ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-11
    Description: Abstract
    Description: Stress maps show the orientation of the current maximum horizontal stress (SHmax) in the earth's crust. Assuming that the vertical stress (SV) is a principal stress, SHmax defines the orientation of the 3D stress tensor; the minimum horizontal stress Shmin is than perpendicular to SHmax. In stress maps SHmax orientations are represented as lines of different lengths. The length of the line is a measure of the quality of data and the symbol shows the stress indicator and the color the stress regime. The stress data are freely available and part of the World Stress Map (WSM) project. For more information about the data and criteria of data analysis and quality mapping are plotted along the WSM website at http://www.world-stress-map.org. The stress map of Taiwan 2022 is based on the WSM database release 2016. However, all data records have been checked and we added a large number of new data from earthquake focal mechanisms from the national earthquake catalog and from publications. The total number of data records has increased from n=401 in the WSM 2016 to n=6,498 (4,234 with A-C quality) in the stress map of Taiwan 2022 The update with earthquake focal mechanims is even larger since another 1313 earthquake focal mechanism data records beyond the scale of this map have been added to the WSM database. The digital version of the stress map is a layered pdf file generated with GMT (Wessel et al., 2019). It also provide estimates of the mean SHmax orientation on a regular 0.1° grid using the tool stress2grid (Ziegler and Heidbach, 2019). Two mean SHmax orientations are estimated with search radii of r=25 and 50 km, respectively, and with weights according to distