breakouts. Our comprehensive database comprises 890 quality-ranked data records for the orientation of maximum horizontal stress (SHmax), which makes the Bowen Basin as a basin with the highest data density in the world in terms of quality-ranked stress information according to the World Stress Map. Statistical analysis of SHmax orientation reveals that the mean SHmax orientation in northern Bowen Basin is N018◦ ± 16◦. The results show that this orientation is consistent over long distances, which is in contrast with several eastern Australian basins. This uniform stress pattern agrees well with plate-scale geomechanical model predictions, which further highlights the impact of plate boundary forces in the contemporary stress pattern of this region. Detailed image log investigation did not show any systematic rotation of stress; however, some small-scale stress perturbations were observed in the vicinity of sharp stiffness contrasts and geological structures.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-02-07
    Description: The microbiota is attributed to be important for initial soil formation under extreme climate conditions, but experimental evidence for its relevance is scarce. To fill this gap, we investigated the impact of in situ microbial communities and their interrelationship with biocrust and plants compared to abiotic controls on soil formation in initial arid and semiarid soils. Additionally, we assessed the response of bacterial communities to climate change. Topsoil and subsoil samples from arid and semiarid sites in the Chilean Coastal Cordillera were incubated for 16 weeks under diurnal temperature and moisture variations to simulate humid climate conditions as part of a climate change scenario. Our findings indicate that microorganism-plant interaction intensified aggregate formation and stabilized soil structure, facilitating initial soil formation. Interestingly, microorganisms alone or in conjunction with biocrust showed no discernible patterns compared to abiotic controls, potentially due to watermasking effects. Arid soils displayed reduced bacterial diversity and developed a new community structure dominated by Proteobacteria, Actinobacteriota, and Planctomycetota, while semiarid soils maintained a consistently dominant community of Acidobacteriota and Proteobacteria. This highlighted a sensitive and specialized bacterial community in arid soils, while semiarid soils exhibited a more complex and stable community. We conclude that microorganism-plant interaction has measurable impacts on initial soil formation in arid and semiarid regions on short time scales under climate change. Additionally, we propose that soil and climate legacies are decisive for the present soil microbial community structure and interactions, future soil development, and microbial responses.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-01-24
    Description: Anthropogenic climate change drives extreme weather events, leading to significant consequences for both society and the environment. This includes damage to road infrastructure, causing disruptions in transportation, obstructing access to emergency services, and hindering humanitarian organizations after natural disasters. In this study, we develop a novel method for analyzing the impacts of natural hazards on transportation networks rooted in the gravity model of travel, offering a fresh perspective to assess the repercussions of natural hazards on transportation network stability. Applying this approach to the Ahr valley flood of 2021, we discovered that the destruction of bridges and roads caused major bottlenecks, affecting areas considerably distant from the flood’s epicenter. Furthermore, the flood-induced damage to the infrastructure also increased the response time of emergency vehicles, severely impeding the accessibility of emergency services. Our findings highlight the need for targeted road repair and reinforcement, with a focus on maintaining traffic flow for emergency responses. This research provides a new perspective that can aid in prioritizing transportation network resilience measures to reduce the economic and social costs of future extreme weather events.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-01-09
    Description: Analyzing seismic data in a timely manner is essential for potential eruption forecasting and early warning in volcanology. Here, we demonstrate that unsupervised machine learning methods can automatically uncover hidden details from the continuous seismic signals recorded during Iceland’s 2021 Geldingadalir eruption. By pinpointing the eruption’s primary phases, including periods of unrest, ongoing lava extrusion, and varying lava fountaining intensities, we can effectively chart its temporal progress. We detect a volcanic tremor sequence three days before the eruption, which may signify impending eruptive activities. Moreover, the discerned seismicity patterns and their temporal changes offer insights into the shift from vigorous outflows to lava fountaining. Based on the extracted patterns of seismicity and their temporal variations we propose an explanation for this transition. We hypothesize that the emergence of episodic tremors in the seismic data in early May could be related to an increase in the discharge rate in late April.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-01-09
    Description: In modelling atmospheric loading effects for terrestrial gravimetry, state-of-the-art approaches take advantage of numerical weather models to account for the global 3-D distribution of air masses. Deformation effects are often computed assuming the Inverse Barometer (IB) hypothesis to be generally valid over the oceans. By a revision of the IB assumption and its consequences we show that although the seafloor is not deformed by atmospheric pressure changes, there exists a fraction of ocean mass that current modelling schemes are usually not accounting for. This causes an overestimation of the atmospheric attraction effect over oceans, even when the dynamic response of the ocean to atmospheric pressure and wind is accounted through dynamic ocean models. This signal can reach a root mean square variability of a few nm s−2, depending on the location of the station. We therefore test atmospheric and non-tidal ocean loading effects at five superconducting gravimeter (SG) stations, showing that a better representation of the residual gravity variations is found when Newtonian attraction effects due to the IB response of the ocean are correctly considered. A sliding window variance analysis shows that the main reduction takes place for periods between 5 and 10 d, even for stations far away from the oceans. Since periods of non-tidal ocean mass variability closely resemble atmospheric signals recorded by SGs, we recommend to directly incorporate both an ocean component together with the IB into services that provide weather-related corrections for terrestrial gravimetry.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-01-09
    Description: More than 20 yr of measurement data of the gravity missions GRACE (Gravity Recovery And Climate Experiment) and GRACE-FO (GRACE-Follow-On) allow detailed investigations of long-term trends in continental terrestrial water storage (TWS). However, the spatial resolution of conventional GRACE/GRACE-FO data products is limited to a few hundred kilometres which restrains from investigating hydrological trends at smaller spatial scales. In this study GRACE and GRACE-FO data have been used to calculate TWS trends with maximized spatial resolution. Conventionally, GRACE/GRACE-FO is presented as a series of either unconstrained gravity fields post-processed with spatial low pass filters or constrained inversions commonly known as Mascon products. This paper demonstrates that both approaches to suppress spatially correlated noise are mathematically equivalent. Moreover, we demonstrate that readily inverting all available sensor data from GRACE/GRACE-FO for a single TWS trend map, together with annual variations and a mean gravity field, provides additional spatial detail not accessible from the standard products. The variable trade-off between spatial and temporal resolution as a unique feature of satellite gravimetry allows for gravity products that are tailored towards specific geophysical applications. We show additional signal content in terms of long-term water storage trends for four dedicated examples (Lake Victoria, Northwest India, Bugachany Reservoir and High Plains Aquifer) for which external information from other remote sensing instruments corroborates the enhanced spatial resolution of the new mean-field trend product.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-01-09
    Description: Ferropericlase (Mg,Fe)O is after bridgmanite the most abundant phase in the lower mantle. The ultralow velocity zones above the core-mantle boundary may contain very Fe-rich magnesiowüstite (Fe,Mg)O, possibly as result of the fractional crystallisation of a basal magma ocean. We have experimentally studied the solubility of nitrogen in the ferropericlase-magnesiowüstite solid solution series as function of iron content. Multi-anvil experiments were performed at 20–33 GPa and 1600–1800 °C in equilibrium with Fe metal. Nitrogen solubility increases from a few tens ppm (μg/g) for Mg-rich ferropericlase to more than 10 wt. % for nearly pure wüstite. Such high solubilities appear to be due to solid solution with NiAs-type FeN. Our data suggest that during fractional crystallisation of a magma ocean, the core-mantle boundary would have become extremely enriched with nitrogen, such that the deep mantle today could be the largest nitrogen reservoir on Earth. The often discussed “subchondritic N/C” ratio of the bulk silicate Earth may be an artefact of insufficient sampling of this deep reservoir.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-01-09
    Description: Existing research indicates that to create geothermal reservoirs using CO2 injection, additional stimulation methods are necessary. N, N-bis(carboxymethyl)-L-glutamic acid (GLDA) injection has been predicted to increase the permeability of CO2 injection-induced cloud-fracture networks (CFNs) and could serve as an additional stimulation method. Nevertheless, the influence of differential stress, flow geometry, and scale on the characteristics of permeability enhancement by GLDA injection is yet to be clarified. Accordingly, this study experimentally elucidated the permeability enhancement characteristics of injecting a chelating agent in fractured granite under differential stress conditions as an additional method for creating geothermal reservoirs using CO2 injection. GLDA injection experiments were conducted on fractured-granite samples under conventional- and true-triaxial stress states under varying differential stress and pH conditions. Regardless of the differential stress and pH conditions, rock deformation and acoustic emission (AE) were negligible during the chelating agent flow-through experiments on the fractured samples, whereas similar permeability enhancement factors were achieved within the same duration. Thus, stress did not affect the permeability enhancement by chelating agent injections. The permeability enhancement factors were inferred to be high near the injection borehole because of the high viscosity of the solution. Therefore, reservoir stimulation should be conducted using low-concentration chelating agent solutions at constant injection pressures. The study provides insights into the stimulation strategies for creating geothermal reservoirs using CO2 injection.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-01-19
    Description: The vapor pressure deficit reflects the difference between how much moisture the atmosphere could and actually does hold, a factor that fundamentally affects evapotranspiration, ecosystem functioning, and vegetation carbon uptake. Its spatial variability and long-term trends under natural versus human-influenced climate are poorly known despite being essential for predicting future effects on natural ecosystems and human societies such as crop yield, wildfires, and health. Here we combine regionally distinct reconstructions of pre-industrial summer vapor pressure deficit variability from Europe’s largest oxygen-isotope network of tree-ring cellulose with observational records and Earth system model simulations with and without human forcing included. We demonstrate that an intensification of atmospheric drying during the recent decades across different European target regions is unprecedented in a pre-industrial context and that it is attributed to human influence with more than 98% probability. The magnitude of this trend is largest in Western and Central Europe, the Alps and Pyrenees region, and the smallest in southern Fennoscandia. In view of the extreme drought and compound events of the recent years, further atmospheric drying poses an enhanced risk to vegetation, specifically in the densely populated areas of the European temperate lowlands.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-01-19
    Description: The accurate estimation of flood probability is crucial for designing water storage and flood retention structures. However, the assumption of identical distribution in flood samples is unrealistic, given the influence of various flood mechanisms. To address this challenge, we proposed a novel framework based on flood clustering and data pooling that encompasses the key steps such as 1) flood event separation based on a peak-detection flood separation algorithm, 2) grouping flood events using the k-prototypes algorithm, 3) application of the UNprecedented Simulated Extreme ENsemble (UNSEEN) approach to pool reforecast ensemble datasets, and 4) statistical mixing approach to derive common quantiles from all the flood groups. We applied the framework to the Dresden gauge in the Elbe River for a detailed case study. Various tests have been performed to assess the applicability of the UNSEEN approach and the reforecast dataset consistently shows the potential for data pooling. The proposed methodology outperformed the classical approach in terms of goodness-of-fit. The relative difference between the classical and the proposed approach ((classical-proposed)/proposed) for the 100-year return level is 0.16, with a reduction in root mean square error (RMSE) value from 163 to 98 m3/s. Further, replication of the approach to the gauges in North Germany exhibited a relative difference ranging from −0.3 to +0.15 and produced better estimates in terms of RMSE compared with the traditional model. In summary, the proposed framework offers a better estimation of flood probability by addressing the inherent sample inhomogeneity along with the inclusion of unprecedented flood samples.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-01-19
    Description: African forest are increasingly in decline as a result of land-use conversion due to human activities. However, a consistent and detailed characterization and mapping of land-use change that results in forest loss is not available at the spatial-temporal resolution and thematic levels suitable for decisionmaking at the local and regional scales; so far they have only been provided on coarser scales and restricted to humid forests. Here we present the first high-resolution (5 m) and continental-scale mapping of land use following deforestation in Africa, which covers an estimated 13.85% of the global forest area, including humid and dry forests. We use reference data for 15 different land-use types from 30 countries and implement an active learning framework to train a deep learning model for predicting land-use following deforestation with an F1-score of 84 ± 0.7 for the whole of Africa. Our results show that the causes of forest loss vary by region. In general, small-scale cropland is the dominant driver of forest loss in Africa, with hotspots in Madagascar and DRC. In addition, commodity crops such as cacao, oil palm, and rubber are the dominant drivers of forest loss in the humid forests of western and central Africa, forming an “arc of commodity crops” in that region. At the same time, the hotspots for cashew are found to increasingly dominate in the dry forests of both western and southeastern Africa, while larger hotspots for large-scale croplands were found in Nigeria and Zambia. The increased expansion of cacao, cashew, oil palm, rubber, and large-scale croplands observed in humid and dry forests of western and south-eastern Africa suggests they are vulnerable to future land-use changes by commodity crops, thus creating challenges for achieving the zero deforestation supply chains, support REDD+ initiatives, and towards sustainable development goals.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-01-19
    Description: Detecting phase arrivals and pinpointing the arrival times of seismic phases in seismograms is crucial for many seismological analysis workflows. For land station data, machine learning methods have already found widespread adoption. However, deep learning approaches are not yet commonly applied to ocean bottom data due to a lack of appropriate training data and models. Here, we compiled an extensive and labeled ocean bottom seismometer (OBS) data set from 15 deployments in different tectonic settings, comprising ∼90,000 P and ∼63,000 S manual picks from 13,190 events and 355 stations. We propose PickBlue, an adaptation of the two popular deep learning networks EQTransformer and PhaseNet. PickBlue joint processes three seismometer recordings in conjunction with a hydrophone component and is trained with the waveforms in the new database. The performance is enhanced by employing transfer learning, where initial weights are derived from models trained with land earthquake data. PickBlue significantly outperforms neural networks trained with land stations and models trained without hydrophone data. The model achieves a mean absolute deviation of 0.05 s for P-waves and 0.12 s for S-waves, and we apply the picker on the Hikurangi Ocean Bottom Tremor and Slow Slip OBS deployment offshore New Zealand. We integrate our data set and trained models into SeisBench to enable an easy and direct application in future deployments.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  Proceedings of the National Academy of Sciences of the United States of America (PNAS)
    Publication Date: 2024-01-19
    Description: Surface roughness ubiquitously prevails in natural faults across various length scales. Despite extensive studies highlighting the important role of fault geometry in the dynamics of tectonic earthquakes, whether and how fault roughness affects fluid-induced seismicity remains elusive. Here, we investigate the effects of fault geometry and stress heterogeneity on fluid-induced fault slip and associated seismicity characteristics using laboratory experiments and numerical modeling. We perform fluid injection experiments on quartz-rich sandstone samples containing either a smooth or a rough fault. We find that geometrical roughness slows down injection-induced fault slip and reduces macroscopic slip velocities and fault slip-weakening rates. Stress heterogeneity and roughness control hypocenter distribution, frequency–magnitude characteristics, and source mechanisms of injection-induced acoustic emissions (AEs) (analogous to natural seismicity). In contrast to smooth faults where injection-induced AEs are uniformly distributed, slip on rough faults produces spatially localized AEs with pronounced non-double-couple source mechanisms. We demonstrate that these clustered AEs occur around highly stressed asperities where induced local slip rates are higher, accompanied by lower Gutenberg–Richter b-values. Our findings suggest that real-time monitoring of induced microseismicity during fluid injection may allow identifying progressive localization of seismic activity and improve forecasting of runaway events.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2024-01-16
    Description: Arctic warming increases the degradation of permafrost soils but little is known about floodplain soils in the permafrost region. This study quantifies soil organic carbon (SOC) and soil nitrogen stocks, and the potential CH4 and CO2 production from seven cores in the active floodplains in the Lena River Delta, Russia. The soils were sandy but highly heterogeneous, containing deep, organic rich deposits with 〉60% SOC stored below 30 cm. The mean SOC stocks in the top 1 m were 12.9 ± 6.0 kg C m−2. Grain size analysis and radiocarbon ages indicated highly dynamic environments with sediment re-working. Potential CH4 and CO2 production from active floodplains was assessed using a 1-year incubation at 20°C under aerobic and anaerobic conditions. Cumulative aerobic CO2 production mineralized a mean 4.6 ± 2.8% of initial SOC. The mean cumulative aerobic:anaerobic C production ratio was 2.3 ± 0.9. Anaerobic CH4 production comprised 50 ± 9% of anaerobic C mineralization; rates were comparable or exceeded those for permafrost region organic soils. Potential C production from the incubations was correlated with total organic carbon and varied strongly over space (among cores) and depth (active layer vs. permafrost). This study provides valuable information on the carbon cycle dynamics from active floodplains in the Lena River Delta and highlights the key spatial variability, both among sites and with depth, and the need to include these dynamic permafrost environments in future estimates of the permafrost carbon-climate feedback.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2024-01-16
    Description: This contribution is presenting a multidisciplinary investigation of heterogeneities in a clay rock formation, based on seismic tomography, logging and core analysis, as a reconnaissance study for a diffusion experiment. Diffusion experiments in clay rock formations provide crucial experimental data on diffusive transport of radionuclides (RN) in extremely low hydraulic conductivity media. Previous diffusion experiments, conducted, for example, in the Mont Terri underground rock laboratory within the relatively homogeneous shaly facies of Opalinus Clay, and modelling studies of these experiments have demonstrated that the clay rock could sufficiently well be described as a homogeneous anisotropic medium. For other lithofacies, characterized by larger heterogeneity, such simplification may be unsuitable, and the description of heterogeneity over a range of scales will be important. The sandy facies of the Opalinus Clay exhibits a significantly more pronounced heterogeneity compared to the shaly facies, and a combined characterization and RN diffusion study has been initiated to investigate various approaches of heterogeneity characterization and subsequent diffusion in a heterogeneous environment. As an initial step, two inclined exploratory boreholes have been drilled to access the margins of the experiment location. These boreholes have been used to acquire a cross-hole tomographic seismic data set. Optical, natural gamma and backscattering logging were applied and rock cores were analysed. The integrated results of these investigations allowed the identification of an anomalous brighter layer within the investigated area of the sandy facies of approximately 1 m thickness and with its upper bound at roughly 10 m depth within the inclined exploratory wells. Mineralogical analyses revealed only slight variations throughout the rock cores and indicated that the anomalous layer exhibited a slightly higher quartz content, and locally significantly higher calcite contents, accompanied by a lower content of clay minerals. The anomalous layer was characterized by reduced natural gamma emissions, due to the lower clay content, and increased neutron backscattering likely indicating an increased porosity. Seismic P-wave velocities, derived from anisotropic tomography, exhibited a maximal gradient near the top of this layer. The transition from the overlaying darker rock matrix into this layer has been identified as an appropriate location for the setup of a tracer diffusion experiment in a heterogeneous environment.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2024-01-16
    Description: The joint ESA/NASA Mass-change And Geosciences International Constellation (MAGIC) has the objective to extend time-series from previous gravity missions, including an improvement of accuracy and spatio-temporal resolution. The long-term monitoring of Earth’s gravity field carries information on mass change induced by water cycle, climate change and mass transport processes between atmosphere, cryosphere, oceans and solid Earth. MAGIC will be composed of two satellite pairs flying in different orbit planes. The NASA/DLR-led first pair (P1) is expected to be in a near-polar orbit around 500 km of altitude; while the second ESA-led pair (P2) is expected to be in an inclined orbit of 65°–70° at approximately 400 km altitude. The ESA-led pair P2 Next Generation Gravity Mission shall be launched after P1 in a staggered manner to form the MAGIC constellation. The addition of an inclined pair shall lead to reduction of temporal aliasing effects and consequently of reliance on de-aliasing models and post-processing. The main novelty of the MAGIC constellation is the delivery of mass-change products at higher spatial resolution, temporal (i.e. subweekly) resolution, shorter latency and higher accuracy than the Gravity Recovery and Climate Experiment (GRACE) and Gravity Recovery and Climate Experiment Follow-On (GRACE-FO). This will pave the way to new science applications and operational services. In this paper, an overview of various fields of science and service applications for hydrology, cryosphere, oceanography, solid Earth, climate change and geodesy is provided. These thematic fields and newly enabled applications and services were analysed in the frame of the initial ESA Science Support activities for MAGIC. The analyses of MAGIC scenarios for different application areas in the field of geosciences confirmed that the double-pair configuration will significantly enlarge the number of observable mass-change phenomena by resolving smaller spatial scales with an uncertainty that satisfies evolved user requirements expressed by international bodies such as IUGG. The required uncertainty levels of dedicated thematic fields met by MAGIC unfiltered Level-2 products will benefit hydrological applications by recovering more than 90 per cent of the major river basins worldwide at 260 km spatial resolution, cryosphere applications by enabling mass change signal separation in the interior of Greenland from those in the coastal zones and by resolving small-scale mass variability in challenging regions such as the Antarctic Peninsula, oceanography applications by monitoring meridional overturning circulation changes on timescales of years and decades, climate applications by detecting amplitude and phase changes of Terrestrial Water Storage after 30 yr in 64 and 56 per cent of the global land areas and solid Earth applications by lowering the Earthquake detection threshold from magnitude 8.8 to magnitude 7.4 with spatial resolution increased to 333 km.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2024-01-16
    Description: Accurate assessment of the rate and state friction parameters of rocks is essential for producing realistic earthquake rupture scenarios and, in turn, for seismic hazard analysis. Those parameters can be directly measured on samples, or indirectly based on inversion of coseismic or postseismic slip evolution. However, both direct and indirect approaches require assumptions that might bias the results. Aiming to reduce the potential sources of bias, we take advantage of a downscaled analog model reproducing megathrust earthquakes. We couple the simulated annealing algorithm with quasi-dynamic numerical models to retrieve rate and state parameters reproducing the recurrence time, rupture duration and slip of the analog model, in the ensemble. Then, we focus on how the asperity size and the neighboring segments' properties control the seismic cycle characteristics and the corresponding variability of rate and state parameters. We identify a tradeoff between (a–b) of the asperity and (a–b) of neighboring creeping segments, with multiple parameter combinations that allow mimicking the analog model behavior. Tuning of rate and state parameters is required to fit laboratory experiments with different asperity lengths. Poorly constrained frictional properties of neighboring segments are responsible for uncertainties of (a–b) of the asperity in the order of per mille. Roughly one order of magnitude larger uncertainties derive from asperity size. Those results provide a glimpse of the variability that rate and state friction estimates might have when used as a constraint to model fault slip behavior in nature.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2024-01-22
    Description: The European Geosciences Union (EGU) brings together geoscientists from all over Europe and the rest of the world, covering all disciplines of Earth, planetary and space sciences. The Division on Energy, Resources and the Environment (ERE), as part of the EGU, follows an interdisciplinary approach to serve society and provide solutions to challenges of our time and in the future. One task for humankind, for example, is to provide adequate and reliable supplies of affordable energy and other resources, obtained in environmentally sustainable ways, which will be essential for economic prosperity, environmental quality and political stability around the world. This volume of Advances in Geosciences spans the range of topics of the division and continues a series of ten ERE special issues over the course of the last ten years. We incorporate emerging topics into the division ERE along the line and we advocate that every idea and opportunity should be studied and tested.
    Description: The European Geosciences Union (EGU) brings together geoscientists from all over Europe and the rest of the world, covering all disciplines of Earth, planetary and space sciences. The Division on Energy, Resources and the Environment (ERE), as part of the EGU, follows an interdisciplinary approach to serve society and provide solutions to challenges of our time and in the future. One task for humankind, for example, is to provide adequate and reliable supplies of affordable energy and other resources, obtained in environmentally sustainable ways, which will be essential for economic prosperity, environmental quality and political stability around the world. This volume of Advances in Geosciences spans the range of topics of the division and continues a series of ten ERE special issues over the course of the last ten years. We incorporate emerging topics into the division ERE along the line and we advocate that every idea and opportunity should be studied and tested.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  Advances in Natural Gas: Formation, Processing, and Applications. Volume 3: Natural Gas Hydrates
    Publication Date: 2024-02-23
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
  • 52
    Publication Date: 2024-02-23
    Description: Several studies investigated changes in microbial community composition in thawing permafrost landscapes, but microbial assemblages in the transient ecosystems of the Arctic coastline remain poorly understood. Thermokarst lakes, abrupt permafrost thaw features, are widespread along the pan-Arctic coast and transform into thermokarst lagoons upon coastal erosion and sea-level rise. This study looks at the effect of marine water inundation (imposing a sulfate-rich, saline environment on top of former thermokarst lake sediments) on microbial community composition and the processes potentially driving microbial community assembly. In the uppermost lagoon sediment influenced from marine water inflow, the microbial structures were significantly different from those deeper in the lagoon sediment and from those of the lakes. In addition, they became more similar along depth compared with lake communities. At the same time, the diversity of core microbial consortia community decreased compared with the lake sediments. This work provides initial observational evidence that Arctic thermokarst lake to lagoon transitions do not only substantially alter microbial communities but also that this transition has a larger effect than permafrost thaw and lake formation history.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-02-23
    Description: Many observed time series of precipitation and streamflow show heavy-tail behaviour. For heavy-tailed distributions, the occurrence of extreme events has a higher probability than for distributions with an exponentially receding tail. If we neglect heavy-tail behaviour we might underestimate the magnitude of rarely observed, high-impact events. Robust estimation of upper-tail behaviour is often hindered by the limited length of observational records. Using long time series and a better understanding of the relevant process controls can help with achieving more robust tail estimations. Here, a simulation-based approach is used to analyse the effect of precipitation and runoff generation characteristics on the upper tail of flood peak distributions. Long, synthetic precipitation time series with different tail behaviour are produced by a stochastic weather generator. These are used to force a conceptual rainfall–runoff model. In addition, catchment characteristics linked to a threshold process in the runoff generation are varied between model runs. We characterize the upper-tail behaviour of the simulated precipitation and discharge time series with the shape parameter of the generalized extreme value (GEV) distribution. Our analysis shows that runoff generation can strongly modulate the tail behaviour of flood peak distributions. In particular, threshold processes in the runoff generation lead to heavier tails. Beyond a certain return period, the influence of catchment processes decreases and the tail of the rainfall distribution asymptotically governs the tail of the flood peak distribution. Beyond which return period this is the case depends on the catchment storage in relation to the mean annual rainfall amount.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-02-28
    Description: This data set contains the results from a 2023 GFZ Innovative Research Expedition project to explore for natural hydrogen gas (H2) occurrences in the NW Pyrenean foreland, near the town of Biarritz in France. The data represent in-situ measurements of soil and spring water gas, as well as in-situ spring water property measurements, complemented with laboratory analysis results of gas contents and noble gas isotopic compositions of gas and spring water samples collected during the expedition. This GFZ Innovative Research Expedition was inspired by previous exploration efforts in the region by Lefeuvre et al. (2021, 2022). These authors detected elevated concentrations of natural H2 gas in the soil and interpreted this natural H2 to be derived from serpentinizing mantle rocks below the Pyrenees. The main aims of this expedition were the following: (1) in-situ measuring soil gas contents and taking soil gas samples for laboratory analysis at a site near the town of Peyrehorade in the NW of the general study area of Lefeuvre et al. (2021), thus improving the soil gas data coverage along the NW end of the North Pyrenean Frontal Thrust (NPFT); (2) taking gas samples from degassing springs (or water samples from non-degassing springs to be degassed in the lab) in the general Lefeuvre et al. (2021) study area for additional laboratory analysis of gas contents and noble gas isotopic compositions, which may be indicative of (deep) gas origins; and (3) performing a detailed soil gas analysis by means of a portable mass spectrometer at Sauveterre-de-Béarn, a site along the NPFT where Lefeuvre et al. (2022) measured elevated concentrations of natural H2 in the soil. Furthermore, we also measured the properties of the visited springs (temperature, pH, conductivity) while on site, and performed additional in-situ soil gas measurements from manual drillholes. Details on the measurement and sampling methods, on the laboratory analyses, as well as the results of these measurements and analyses are provided in the data description file The expedition involved six field days in July 2023, during which a total of 26 sites were visited. These sites were selected for their vicinity near a major geological contact or fault zone that could have facilitated upward circulation of gas or (thermal) water from the (deep) subsurface (i.e., potentially from the mantle).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-02-27
    Description: The Samail Ophiolite in the Oman Mountains formed at a Cretaceous subduction zone that was part of a wider Neo-Tethys plate-boundary system. The original configuration and evolution of this plate-boundary system is hidden in a structurally and metamorphically complex nappe stack below the Samail Ophiolite. Previous work provided evidence for high-temperature metamorphism high in the nappe pile (in the metamorphic sole of the Samail Ophiolite), and high-pressure metamorphism in the deepest part of the nappe pile (Saih Hatat window), possibly reflecting a downward younging, progressive accretion history at the Samail subduction zone. However, there is evidence that the two subduction-related metamorphic events are disparate, but temporally overlapping during the mid-Cretaceous. We present the first geochronologic dataset across the entire high-pressure nappe stack below the Samail Ophiolite, and the shear zones between the high-pressure nappes. Our 22 new Rbsingle bondSr multimineral isochron ages from the Saih Hatat window, along with independent new field mapping and kinematic reconstructions, constrain the timing and geometry of tectonometamorphic events. Our work indicates the existence of a high-pressure metamorphic event in the nappes below the ophiolite that was synchronous with the high-temperature conditions in the metamorphic sole. We argue that the thermal conditions of these synchronous metamorphic events can only be explained through the existence of two Cretaceous subduction zones/segments that underwent distinctly different thermal histories during subduction infancy. We infer that these two subduction zones initially formed at two perpendicular subduction segments at the Arabian margin and subsequently rotated relative to each other and, as a consequence, their records became juxtaposed: (1) The high-temperature metamorphic sole and the Samail Ophiolite both formed above the structurally higher, outboard, ‘hot’ and rotating Samail subduction zone and, (2) the high-pressure nappes developed within the structurally lower, inboard, ‘cold’ Ruwi subduction zone. We conclude that the formation and evolution of both subduction zones were likely controlled by the density structure of the mafic-rock-rich Arabian rifted margin and outermost Arabian Platform, and the subsequent arrival of the buoyant, largely mafic-rock-free, full-thickness Arabian lithosphere, which eventually halted subduction at the southern margin of Neo-Tethys. Previous article in issue
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-02-21
    Description: Correction to: Rock Mechanics and Rock Engineering https://doi.org/10.1007/s00603-023-03714-4 In the original publication, the “Funding Information” and “Acknowledgements” were mistakenly swapped.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-02-26
    Description: The proximity of fast‐slipping crustal faults to urban areas may result in pulse‐like ground motions from rupture directivity, which can contribute to increased levels of damage even for engineered structures. Systematic modeling of directivity within probabilistic seismic hazard analysis (PSHA) remains challenging to implement at the regional scale, despite the availability of directivity models in the literature. In the process of developing the 2022 National Seismic Hazard Model for New Zealand (2022 NSHM), we explored the feasibility and impact of modeling directivity for PSHA at a national scale using the previous generation 2010 NSHM. The results of this analysis allowed us to quantify the impact of directivity on the resulting seismic hazard maps for New Zealand and gain insights into the factors that contribute to the expected increases (and decreases) in ground‐motion level. For the 2022 NSHM, the earthquake rupture forecast (ERF) seismogenic source models introduced enormous challenges for directivity modeling due to the abundance of large multisegment or multifault ruptures with complex geometries. To overcome these challenges, we applied a machine learning‐based strategy to “overfit” an artificial neural network to capture the distributions of directivity amplification and its variability for each unique rupture in the earthquake rupture forecast. This produces a compact representation of the spatial fields of amplification that are computationally efficient to generate within a complete PSHA calculation for the 2022 NSHM. This flexible and reproducible framework facilitates the implementation of directivity in PSHA at a regional scale for complex ERF source models and opens up the possibility of more complex characterization of epistemic uncertainties for near‐source ground motion in practice.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-02-26
    Description: The morphology of coastal sequences provides fundamental observations to unravel past sea level (SL) variations. For that purpose, converting morphometric observations into a SL datum requires understanding their morphogenesis. The long-lasting sequence of coral reef terraces (CRTs) at Cape Laundi (Sumba Island, Indonesia) could serve as a benchmark. Yet, it epitomizes a pitfall that challenges the ultimate goal: the overall chronology of its development remains poorly constrained. The polycyclic nature of the terraces, involving marine erosion and reoccupation of old coral colonies by more recent ones hinders any clear assignment of Marine Isotope Stages (MIS) to specific terraces, in particular the reference datum corresponding to the last Interglacial maximum (i.e., MIS 5e). Thus, to overcome these obstacles, we numerically model the genesis of the sequence, testing a range of eustatic SL (ESL) reconstructions and uplift rates, as well as exploring the parameter space to address reef growth, erosion and sedimentation. A total of 625 model runs allowed us to improve the morpho-chronological constraints of the coastal sequence and, more particularly, to explain the morphogenesis of the several CRTs associated with MIS 5e. Our results suggest that the lowermost main terrace was first constructed during the marine transgression of MIS 5e and was later reshaped during the marine regression of MIS 5e, as well as during the MIS 5c and MIS 5a highstands. Finally, we discuss the general morphology of the sequence and the implications it may have on SL reconstructions. At Cape Laundi, as elsewhere, we emphasize the necessity of addressing the development of CRT sequences with a dynamic approach, that is, considering that a CRT is a landform built continuously throughout the history of SL oscillations, and not simply during a singular SL maximum.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-02-26
    Description: Hydraulic fracturing has been widely used to enhance reservoir permeability during the extraction of shale gas. As one of the external input parameters, injection rate has a significant impact on formation breakdown pressure and the complexity of hydraulic fractures. To gain deeper insights into the effect of injection rate on breakdown pressure and fracture morphology, we conducted five hydraulic fracturing experiments on Changning shale in the laboratory. We used five different injection rates between 3 and 30 mL/min to fracture cylindrical core samples with 50 mm in diameter and 100 mm in length. We monitored acoustic emissions and surface displacements during the tests, and analyzed the fracture pattern post mortem by using a fluorescent tracer. We find a semi-logarithmic relationship between the breakdown pressure and the injection rates. Second, we find that it is the injection rate that dictates sample deformation and crack formation during breakdown rather than the fluid volume injected during the whole process. The analysis of amplitudes and frequency of acoustic signals indicates that hydraulic fracturing of Changning shale is overall dominated by tensile fractures (〉 60%). However, at low injection rates, shear events are facilitated before rock breakdown. On the other hand, high injection rates result in reducing fracture tortuosity and surface roughness due to limited fluid infiltration in the relatively short injection window. We close this study with a conceptual model to explain the difference between fluid infiltration (low injection rates) and the loading rate effect (high injection rate) in low-permeability shale rocks. The findings obtained in this study can help to adjust injection rates in the field to economically and safely produce gas from shale.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-02-26
    Description: Secondary ion mass spectrometry was used to test the d18O and d34S nanogram-scale homogeneity of a suite of candidate sulfate minerals, ultimately selecting three barite, two anhydrite, and two gypsum samples from the Royal Ontario Museum that have repeatabilities for their SIMS measurements of better than 0.39‰ and 0.37‰ (1s) for oxygen and sulfur isotope ratios, respectively. Metrological splits of each of the seven materials were sent to multiple gas source isotope ratio mass spectrometry laboratories in order to establish their absolute 18O/16O and 34S/32S ratios. The inter-laboratory results of GS-IRMS analyses yielded reasonably narrow ranges in d18OVSMOW, whereas larger variations in d34SVCDT values were found between the results from the gas source laboratories. All samples have good reproducibility within laboratories of GS-IRMS 103d18O values of between 0.24‰ and 0.44‰ (1s). The reproducibility within laboratories of GS-IRMS 103d34S values range from 0.07‰ to 0.99‰ (1s). Here we also discuss some of the current analytical limitations affecting these isotope-mineral systems. A total of 256 metrological splits have been prepared from each of these seven materials; these aliquots will be made available to the global geochemical community.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-02-26
    Description: The goals of the Paris Agreement (PA) on collectively managing climate change can only be reached if all parties to the United Nations Framework Convention on Climate Change (UNFCCC) commit to actions supporting their Nationally Determined Contributions (NDCs). Developing-economy nations play a crucial role in reaching the PA targets, particularly in the Agriculture, Forest, and Other Land Uses (AFOLU) sector. However, developing country Parties also face several constraints in tracking and communicating progress towards their climate policy targets and implementation of their NDCs. The operationalization of Biennial Transparency Report (BTR) and Enhanced Transparency Framework (ETF) under the PA will bring stricter reporting timeframes and advanced transparency for all parties. With these requirements rapidly coming into force, addressing reporting gaps is now a pressing priority. The present study analyzes the NDCs, and Biennial Update Reports (BURs) submitted by developing country Parties under the UNFCCC. In an illustrative exercise, our in-depth analysis concentrates on reporting on the AFOLU sector and identifies issues impeding a comprehensive and comparable Global Stock Take (GST): (i) issues of consistency in reporting timeframes (ii) issues in transparency of reporting on mitigation sectors and on relevant progress indicators (iii) incomparability of methodological approaches proposed and used, and (iv) the implications of limited national capacity for transparent reporting. The UNFCCC and developed country Parties now have the opportunity of providing specialized support for developing country Parties. This could include tailored guidance to address gaps in both greenhouse-gas (GHG) emissions accounting, and reporting challenges, to ensure consistent, comprehensive, and transparent reporting to reinforce capacities moving forward following the next GST.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-02-26
    Description: The increasing demand for fertilizers and their rising prices has led to the search for new nutrient sources, especially in rural areas where family farming predominates. In this study, we assessed the potential of reusing sediment deposited in surface reservoirs as a soil conditioner in a semiarid region, focusing on two features: the characterization of sediment physicochemical properties at the regional scale and the effect of the substrate containing sediment on the growth and physiology of maize.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-02-26
    Description: The crustal motions throughout Germany have not yet been fully understood because the research scope of previous studies often focuses only on some active grabens. Thus, we investigate it in detail to identify the neotectonic motion characteristics and specific deformation-ongoing regions. High accuracy for monitoring and data analyses is required because the expected crustal deformation in Germany is small. For this reason, we use high-precision GNSS time series processing techniques and interdisciplinary data to reflect actual motions and determine the causes of deformation. Also, an advanced technique of discontinuity correction is introduced to unify the fragments of the GNSS coordinate time series for better velocity field reliability. Our findings show that the crustal motions in Germany tend to increase at a maximum speed of +1.0 mm/year. Meanwhile, local subsidence of around 0.8 mm/year is concentrated in the river basins (e.g., the Rhine, Ems, Elbe, Northern Oder, and Danube) and extensive mining regions. The Earth’s crust here also behaves with noticeable compressions. The intra-plate motion in Germany is 0.8 mm/year. A special region with an extension rate of +4.3 nstrain/year is observed along the North–South trending Regensburg-Leipzig-Rostock shear zone. Machine Learning clusters the 3D plate velocity field in Germany into three distinct regions with increasing speeds: Northwest, East, and Southwest. Significant surface deformations are detected mainly in the Upper Rhine graben, Eifel volcanic field, and Thuringian-Vogtland slate mountains. The harmonic motions of the Earth’s crust in Germany have an amplitude of 4.7 mm, in which the surface loads contribute half to this type of motion. The findings will contribute to the overall picture of neotectonics here.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-02-26
    Description: To determine the relationships between the functional trait composition of forest communities and environmental gradients across scales and biomes and the role of species relative abundances in these relationships.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-02-26
    Description: Microbial blooms colonize the Greenland Ice Sheet bare ice surface during the ablation season and significantly reduce its albedo. On the ice surface, microbes are exposed to high levels of irradiance, freeze–thaw cycles, and low nutrient concentrations. It is well known that microorganisms secrete metabolites to maintain homeostasis, communicate with other microorganisms, and defend themselves. Yet, the exometabolome of supraglacial microbial blooms, dominated by the pigmented glacier ice algae Ancylonema alaskanum and Ancylonema nordenskiöldii, remains thus far unstudied. Here, we use a high-resolution mass spectrometry-based untargeted metabolomics workflow to identify metabolites in the exometabolome of microbial blooms on the surface of the southern tip of the Greenland Ice Sheet. Samples were collected every 6 h across two diurnal cycles at 5 replicate sampling sites with high similarity in community composition, in terms of orders and phyla present. Time of sampling explained 46% (permutational multivariate analysis of variance [PERMANOVA], pseudo-F = 3.7771, p = 0.001) and 27% (PERMANOVA, pseudo-F = 1.8705, p = 0.001) of variance in the exometabolome across the two diurnal cycles. Annotated metabolites included riboflavin, lumichrome, tryptophan, and azelaic acid, all of which have demonstrated roles in microbe–microbe interactions in other ecosystems and should be tested for potential roles in the development of microbial blooms on bare ice surfaces.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-02-26
    Description: The analysis of Coulomb stress changes has become an important tool for seismic hazard evaluation because such stress changes may trigger or delay subsequent earthquakes. Processes that can cause significant Coulomb stress changes include coseismic slip and transient postseismic processes such as poroelastic effects and viscoelastic relaxation. However, the combined influence of poroelastic effects and viscoelastic relaxation on co- and postseismic Coulomb stress changes has not been systematically studied so far. Here, we use three-dimensional finite-element models with arrays of normal and thrust faults to investigate how pore fluid pressure changes and viscoelastic relaxation overlap during the postseismic phase. In different experiments, we vary the permeability of the upper crust and the viscosity of the lower crust or lithospheric mantle while keeping the other parameters constant. In addition, we perform experiments in which we combine a high (low) permeability of the upper crust with a low (high) viscosity of the lower crust. Our results show that the coseismic (i.e., static) Coulomb stress changes are altered by the signal from poroelastic effects and viscoelastic relaxation during the first month after the earthquake. For sufficiently low viscosities, the Coulomb stress change patterns show a combined signal from poroelastic and viscoelastic effects already during the first postseismic year. For sufficiently low permeabilities, Coulomb stress changes induced by poroelastic effects overlap with the signals from viscoelastic relaxation and interseismic stress accumulation for decades. Our results imply that poroelastic and viscoelastic effects have a strong impact on postseismic Coulomb stress changes and should therefore be considered together when analyzing Coulomb stress transfer between faults.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-02-26
    Description: The impact of faults on the contemporary stress field in the upper crust has been discussed in various studies. Data and models clearly show that there is an effect, but so far, a systematic study quantifying the impact as a function of distance from the fault is lacking. In the absence of data, here we use a series of generic 3-D models to investigate which component of the stress tensor is affected at which distance from the fault. Our study concentrates on the far field, lo- cated hundreds of metres from the fault zone. The models assess various techniques to represent faults, different mate- rial properties, different boundary conditions, variable orien- tation, and the fault’s size. The study findings indicate that most of the factors tested do not have an influence on ei- ther the stress tensor orientation or principal stress magni- tudes in the far field beyond 1000 m from the fault. Only in the case of oblique faults with a low static friction coeffi- cient of μ = 0.1 can noteworthy stress perturbations be seen up to 2000 m from the fault. However, the changes that we detected are generally small and of the order of lateral stress variability due to rock property variability. Furthermore, only in the first hundreds of metres to the fault are variations large enough to be theoretically detected by borehole-based stress data when considering their inherent uncertainties. This find- ing agrees with robust stress magnitude measurements and stress orientation data. Thus, in areas where high-quality and high-resolution data show gradual and continuous stress ten- sor rotations of 〉 20◦ observed over lateral spatial scales of 10 km or more, we infer that these rotations cannot be at- tributed to faults. We hypothesize that most stress orienta- tion changes attributed to faults may originate from different sources such as density and strength contrasts.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-02-26
    Description: The Bakreswar geothermal province represents a medium enthalpy geothermal system with its Bakreswar and Tantloie hot springs. It lies within the Chotanagpur Granite Gneissic Complex in the eastern part of the Indian Peninsula. The province has a high heat flow and a high geothermal gradient of 90°C/km. Magnetotelluric data from 95 sites in a frequency range of 10 kHz–10 Hz were acquired over the Bakreswar geothermal province to obtain an electrical conductivity model and map the geothermal reservoir with its fluid pathways and related geological structures. Subsurface conductivity models obtained from three-dimensional inversions of the Magnetotelluric data exhibit several prominent anomalies, which are supplemented by gravity results. The conductivity model maps three features which act as a conduit (a) a northwest–southeast trending feature, (b) an east–west trending feature to the south of the northwest–southeast trending feature (which lies 1 km north of the Oil and Natural Gas Corporation fault marked by previous studies) and (c) shallow conducting features close to Bakreswar hot spring. The northwest–southeast trending feature coincides with the boundary of the high-density intrusive block. This northwest–southeast trending feature provides the pathway for the meteoric water to reach a maximum depth of 2.7 km, where it gets heated by interacting with deep-seated structures and then it rises towards the surface. The radiogenic process occurring within the granites of Chotanagpur Granite Gneissic Complex provides the heat responsible for heating the meteoric water. The northwest–southeast and east–west trending features are responsible for the transport of meteoric water to deeper depths and then towards the shallow regions of the Earth. The near surface features close to the Bakreswar hot spring are responsible for carrying the water further towards the hot spring. The resistivity of these structures plotted as a function of salinity and temperatures for saline crustal fluids suggests the involvement of meteoric water. Further, applying Archie's law to this resistivity suggests that the conduit path has a porosity greater than 10%. This study successfully maps the anomalous structures which might foster the migration of geothermal fluid in Bakreswar geothermal province.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-03-01
    Description: Public earthquake early warning systems (PEEWSs) have the potential to save lives by warning people of incoming seismic waves up to tens of seconds in advance. Given the scale and geographical extent of their impact, this potential is greatest for destructive earthquakes, such as the M7.8 Pazarcik (Türkiye) event of 6 February 2023, which killed almost 60,000 people. However, warning people of imminent strong shaking is particularly difficult for large-magnitude earthquakes because the warning must be given before the earthquake has reached its final size. Here, we show that the Earthquake Network (EQN), the first operational smartphone-based PEEWS and apparently the only one operating during this earthquake, issued a cross-border alert within 12 s of the beginning of the rupture. A comparison with accelerometer and macroseismic data reveals that, owing to the EQN alerting strategy, Turkish and Syrian EQN users exposed to intensity IX and above benefitted from a warning time of up to 58 s before the onset of strong ground shaking. If the alert had been extended to the entire population, approximately 2.7 million Turkish and Syrian people exposed to a lifethreatening earthquake would have received a warning ranging from 30 to 66 s in advance.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-03-05
    Description: This study presents the findings of a splitting analysis conducted on core-refracted teleseismic shear waves (SKS, SKKS and PKS, called together as XKS) and local shear waves, obtained from a dense seismological network spanning the Kamchatka Peninsula. The objective of the study is to examine the pattern of mantle flow beneath the study area through the investigation of seismic anisotropy. The peninsula is situated at the northeastern end of the Kuril–Kamchatka subduction zone, where the Kuril trench intersects with the western boundary of the Aleutian trench. The data set utilized in this study comprises waveform data from a dense network of seismic stations (99 broad-band and short-period stations for the local shear wave splitting analysis and 69 broad-band stations for the SKS splitting analysis). The seismograms were downloaded from publicly available data repositories including the IRIS Data Management Center and the GFZ Data Services (GEOFON program). The dense station coverage allows us to investigate the lateral variations in anisotropy, providing insights into the flow patterns within the mantle. The processing of the combined data sets of local shear wave and teleseismic XKS waves allowed us to partially decipher the source of anisotropy in the mantle. Small delay (splitting) times (∼0.35 s) observed from the local-S data suggest that anisotropy in the mantle wedge is relatively weak with lateral variations. Larger splitting times (∼1.1 s) observed for the XKS waves relative to local S suggest that the main part of splitting on the XKS waves occurs in the subslab mantle. On the other hand, the rotational pattern of seismic anisotropy observed by both the local S and XKS waves suggests the presence of a toroidal flow at the NE edge of the subducting slab, which affects both the mantle wedge and subslab mantle. For the regions away from the edge of the slab, the mantle flow seems to be governed mainly by the drag of the lithospheric plate over the underlying asthenosphere.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-03-05
    Description: The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) mission will explore global dynamics of the magnetosphere under varying solar wind and interplanetary magnetic field conditions, and simultaneously monitor the auroral response of the Northern Hemisphere ionosphere. Combining these large-scale responses with medium and fine-scale measurements at a variety of cadences by additional ground-based and space-based instruments will enable a much greater scientific impact beyond the original goals of the SMILE mission. Here, we describe current community efforts to prepare for SMILE, and the benefits and context various experiments that have explicitly expressed support for SMILE can offer. A dedicated group of international scientists representing many different experiment types and geographical locations, the Ground-based and Additional Science Working Group, is facilitating these efforts. Preparations include constructing an online SMILE Data Fusion Facility, the discussion of particular or special modes for experiments such as coherent and incoherent scatter radar, and the consideration of particular observing strategies and spacecraft conjunctions. We anticipate growing interest and community engagement with the SMILE mission, and we welcome novel ideas and insights from the solar-terrestrial community.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2024-03-04
    Description: This dataset comprises event peak flows, representing extreme floods at 516 stations in Germany. The data generation process involves several key steps. Initially, observed rainfall events associated with 10 historical flood disasters from 1950 to 2021 are undergone spatial shifts. These shifts involve three distances (20, 50, and 100 km) and eight directions (North, Northeast, East, Southeast, South, Southwest, West, Northwest), resulting in 24 counterfactual precipitation events. Including the factual (no shift) event, a total of 25 distinct shifting events are considered. Subsequently, these shifted fields are used as atmospheric forcing for a mesoscale hydrological model (mHM) set up and calibrated for the entire Germany. The model produces daily stream flows across its domain, from which the event peak flows are derived. This dataset is expected to provide a valuable resource for analyzing and modeling the dynamics extreme flood events in Germany.
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
  • 74
    Publication Date: 2024-03-04
    Description: We present SeisMIC, a fast, versatile, and adaptable open-source software to estimate seismic velocity changes from ambient seismic noise. SeisMIC includes a broad set of tools and functions to facilitate end-to-end processing of ambient noise data, from data retrieval and raw data analysis via spectrogram computation, over waveform coherence analysis, to post-processing of the final velocity change estimates. A particular highlight of the software is its ability to invert velocity change time series onto a spatial grid, making it possible to create maps of velocity changes. To tackle the challenge of processing large continuous datasets, SeisMIC can exploit multithreading at high efficiency with an about five-time improvement in compute time compared to MSNoise, probably the most widespread ambient noise software. In this manuscript, we provide a short tutorial and tips for users on how to employ SeisMIC most effectively. Extensive and up-to-date documentation is available online. Its broad functionality combined with easy adaptability and high efficiency make SeisMIC a well-suited tool for studies across all scales.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2024-03-04
    Description: The dataset is the basis for describing a 60-year-long evolution of groundwater dynamics and thermal field in the North German Basin beneath the Federal State of Brandenburg (NE Germany), covering the period between 1953 and 2014 with monthly increments. It was produced by one-way coupling of a near-surface distributed hydrologic model to a 3D basin-scale thermohydraulic groundwater model with the goal of investigating feedbacks between climate-driven forcing (in terms of time- and space-varying recharge and temperature), basin-scale geology, and topographic gradients. Modeled pressure and temperature distributions are validated against published groundwater level and temperature time series from observation wells. Our results indicate the spatio-temporal extent of the groundwater system subjected to nonlinear interactions between local geological variability and climate conditions. The dataset comprises of input files and scripts required to run the groundwater model in GOLEM and output files from the transient thermo-hydraulic simulations in EXODUS format. The input and output data is organized as separate archived folders (*.gz format).
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2024-03-04
    Description: This study investigates the decades-long evolution of groundwater dynamics and thermal field in the North German Basin beneath Brandenburg (NE Germany) by coupling a distributed hydrologic model with a 3D groundwater model. We found that hydraulic gradients, acting as the main driver of the groundwater flow in the studied basin, are not exclusively influenced by present-day topographic gradients. Instead, structural dip and stratification of rock units and the presence of permeability contrasts and anisotropy are important co-players affecting the flow in deep seated saline aquifers at depths 〉500 m. In contrast, recharge variability and anthropogenic activities contribute to groundwater dynamics in the shallow (〈500 m) freshwater Quaternary aquifers. Recharge fluxes, as derived from the hydrologic model and assigned to the parametrized regional groundwater model, reproduce magnitudes of recorded seasonal groundwater level changes. Nonetheless, observed instances of inter-annual fluctuations and a gradual decline of groundwater levels highlight the need to consider damping of the recharge signal and additional sinks, like pumping, in the model, in order to reconcile long-term groundwater level trends. Seasonal changes in near-surface groundwater temperature and the continuous warming due to conductive heat exchange with the atmosphere are locally enhanced by forced advection, especially in areas of high hydraulic gradients. The main factors controlling the depth of temperature disturbance include the magnitude of surface temperature variations, the subsurface permeability field, and the rate of recharge. Our results demonstrate the maximum depth extent and the response times of the groundwater system subjected to non-linear interactions between local geological variability and climate conditions.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2024-03-04
    Description: Assessing the potential and extent of earthquake-induced liquefaction is paramount for seismic hazard assessment, for the large ground deformations it causes can result in severe damage to infrastructure and pose a threat to human lives, as evidenced by many contemporary and historical case studies in various tectonic settings. In that regard, numerical modeling of case studies, using state-of-the-art soil constitutive models and numerical frameworks, has proven to be a tailored methodology for liquefaction assessment. Indeed, these simulations allow for the dynamic response of liquefiable soils in terms of effective stresses, large strains, and ground displacements to be captured in a consistent manner with experimental and in-situ observations. Additionally, the impact of soil properties spatial variability in liquefaction response can be assessed, because the system response to waves propagating are naturally incorporated within the model. Considering that, we highlight that the effect of shear-wave velocity Vs spatial variability has not been thoroughly assessed. In a case study in Metropolitan Concepción, Chile, our research addresses the influence of Vs spatial variability on the dynamic response to liquefaction. At the study site, the 2010 Maule Mw 8.8 megathrust Earthquake triggered liquefaction-induced damage in the form of ground cracking, soil ejecta, and building settlements. Using simulated 2D Vs profiles generated from real 1D profiles retrieved with ambient noise methods, along with a PressureDependentMultiYield03 sand constitutive model, we studied the effect of Vs spatial variability on pore pressure generation, vertical settlements, and shear and volumetric strains by performing effective stress site response analyses. Our findings indicate that increased Vs variability reduces the median settlements and strains for soil units that exhibit liquefaction-like responses. On the other hand, no significant changes in the dynamic response are observed in soil units that exhibit non-liquefaction behavior, implying that the triggering of liquefaction is not influenced by spatial variability in Vs. We infer that when liquefaction-like behavior is triggered, an increase of the damping at the shallowest part of the soil domain might be the explanation for the decrease in the amplitude of the strains and settlements as the degree of Vs variability increases.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2024-03-08
    Description: We discuss data of three laboratory stick-slip experiments on Westerly Granite samples performed at elevated confining pressure and constant displacement rate on rough fracture surfaces. The experiments produced complex slip patterns including fast and slow ruptures with large and small fault slips, as well as failure events on the fault surface producing acoustic emission bursts without externally-detectable stress drop. Preparatory processes leading to large slips were tracked with an ensemble of ten seismo-mechanical and statistical parameters characterizing local and global damage and stress evolution, localization and clustering processes, as well as event interactions. We decompose complex spatio-temporal trends in the lab-quake characteristics and identify persistent effects of evolving fault roughness and damage at different length scales, and local stress evolution approaching large events. The observed trends highlight labquake localization processes on different spatial and temporal scales. The preparatory process of large slip events includes smaller events marked by confined bursts of acoustic emission activity that collectively prepare the fault surface for a system-wide failure by conditioning the large-scale stress field. Our results are consistent overall with an evolving process of intermittent criticality leading to large failure events, and may contribute to improved forecasting of large natural earthquakes.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2024-03-06
    Description: Drainage basins delineate Earth's land surface into individual water collection units. Basin shape and river sinuosity determine water and sediment dynamics, affecting landscape evolution and connectivity between ecosystems and freshwater species. However, a high-resolution global dataset for the boundaries and geometry of basins is still missing. Using a 90 m resolution digital elevation model, we measured the areas, lengths, widths, aspect ratios, slopes, and elevations of basins over 50 km2 globally. Additionally, we calculated the lengths and sinuosities of the longest river channels within these 0.67 million basins. We built a new global dataset, Basin90m, to present the basins and rivers, as well as their morphological metrics. To highlight the use cases of Basin90m, we explored the correlations among morphological metrics, such as Hack's law. By comparing with HydroSHEDS, HydroATLAS, and Google Earth images, we demonstrated the high accuracy of Basin90m. Basin90m, available in shapefile format, can be used on various GIS platforms, including QGIS, ArcGIS, and GeoPandas. Basin90m has substantial application prospects in geomorphology, hydrology, and ecology. Basin90m is available at https://doi.org/10.5880/GFZ.4.6.2023.004 (He et al., 2023).
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2024-03-06
    Description: Regions experiencing prolonged dry spell exhibit intensified land-atmosphere coupling, exacerbating dry conditions within the hydrological system. Yet, understanding the propagation of these processes within the context of permafrost degradation remains limited. Our study investigates concurrent hydro-climate variations in the semi-arid Selenga River basin in the southern edge of Siberian permafrost. Driven by the natural atmospheric circulations, this region experienced two distinct dry spells during 1954–2013. It enables comparative investigations into the role of warming-induced permafrost degradations in drought dynamics under land-atmosphere coupling. Based on a comprehensive analysis of observed borehole data from 1996 to 2009 and empirical methods, we identify widespread permafrost loss in the semi-arid Selenga region. Such large-scale landscape changes may increase the infiltration of water from the surface to the subsurface hydrological system, and significantly influence the dry conditions in landsurface. First, significant decreasing trends are observed in river runoff (−0.30mm/yr, p 〈 0.05) and TWS (−3.16 mm/yr, p = 0.1), despite the absence of an apparent trend in annual precipitation (0.009 mm/yr, p = 0.9). Furthermore, in comparison to the first dry spell (1974–1983, 10yrs), the hydro-climatic variables show prolonged and more severe water deficits in runoff and TWS during the second dry spell (1996–2012, 17 yrs), with a reduced runoff-generation efficiency from precipitation. Such exacerbated dry conditions are coincident with amplified positive anomalies observed in air temperature, PET, as well as low-level geopotential height. These concurrent “hot-dry” phenomena indicate an enhanced land-atmospheric interaction within the hydro-climate system, which is further evidenced by the negative relationship between permafrost thawing index and runoff deficits (regression coefficient = –3.8, p 〈 0.001). As climate warming continues, the ongoing permafrost degradation could reinforce water scarcity, triggering an irreversible shift in water availability in water-scarce regions. Our findings could support freshwater management for regional food supply, human health, and ecosystem functions in the regions undergoing large-scale permafrost degradation.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2024-02-12
    Description: For robust multi-modal person re-identification (re-ID) models, it is crucial to effectively utilize the complementary information and constraint relationships among different modalities. However, current multi-modal methods often overlook the correlation between modalities at the feature fusion stage. To address this issue, we propose a novel multimodal person re-ID method called Transformer Relation Regularization (TRR). Firstly, we introduce an adaptive collaborative matching module that facilitates the exchange of useful information by mining feature correspondences between modalities. This module allows for the integration of complementary information, enhancing the re-ID performance. Secondly, we propose an enhanced embedded module that corrects general information using discriminative information within each modality. By leveraging this approach, we improve the model’s stability in challenging multi-modal environments. Lastly, we propose an adaptive triple loss to enhance sample utilization efficiency and mitigate the problem of inconsistent representation among multimodal samples. This loss function optimizes the model’s ability to distinguish between different individuals, leading to improved re-ID accuracy. Experimental results on several challenging visible-infrared person re-ID benchmark datasets demonstrate that our proposed TRR method achieves optimal performance. Additionally, extensive ablation studies validate the effective contribution of each component to the overall model. In summary, our proposed TRR method effectively leverages complementary information, addresses the correlation between modalities, and improves the re-ID performance in multi-modal scenarios. The results obtained from various benchmark datasets and the comprehensive analysis support the efficacy of our approach.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2024-02-12
    Description: The International GNSS Service (IGS) provides combined satellite and station clock products, which are generated from the individual clock solutions produced by the analysis centers (ACs). Combinations for GPS and GLONASS are currently available, but there is still a lack of combined products for the new constellations such as Galileo, BeiDou, and QZSS. This study presents a combination framework based on least squares variance component estimation using the ACs’ aligned clock solutions. We present the various alignments required to harmonize the solutions from the ACs, namely the radial correction derived from the differences of the associated orbits, the alignment of the AC clocks to compensate for different reference clocks within each AC solution, and the inter-system bias (ISB) alignment to correct for different AC ISB definitions when multiple constellations are used. The combination scheme is tested with IGS MGEX and repro3 products. The RMS computed between the combined product and the aligned ACs’ solutions differ for each constellation, where the lowest values are obtained for Galileo and GPS with on average below 45 psec (13 mm) and reaching more than 150 psec (45 mm) for QZSS. The same behavior is repeated when the process is performed with the repro3 products. A clock and orbit combination validation is done using precise point positioning (PPP) that shows ionosphere-free phase residuals below 10 mm for all constellations, comparable with the AC solutions that are in the same level.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2024-02-12
    Description: Trawl-fishing is broadly considered to be one of the most destructive anthropogenic activities toward benthic ecosystems. In this study, we examine the effects of bottom-contact fishing by otter trawls on the geochemistry and macrofauna in sandy silt sediment in an area of the Baltic Sea where clear spatial patterns in trawling activity were previously identified by acoustic mapping. We calibrated an early diagenetic model to biogeochemical data from various coring locations. Fitting measured mercury profiles allowed for the determination of the sediment mixing and burial velocity. For all sites, independent of the trawl mark density, good fits were obtained by applying the model with the same organic matter loading and parameter values, while iron fluxes scaled linearly with the burial velocity. A sensitivity analysis revealed that the fitted sulfate reduction rate, solid sulfur contents, ammonium concentration, and both the isotopic composition and concentration of dissolved inorganic carbon provided reliable constraints for the total mineralization rate, which exhibited a narrow range of variability (around ±20 % from the mean) across the sites. Also, the trawling intensity did not significantly correlate with total organic carbon contents in surficial sediment, indicating limited loss of organic matter due to trawling. The fits to the reactive iron, acid volatile sulfur, chromium(II) reducible sulfur contents, and porewater composition demonstrate that sediment burial and mixing primarily determine the redox stratification. The mixing depth did not correlate with trawling intensity and is more likely the result of bioturbation, as the analyzed macrofaunal taxonomy and density showed a high potential for sediment reworking. The extraordinarily long-lived Arctica islandica bivalve dominated the infaunal biomass, despite the expectation that trawling leads to the succession from longer-lived to shorter-lived and bigger to smaller macrofauna. Our results further suggest that a clear geochemical footprint of bottom-trawling may not develop in sediments actively reworked by tenacious macrofauna.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2024-02-06
    Description: Grain boundary networks of quartz, plagioclase and olivine crystal aggregates in metamorphic rocks have been investigated from the nanometer to the millimeter scale by polarized-light microscopy, SEM, and TEM. The studied materials show different grain sizes and experienced different retrograde P-T histories. The aggregates of quartz and plagioclase are traversed by networks of ∼90% continuously open boundaries with μm-sized cavities along the boundaries or at triple junctions. The boundaries are up to ∼500 nm wide open with typically parallel opposing grain faces. Olivine boundaries are filled with serpentine that does not replace olivine but fills the initially open space homogeneously and mostly with random orientation. For quartz there is no correlation between the crystallographic orientation of grain boundaries and their widths. Amongst all samples analyzed, a weak positive correlation exists between grain size and width of open grain boundaries. The application of measured volume changes and elasticity data from the literature to the cooling-decompression paths of the analyzed materials suggests that fracturing with subsequent widening of the grain boundaries starts at temperatures recognizably below the transition from crystal-plastic to brittle behavior of quartz, plagioclase and olivine but not only under surface conditions. The high amount of open boundaries causes an extensive permeability.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2024-02-06
    Description: Pit lakes in the ‘anthropogenic lake district’ in the Muskau Arch (western Poland; central Europe) are strongly affected by acid mine drainage (AMD). The studied acidic pit lake, ŁK-61 (pH 〈3), is also exposed to floods due to its location in the flood hazard area, which may significantly influence the geochemical behavior of elements. The elemental compositions of water and lake sediment samples were measured with ICP–OES and ICP–MS. The sediment profile was also examined for 137Cs and 210Po activity concentrations using gamma and alpha spectrometry, respectively. Grain size distribution, mineralogical composition, diatoms, and organic matter content in the collected core were also determined. The key factors responsible for the distribution of selected heavy metals (e.g., Cu, Ni, Pb, Zn) and radioisotopes (137Cs and 210Po) in the bottom sediments of Lake ŁK-61 are their coprecipitation/precipitation with Fe and Al secondary minerals and their sorption onto authigenic and allogenic phases. These processes are likely driven by the lake tributary, which is an important source of dissolved elements. The data also showed that the physiochemical parameters of Lake ŁK-61 water changed during an episodic depositional event, i.e., the flood of the Nysa Łużycka River in the summer of 2010. The flood caused an increase in the water pH, as interpreted from the subfossil diatom studies. The down-core profiles of the studied heavy metal and radionuclide (HMRs) contents were probably affected by this depositional event, which prevented a detailed age determination of the collected lake sediments with 137Cs and 210Pb dating methods. Geochemical modeling indicates that the flood-related shift in the physicochemical parameters of the lake water could have caused the scavenging of dissolved elements by the precipitation of fresh secondary minerals. Moreover, particles contaminated with HMRs have also possibly been delivered by the river, along with the nutrients (e.g., phosphorus and nitrogen).
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2024-02-06
    Description: Contemporary quantum plasmonics capture subtle corrections to the properties of plasmonic nano-objects in equilibrium. Here, we demonstrate non-equilibrium spill-out redistribution of the electronic density at the ultrafast time scale. As revealed by time-resolved 2D spectroscopy of nanoplasmonic Fe/Au bilayers, an injection of the laser-excited non-thermal electrons induces transient electron spill-out thus changing the plasma frequency. The response of the local electronic density switches the electronic density behavior from spill-in to strong (an order of magnitude larger) spill-out at the femtosecond time scale. The superdiffusive transport of hot electrons and the lack of a direct laser heating indicate significantly non-thermal origin of the underlying physics. Our results demonstrate an ultrafast and non-thermal way to control surface plasmon dispersion through transient variations of the spatial electron distribution at the nanoscale. These findings expand quantum plasmonics into previously unexplored directions by introducing ultrashort time scales in the non-equilibrium electronic systems.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2024-02-06
    Description: In the Rafsanjan plain, Iran, the excessive use of groundwater for pistachio irrigation since the 1960s has led to a severe water level decline as well as land subsidence. In this study, the advantages of InSAR analyses and groundwater fow modeling are combined to improve the understanding of the subsurface processes causing groundwater-related land subsidence in several areas of the region. For this purpose, a calibration scheme for the numerical groundwater model was developed, which simultaneously accounts for hydraulic aquifer parameters and sediment mechanical properties of land subsidence and thus considers the impact of water release from aquifer compaction. Simulation results of past subsidence are calibrated with satellite-based InSAR data and further compared with leveling measurements. Modeling results show that land subsidence in this area occurs predominantly in areas with fne-grained sediments and is therefore only partly dependent on groundwater level decline. During the modeling period from 1960 to 2020, subsidence rates of up to 21 cm year−1 are simulated. Due to the almost solely inelastic compaction of the aquifer, this has already led to an irreversible aquifer storage capacity loss of 8.8 km3 . Simulation results of future development scenarios indicate that although further land subsidence cannot be avoided, subsidence rates and the associated aquifer storage capacity loss can be reduced by up to 50 and 36%, respectively, by 2050 through the implementation of improved irrigation management for the pistachio orchards.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2024-02-06
    Description: Steranes and hopanes are the biomarkers of eukaryotic sterols and bacterial hopanols. Extracted from sedimentary rock, they are widely used to assess burial temperatures and palaeoecological conditions. The relative proportion of steranes and hopanes is commonly applied as a measure of the flux of eukaryotic versus bacterial biomass into sediments, and the relative abundances of C27, C28 and C29 steranes are proxies for shifts in eukaryote ecology. In Recent sediments, intact sterols provide additional information about particular eukaryotic origins. However, biological lipid distributions are not always recorded faithfully in sediments. Based on observations on modern algae and plants, and on 558 million year old fossil macroalgae from the Ediacaran of the White Sea, we suggest that these biomarker proxies can be severely altered by aerobic microbial reworking, to the extent that a complete loss of primary ecological information may occur. Network analysis on the biomarker data suggests that oxic degradation also affects isomer and homolog distributions of saturated and aromatic steroids, hopanes, cheilanthanes and n-alkanes, generating anomalies in apparent thermal maturity indicators and other proxies. In our dataset, between Ediacaran macroalgae that experienced the least and the most oxic degradation, the absolute concentration of biomarkers decreases 80-fold, and at the same time the proportion of steranes over hopanes decreases by a factor of 82, while the proportion of C29 steranes among total steranes decreases from 91% to 47%. Such redox dependent offsets may explain the recurrently erratic behaviour of numerous biomarker parameters. While these results impart constraints on the interpretation of biomarker distributions, they do provide a tool for evaluating the effects of oxygen exposure and microbial degradation on organic matter preservation in recent and ancient environments and may point towards a solution for the correction of such effects.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2024-02-06
    Description: As critical transition zones between the land and the sea, estuaries are not only hotspots of hydrogeochemical and microbial processes/reactions, but also play a vital role in processing and transferring terrestrial fluxes of metals and nutrients to the sea. This study focused on three estuaries in the Gulf of Bothnia. All of them experience frequent inputs of acidic and Mn/metal-rich creek waters due to flushing of acid sulfate soils that are widespread in the creekś catchments. Analyzing existing long-term water chemistry data revealed a strong seasonal variation of Mn loads, with the highest values in spring (after snow melt) and autumn (after heavy rains). We sampled surface waters, suspended particulate matter (SPM), and sediments from the estuarine mixing zones and determined the loads and solid-phase speciation of Mn as well as the composition and metabolic potentials of microbial communities. The results showed that the removal, cycling, and lateral transport of Mn were governed by similar phases and processes in the three estuaries. Manganese X-ray absorption spectroscopy data of the SPM suggested that the removal of Mn was regulated by silicates (e.g., biotite), organically complexed Mn(II), and MnOx (dominated by groutite and phyllomanganates). While the fractional amounts of silicate-bound Mn(II) were overall low and constant throughout the estuaries, MnOx was strongly correlated with the Mn loadings of the SPM and thus the main vector for the removal of Mn in the central and outer parts of the estuaries, along with organically complexed Mn(II). Down estuary, both the fractional amounts and average Mn oxidation state of the MnOx phases increased with (i) the total Mn loads on the SPM samples and (ii) the relative abundances of several potential Mn-oxidizing bacteria (Flavobacterium, Caulobacter, Mycobacterium, and Pedobacter) in the surface waters. These features collectively suggested that the oxidation of Mn, probably mediated by the potential Mn-oxidizing microorganisms, became more extensive and complete towards the central and outer parts of the estuaries. At two sites in the central parts of one estuary, abundant phyllomanganates occurred in the surface sediments, but were converted to surface-sorbed Mn(II) phases at deeper layers (〉3–4 cm). The occurrence of phyllomanganates may have suppressed the reduction of sulfate in the surface sediments, pushing down the methane sulfate transition zone that is typically shallow in estuarine sediments. At the outermost site in the estuary, deposited MnOx were reduced immediately at the water–sediment interface and converted most likely to Mn carbonate. The mobile Mn species produced by the Mn reduction processes (e.g., aqueous Mn(II) and ligand complexed Mn(III)) could partly diffuse into the overlying waters and, together with the estuarine Mn loads carried by the surface waters, transfer large amounts of reactive Mn into open coastal areas and subsequently contribute to Mn shuttling and inter-linked biogeochemical processes over the seafloor. Given the widespread occurrence of acid sulfate soils and other sulfidic geological materials on many coastal plains worldwide, the identified Mn attenuation and transport mechanisms are relevant for many estuaries globally.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2024-02-06
    Description: The Cretaceous provides us with an excellent case history of ocean-climate-biota system perturbations. Such perturbations occurred several times during the Cretaceous, such as oceanic anoxic events and the end-Cretaceous mass extinction, which have been the subject of an abundant literature. Other perturbations, such as the mid-Maastrichtian Event (MME) remain poorly understood. The MME was associated with global sea-level rise, changes in climate and deep-water circulation that were accompanied by biotic extinctions including ‘true inoceramids’ and the demise of the Caribbean-Tethyan rudist reef ecosystems. So far, the context and causes behind the MME remain poorly studied. We conducted high-resolution integrated biotic, petrological and geochemical studies in order to fill this knowledge gap. We studied, in particular, carbonate Nd and Os isotopes, whole-rock Hg, C and N content, C and N isotopes in organic matter, S isotopes in carbonate-associated sulfate, along with C and O isotopes in foraminifera from the European Chalk Sea: the Polanówka UW-1 core from Poland and the Stevns-1 core from Denmark. Our data showed that sea-level rise of ∼50–100 m lasted around ∼2 Ma and co-occurred with anomalously high mercury concentration in seawater. Along with previously published data, our results strongly suggest that the MME was driven by intense volcanic–tectonic activity, likely related to the production of vast oceanic plateaus (LIP, Large Igneous Province). The collapse of reef ecosystems could have been the consequence of LIP-related environmental stress factors, including climate warming, presumably caused by emission of greenhouse gases, modification of the oceanic circulation, oceanic acidification and/or toxic metal input. The disappearance of the foraminifer Stensioeina lineage on the European shelf was likely caused by the collapse of primary production triggered by sea-level rise and limited amount of nutrient input. Nd isotopes and foraminiferal assemblages attest for changes in sea-water circulation in the European Shelf and the increasing contribution of North Atlantic water masses
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2024-02-01
    Description: The structural response to compression of the synthetic high-pressure hydroxide perovskite MgSi(OH)6, the so-called “3.65 Å phase,” has been determined to 8.4 GPa at room temperature using single-crystal XRD in the diamond-anvil cell. Two very similar structures have been determined in space groups P21 and P21/n, for which differences in oxygen donor-acceptor distances indicate that the non-centrosymmetric structure is likely the correct one. This structure has six nonequivalent H sites, of which two are fully occupied and four are half-occupied. Half-occupied sites are associated with a well-defined crankshaft of hydrogen-bonded donor-acceptor oxygens extending parallel to c. Half occupancy of these sites arises from the averaging of two orientations of the crankshaft H atoms (|| ±c) in equal proportions. The P21 and P21/n structures are compared. It is shown that the former is likely the correct space group, which is also consistent with recent spectroscopic studies that recognize six nonequivalent O-H. The structure of MgSi(OH)6 at pressures up to 8.4 GPa was refined in both space groups to see how divergent the two models are. There is a very close correspondence between the responses of the two structures implying that, at least to 8.4 GPa, non-centrosymmetry does not affect compressional behavior. The very different compressional behavior of MgO6 and SiO6 octahedra observed in this study suggests that structural phase transformations or discontinuities likely occur in MgSi(OH)6 above 9 GPa.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2024-02-01
    Description: Earth’s magnetic field is a dynamic, changing phenomenon. The geomagnetic field consists of contributions from several sources, of which the main field originating in Earth’s core makes up the bulk. On regional and local scales at Earth’s surface, the lithospheric field can make a substantial contribution to the overall field and therefore needs to be considered in field models. A locally derived regional core field model, named HMOREG, has been shown to give accurate predictions of the southern African region. In this study, a new regional field model called the South African Regional Core and Crust model (SARCC) is introduced. This is the first time that a local lithospheric model, estimated by employing the revised spherical cap harmonic analysis modelling method, has been combined with the core component of CHAOS-6, a global field model. It is compared here with the existing regional field model as well as with global core field models. The SARCC model shows small-scale variations that are not present in the other three models. Including a lithospheric magnetic field component likely contributed to the better performance of the SARCC model when compared to other global and local field models. The SARCC model showed a 33% reduction in error compared to surface observations obtained from field surveys and INTERMAGNET stations in the Y component, and HMOREG showed a 7% reduction in error compared to the global field models. The new model can easily be updated with global geomagnetic models that incorporate the most recent, state-of-the-art core and magnetospheric field models.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2024-02-01
    Description: The Combination Service for Time-variable Gravity fields (COST-G) operationally provides combinations of monthly Earth gravity field models derived from observations of the microwave ranging instrument of the GRACE Follow-on (GRACE-FO) satellite mission, applying the quality control and combination methodology originally developed by the Horizon 2020 project European Gravity Service for Improved Emergency Management for the data of the GRACE satellites. In the frame of the follow-up Horizon 2020 project Global Gravity-based Groundwater Product (G3P), the GRACE-FO combination is used to derive global grids of groundwater storage anomalies. To meet the user requirements and achieve optimal signal-to-noise ratio, the combination has been further developed and extended to incorporate: • new time-series based on the alternative accelerometer transplant product generated in the frame of the project by the Institute of Geodesy at the Graz University of Technology, which specifically improves the estimation of the C30 coefficient and also reduces the noise at medium to short wavelengths, and • the new time-series AIUB–GRACE-FO–RL02 of monthly GRACE-FO gravity fields, which is derived at the Astronomical Institute of the University of Bern by applying empirical noise modelling techniques. The COST-G quality control confirms the consistency of the contributing GRACE-FO time-series concerning the signal amplitude of seasonal hydrology in large river basins and the secular mass change in polar regions, but it also indicates rather diverse noise characteristics. The difference in the noise levels is taken into account in the combination process by relative weights derived by variance component estimation on the solution level. The weights are expected to be inverse proportional to the noise levels of the individual gravity field solutions. However, this expectation is violated when applying the weighting scheme as developed for the GRACE combination. The reason is found in the high-order coefficients of the gravity field, which are poorly determined from the low–low range-rate observations due to the observation geometry and suffer from aliasing due to the malfunctioning accelerometer onboard one of the GRACE-FO satellites. Hence, for the final G3P-combination a revised weighting scheme is applied where the gravity field coefficients beyond order 60 are excluded from the determination of the weights. The quality of the combined gravity fields is assessed by comparison of the noise content and the signal-to-noise ratio with the individual time-series. Independent validation is provided by the COST-G validation centre at the GFZ German Research Centre for Geosciences, where orbit fits of the low-flying Gravity and steady-state Ocean Circulation Explorer satellite are performed that confirm the high quality of the combined GRACE-FO gravity fields. By the end of the G3P project, the new combination scheme is implemented by COST-G as the new COST-G–GRACE-FO–RL02 and continued to be used for the operational GRACE-FO combination.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2024-01-31
    Description: The ‘Fermi paradox’ refers to the mismatch between a widely held expectation that advanced technological life should be common in the Universe—recently given impetus by the discovery that other planetary systems are common—and the absence of any evidence for it. Here we briefly review attempted solutions to the paradox and conclude that either (1) extraterrestrial technological civilizations are extremely rare (or absent) in the Galaxy or (2) they exist but are deliberately hiding from us, a scenario generally known as the ‘zoo hypothesis’. In this sense, we propose that the answer to the Fermi paradox is ‘the zoo hypothesis or nothing’. We argue that, given a strong commitment to the continued exploration of the Universe, humanity may be able to distinguish between these two alternatives within the next half-century.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    GFZ German Research Centre for Geosciences
    In:  Scientific Technical Report STR
    Publication Date: 2024-01-30
    Description: With the ongoing deployment of Global Navigation Satellite Systems (GNSS) ground stations and the modernization of satellite signal systems, the utilization of various augmentation technologies enables the realization of Precise Point Positioning (PPP) in real-time. Augmentation technology, which introduces precise atmospheric and signal-related delays, has become an essential component of high-precision real-time services and is attracting growing interest in scientific research, disaster monitoring, autopilot, etc. Previous studies have dedicated significant efforts to enhance the generation and dissemination of augmentation information on the service side and improve real-time positioning algorithms on the user side. The real-time atmosphere augmentation information with sufficient accuracy and proper constraint, and reliable Ambiguity Resolution (AR) for this purpose is the main focus of current GNSS research. However, these efforts have primarily been concentrated on small or medium-sized regions with the capability for transmitting massive data volumes. Alternatively, they have focused on larger areas, but with slow convergence due to the imprecise nature of atmosphere information. To address the challenge posed by the trade-offs among service area size, correction volume, and the precision of represented correction, a new augmentation strategy is proposed. This approach integrates the advantages of atmospheric delay fitting models, unmodeled residuals, and uncertainty information to achieve rapid and high-precision positioning, all while reducing data transmission volume for larger areas. It also allows users to implement different positioning modes depending on their communication capacity. Additionally, all deviations among different types of receivers and satellite signals are calibrated in this study for reliable AR can be achieved on all reference stations. The main contribution of this thesis is summarized as follows. With the real-time precise orbit, clock, and Uncalibrated Phase Delay (UPD) products, precise atmospheric delay corrections relying on reliable AR can be derived for large-areas augmentation services. To address the challenge of achieving reliable AR across different receiver types and various satellite signals, this thesis proposes a comprehensive method for calibrating receiver-type-related satellite-specific deviations and analyzes the impact of satellite signal bias corrections in data processing. The primary objective is to enhance the reliability of AR, enabling the utilization of all available signals and receiver types in large-area services. Subsequently, new tropospheric and ionospheric delay fitting models applied for large-area are carried out according to the properties of their propagation paths. In addition, the corresponding atmospheric delay uncertainty for large areas is introduced based on the fitting residuals. Finally, a hierarchical mode is developed for augmentation services, leveraging the advantages of the fitting model and uncertainty grid to reduce data volume and incorporating regional fitting residuals using the interpolation model and ionospheric delay error function, depending on the network capability. Based on hierarchical augmentation, positioning in large areas can not only achieve rapid/instantaneous high-precision convergence but also overcome the conflict among correction volume, represented precision, and coverage size. In order to derive precise atmospheric delay and accelerate positioning, implementing reliable and robust AR across all types of receivers and satellite signals is essential. It also demonstrates and discusses the advantages of calibrating satellite-signal and receiver-type-related satellite-specific deviations in AR solutions. The deviations related to receivers in terms of UPD products are assessed and calibrated, confirming that a 0.03 cycle consistency in wide lane UPD can be achieved. The effectiveness of the proposed approach is demonstrated using GPS satellite signals, which can improve the AR rate by at least 10% and produce more reliable results. In addition, the impact of different signal settings and corrections on orbit, clock, and UPD generation, as well as positioning and pseudo-range signal systematic and stochastic residuals, is analyzed. These processing strategies provide flexible observation selections, allowing the utilization of all available satellite signals and receiver types, thereby enabling reliable AR and a higher fixing rate. As a result, an AR fixing rate exceeding 95% is achievable across all stations in large-area services. For precise atmospheric delay modeling over large areas, new models are proposed, including a tropospheric Zenith Wet Delay (ZWD) model and a satellite-wise ionospheric slant delay fitting model. The tropospheric delay model takes the exponential function of water vapor vertical changes into consideration, addressing model anomalies in areas with large altitude differences. The new ionospheric delay fitting model introduces the trigonometric functions to describe differences in slant path delays between the optimal reference propagation path and others, achieving superior modeling performance in large areas. The precision of the fitting model, utilizing a 200 km station-spacing network, demonstrates tropospheric ZWD and ionospheric slant delays of 1.3 cm and 8.9 cm, respectively, with smaller standard deviations. These new fitting models overcome the challenge of handling massive information for providing station-wise corrections and avoid an increase in the number of coefficients. In addition to the function model, the stochastic model, i.e., uncertainty information, is essential for describing the quality of corrections. The atmospheric delay uncertainty for the large-area fitting model is generated based on the fitting residuals and represented in forms of grid-point. Additionally, regional ionosphere unmodeled residual uncertainty is represented by the form of liner function, which is established by the relationship between distance and interpolation precision through inter-satellite cross-verification among all reference stations. The differences between uncertainty value and real delays are 2.5 cm and 0.5 cm for grid and function forms, respectively. For real-time applications in large areas, the fitting model and grid-based atmosphere uncertainty serve as the essential information, satisfying the requirement of rapid positioning. By further incorporating unmodeled residuals and ionosphere error function, a hierarchical augmentation model is provided. Based on the fitting model established for large areas, unmodeled residuals are further introduced as optional compensation for specific areas, depending on the magnitude of fitting residuals. This approach results in a 97% reduction in tropospheric delay and a 65% reduction in ionospheric delay transmission volume. Furthermore, leveraging the regional high capability of communication, 85.3% of all solutions can achieve instantaneous convergence at the first epoch with the aid of corresponding regional compensation. This thesis proposes a large areas augmentation service to overcome the conflict among correction data volume, represented precision, and coverage size. It demonstrates the benefits of an augmentation mode that integrates regional information into large-area services. Under these conditions, a more reliable and rapid AR solution can be easily achieved based on precise atmospheric delay correction and uncertainty in large areas with fewer data volume requirements. This is beneficial for actual real-time services and applications.
    Description: Mit der laufenden Bereitstellung von Bodenstationen für globale Navigationssatellitensysteme (GNSS) und der Modernisierung von Satellitensignal-Systemen ermöglicht die Nutzung verschiedener Augmentationstechnologien die Realisierung der Präzisen Punkt-Positionierung (PPP) in Echtzeit. Augmentationstechnologie, die präzise atmosphärische und signalbezogene Verzögerungen einführt, ist zu einem wesentlichen Bestandteil hochpräziser Echtzeitdienste geworden und findet wachsendes Interesse in wissenschaftlicher Forschung, Katastrophenüberwachung, Autopiloten usw. Frühere Studien haben erhebliche Anstrengungen darauf verwendet, die Erzeugung und Verbreitung von Augmentationsinformationen auf der Dienstseite zu verbessern und Echtzeit-Positionierungsalgorithmen auf der Benutzerseite zu optimieren. Die Echtzeit-Atmosphärenaugmentationsinformationen mit ausreichender Genauigkeit und angemessener Einschränkung sowie zuverlässige Ambiguitätsauflösung (AR) für diesen Zweck stehen im Mittelpunkt der aktuellen GNSS-Forschung. Diese Bemühungen konzentrierten sich jedoch hauptsächlich auf kleine oder mittelgroße Regionen mit der Fähigkeit zur Übertragung großer Datenmengen. Alternativ richteten sie sich auf größere Gebiete, jedoch mit langsamer Konvergenz aufgrund der ungenauen Natur der Atmosphäreninformation. Um der Herausforderung durch die Abwägung zwischen Größe des Dienstleistungsgebiets, Korrekturvolumen und Präzision der dargestellten Korrektur zu begegnen, wird eine neue Augmentationsstrategie vorgeschlagen. Dieser Ansatz integriert die Vorteile atmosphärischer Verzögerungsanpassungsmodelle, nicht modellierter Reste und Unsicherheitsinformationen, um eine schnelle und hochpräzise Positionierung zu erreichen, und das bei gleichzeitiger Reduzierung der Datenübertragungsvolumina für größere Gebiete. Es ermöglicht den Benutzern auch, verschiedene Positionierungsmodi je nach ihrer Kommunikationskapazität zu implementieren. Zusätzlich werden in dieser Studie alle Abweichungen zwischen verschiedenen Typen von Empfängern und Satellitensignalen kalibriert, um eine zuverlässige AR an allen Referenzstationen zu erreichen. Die Hauptbeiträge dieser Arbeit werden wie folgt zusammengefasst. Mit den Echtzeit-Präzbitbahnen, Uhren und Uncalibrated Phase Delay (UPD)-Produkten können präzise atmosphärische Verzögerungskorrekturen für großflächige Augmentationsdienste abgeleitet werden, die auf zuverlässiger AR basieren. Um die Herausforderung zu bewältigen, eine zuverlässige AR über verschiedene Empfängertypen und verschiedene Satellitensignale hinweg zu erreichen, schlägt diese Arbeit eine umfassende Methode zur Kalibrierung von empfängertypbezogenen satellspezifischen Abweichungen vor und analysiert die Auswirkungen von Korrekturen für Satellitensignalverzerrungen in der Datenverarbeitung. Das Hauptziel besteht darin, die Zuverlässigkeit der AR zu verbessern und die Nutzung aller verfügbaren Signale und Empfängertypen in großflächigen Diensten zu ermöglichen. Anschließend werden neue troposphärische und ionosphärische Verzögerungsanpassungsmodelle für großflächige Anwendungen gemäß den Eigenschaften ihrer Ausbreitungspfade durchgeführt. Darüber hinaus wird die entsprechende atmosphärische Verzögerungsunsicherheit für große Gebiete auf der Grundlage der Anpassungsreste eingeführt. Schließlich wird ein hierarchischer Modus für Augmentationsdienste entwickelt, der die Vorteile des Anpassungsmodells und des Unsicherheitsgitters nutzt, um das Datenvolumen zu reduzieren und regionale Anpassungsreste unter Verwendung des Interpolationsmodells und der ionosphärischen Verzögerungsfehlerfunktion, abhängig von der Netzwerkfähigkeit, zu integrieren. Basierend auf der hierarchischen Augmentation kann die Positionierung in großen Gebieten nicht nur eine schnelle/instantane hochpräzise Konvergenz erreichen, sondern auch den Konflikt zwischen Korrekturvolumen, dargestellter Präzision und Abdeckungsgröße überwinden. Um präzise atmosphärische Verzögerungen abzuleiten und die Positionierung zu beschleunigen, ist es entscheidend, eine zuverlässige und robuste AR über alle Arten von Empfängern und Satellitensignalen zu implementieren. Es zeigt auch die Vorteile der Kalibrierung von satellitensignal- und empfängertypbezogenen satellspezifischen Abweichungen in AR-Lösungen auf. Die Abweichungen im Zusammenhang mit Empfängern in Bezug auf UPD-Produkte werden bewertet und kalibriert, wobei bestätigt wird, dass eine Konsistenz von 0,03 Zyklen bei Wide-Lane-UPD erreicht werden kann. Die Wirksamkeit des vorgeschlagenen Ansatzes wird unter Verwendung von GPS-Satellitensignalen demonstriert, die die AR-Rate um mindestens 10% verbessern und zu zuverlässigeren Ergebnissen führen können. Darüber hinaus wird der Einfluss unterschiedlicher Signalparameter und Korrekturen auf die Erzeugung von Orbit, Uhr und UPD sowie auf die Positionierung und systematische und stochastische Reste der Pseudo-Range-Signale analysiert. Diese Verarbeitungsstrategien bieten flexible Auswahlmöglichkeiten bei der Beobachtung und ermöglichen die Nutzung aller verfügbaren Satellitensignale und Empfängertypen, wodurch eine zuverlässige AR und eine höhere Fixierungsrate ermöglicht wird. Als Ergebnis ist eine AR-Fixierungsrate von über 95% bei allen Stationen in großflächigen Diensten erreichbar. Für eine präzise Modellierung atmosphärischer Verzögerungen über großen Gebieten werden neue Modelle vorgeschlagen, darunter ein troposphärisches Zenith Wet Delay (ZWD)-Modell und ein satellitenweises ionosphärisches Schrägverzögerungsanpassungsmodell. Das troposphärische Verzögerungsmodell berücksichtigt die exponentielle Funktion der vertikalen Änderungen des Wasserdampfs und behebt Modellanomalien in Gebieten mit großen Höhendifferenzen. Das neue ionosphärische Verzögerungsanpassungsmodell verwendet trigonometrische Funktionen, um Unterschiede in den Schrägpfadverzögerungen zwischen dem optimalen Referenzausbreitungspfad und anderen zu beschreiben und erreicht so eine überlegene Modellierungsleistung in großen Gebieten. Die Präzision des Anpassungsmodells, unter Verwendung eines 200 km-Stationen-Netzwerks, zeigt troposphärische ZWD- und ionosphärische Schrägverzögerungen von jeweils 1,3 cm und 8,9 cm mit kleineren Standardabweichungen. Diese neuen Anpassungsmodelle überwinden die Herausforderung, massive Informationen für die Bereitstellung stationsspezifischer Korrekturen zu verarbeiten, und vermeiden eine Zunahme der Anzahl der Koeffizienten. Neben dem Funktionsmodell ist das stochastische Modell, d. h. Unsicherheitsinformationen, entscheidend für die Beschreibung der Qualität der Korrekturen. Die Unsicherheit der atmosphärischen Verzögerung für das großflächige Anpassungsmodell wird auf der Grundlage der Anpassungsreste generiert und in Form von Gitterpunkten dargestellt. Zusätzlich wird die regionale ionosphärische nicht modellierte Restunsicherheit durch die Form einer linearen Funktion repräsentiert, die durch die Beziehung zwischen Entfernung und Interpolationsgenauigkeit durch inter-satellitenkreuz-Verifikation zwischen allen Referenzstationen etabliert wird. Die Unterschiede zwischen Unsicherheitswert und realen Verzögerungen betragen 2,5 cm bzw. 0,5 cm für Gitter- und Funktionsformen. Für Echtzeitanwendungen in großen Gebieten dienen das Anpassungsmodell und die gitterbasierte Atmosphärenunsicherheit als wesentliche Informationen, die die Anforderungen an schnelle Positionierung erfüllen. Durch die weitere Integration von nicht modellierten Resten und Ionosphärenfehlerfunktion wird ein hierarchisches Augmentationsmodell bereitgestellt. Basierend auf dem für große Gebiete etablierten Anpassungsmodell werden nicht modellierte Reste zusätzlich als optionale Kompensation für spezifische Bereiche eingeführt, abhängig von der Größenordnung der Anpassungsreste. Dieser Ansatz führt zu einer Reduktion von 97% der troposphärischen Verzögerung und einer Reduktion von 65% des ionosphärischen Verzögerungsvolumens. Darüber hinaus können unter Nutzung der regionalen hohen Kommunikationsfähigkeit 85,3% aller Lösungen mit Hilfe entsprechender regionaler Kompensation eine sofortige Konvergenz beim ersten Epochenzeitpunkt erreichen. Diese Dissertation schlägt einen großflächigen Augmentationsdienst vor, um den Konflikt zwischen Korrekturvolumen, dargestellter Präzision und Abdeckungsgröße zu überwinden. Sie zeigt die Vorteile eines Augmentationsmodus, der regionale Informationen in großflächige Dienste integriert. Unter diesen Bedingungen kann eine zuverlässigere und schnellere AR-Lösung basierend auf präziser atmosphärischer Verzögerungskorrektur und Unsicherheit in großen Gebieten mit geringeren Anforderungen an das Datenvolumen leicht erreicht werden. Dies ist vorteilhaft für tatsächliche Echtzeitdienste und Anwendungen.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-02-12
    Description: Interferometric Synthetic Aperture Radar (InSAR) is a highly effective and widely used approach for monitoring large-scale ground deformation. The precise and timely prediction of deformation holds significant importance in mitigating and preventing geological hazards, particularly considering the long revisit cycle of satellites and the considerable time required for data processing. In this study, we propose a strategy that predicts spatiotemporal InSAR time series based on Independent Component Analysis (ICA) and the Long Short-Term Memory (LSTM) machine learning model. Unlike traditional methods that rely on physical or statistical models, the proposed strategy leverages the power of ICA and LSTM to achieve accurate predictions without such dependencies. ICA is employed to decompose and capture the InSAR displacement signals of interest caused by various natural or anthropogenic processes and to characterize each individual signal. The spatiotemporal unsupervised K-mean cluster method is then applied to partition large-scale deformation fields into homogeneous subregions, considering the spatial variations and temporal nonlinearities of time series. This process facilitates the refinement of the model, thereby enhancing the accuracy of large-scale predictions. The neural network models are then individually constructed for each cluster, and the optimal parameters are determined through a grid search strategy. Subsequently, the proposed framework is implemented and assessed using two datasets featuring distinct deformation patterns: Case I involves land subsidence in Willcox Basin, USA, while Case II focuses on post-seismic deformation following the 12 November 2017 Mw 7.3 Sarpol-e Zahab earthquake. The results demonstrate that our proposed ICA-assisted LSTM outperforms the original LSTM model on large-scale deformation prediction, with the average prediction accuracy for one-step prediction (12 days in our case) being improved by 34% and 17% for cases I and II, respectively. Furthermore, we perform iterative predictions on the spatiotemporal InSAR measurements with varying temporal characteristics for the subsequent five steps using Sentinel-1 data and evaluate its performance and limitations. The successful prediction of land subsidence and post-seismic deformation provides further evidence that the proposed prediction strategy can be effectively employed in monitoring other large-scale geohazards characterized by prolonged and gradual deformation. This capability enables expedited decision-making and timely implementation of risk mitigation measures.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2024-02-12
    Description: Tree-specific canopy conductance (Gc) and its adjustment play a critical role in mitigating excess water loss in changing environmental conditions. However, the change of Gc sensitivity to environmental conditions due to drought remains unclear for European tree species. Here we quantified the environmental operational space of Gc, i.e., the water supply (soil moisture, tree water deficit) and demand conditions (vapor pressure deficit) under which Gc ≥ 50% is possible (Gc50OS), at two sites with different soil water availability for three common European tree species. We collected sap flow and dendrometer measurements for co-occurring Pinus sylvestris, Fagus sylvatica and Quercus petraea growing under different soil hydrological conditions (drier/wetter). These measurements were combined with meteorological variables and soil moisture conditions in five depths. Dendrometer measurements were used to confirm soil water availability patterns. For all analyses, the contrasting soil hydrology between sites was the main driver of Gc response. At the drier sites, F. sylvatica and P. sylvestris reduced their water consumption in response to decreasing soil water supply earlier in the growing season than Q. petraea. However, our analysis on the Gc50OS revealed that at the drier sites, F. sylvatica and Q. petraea reduced the extent of their Gc50OS to a higher degree than P. sylvestris. This indicates a higher level of Gc50OS adjustment to the drier site conditions for the two broadleaved species. These differences were more pronounced when using the dendrometer-derived tree internal water status as proxy for tree water supply. Our results provide preliminary evidence for diverging short-term Gc responses when temperate trees are exposed to prolonged reduction in water availability. These findings suggest that Gc50OS can help to constrain species-specific predictions of water use by mature trees, especially when combined with high-resolution water potential measurements.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2024-02-08
    Description: Inland water bodies play a vital role at all scales in the terrestrial water balance and Earth’s climate variability. Thus, an inventory of inland waters is crucially important for hydrologic and ecological studies and management. Therefore, the main aim of this study was to develop a deep learning-based method for inventorying and mapping inland water bodies using the RGB band of high-resolution satellite imagery automatically and accurately. The Sentinel-2 Harmonized dataset, together with ZABAGED-validated ground truth, was used as the main dataset for the model training step. Three different deep learning algorithms based on U-Net architecture were employed to segment inland waters, including a simple U-Net, Residual Attention U-Net, and VGG16-U-Net. All three algorithms were trained using a combination of Sentinel-2 visible bands (Red [B04; 665nm], Green [B03; 560nm], and Blue [B02; 490 nm]) at a 10-meter spatial resolution. The Residual Attention U-Net achieved the highest computational cost due to the increased number of trainable parameters. The VGG16-U-Net had the shortest run time and the lowest number of trainable parameters, attributed to its architecture compared to the simple and Residual Attention U-Net architectures, respectively. As a result, the VGG16-U-Net provided the best segmentation results with a mean-IoU score of 0.9850, a slight improvement compared to other proposed U-Net-based architectures. Although the accuracy of the model based on VGG16-U-Net does not make a difference from Residual Attention U-Net, the computation costs for training VGG16-U-Net were dramatically lower than Residual Attention U-Net.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2024-02-08
    Description: Adequate tools for evaluating the Sustainable Intensification of Agriculture (SIA) level are crucial, especially in drylands with limited resources. Based on emergy indices and environmental footprints, We propose an evaluation framework for the case of major crop intensification in Xinjiang, China, and examine the local SIA from 2001 to 2020. The results show that increases in emergy input (EI) of the crop system were achieved with simultaneous increases in water consumption and carbon emissions. The most EI to the system is from economically non-free non-renewable resources (75.1 %), and only 5.4 % from environmentally free renewable resources. The emergy output (EO) of cotton was less than 80 % of wheat and maize, but the carbon footprint (CF) and water footprint (WF) of cotton were much higher than wheat and maize (〉1.18 times and 〉 5.01 times, respectively). We group historical results covering emergy indices, CF, WF, and other production indicators into five dimensions and comprehensively evaluate the level of SIA in Xinjiang according to the changes in the five dimensions. It was found that raising the SIA depended on improving management, productivity, and environmental impact dimension from 2000 to 2005. After 2005, the SIA’s down-turning was due to the trade-offs between management, environmental dimensions, and their indicators and the continuous reduction of sustainability of other dimensions. In addition, the progress and realization of SDG 2, SDG 6, SDG 7, SDG 8, SDG 11, and SDG 12 can effectively improve the SIA. Our study serves as a helpful example for evaluating the level of sustainability of intensive agricultural policies not just in Xinjiang but also in other drylands of the world.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2024-02-08
    Description: Rewetting drained peatlands is recognized as a leading and effective natural solution to curb greenhouse gas emissions. However, rewetting creates novel ecosystems whose emission behaviors are not adequately captured by currently used emission factors. These emission factors are applied immediately after rewetting, thus do not reflect the temporal dynamics of greenhouse gas emissions during the period wherein there is a transition to a rewetted steady-state. Here, we provide long-term data showing a mismatch between actual emissions and default emission factors and revealing the temporal patterns of annual carbon dioxide and methane fluxes in a rewetted peatland site in northeastern Germany. We show that site-level annual emissions of carbon dioxide and methane approach the IPCC default emission factors and those suggested for the German national inventory report only between 13 to 16 years after rewetting. Over the entire study period, we observed a source-to-sink transition of annual carbon dioxide fluxes with a decreasing trend of −0.36 t CO2-C ha−1 yr−1 and a decrease in annual methane emissions of −23.6 kg CH4 ha−1 yr−1. Our results indicate that emission factors should represent the temporally dynamic nature of peatlands post-rewetting and consider the effect of site characteristics to better estimate associated annual emissions.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...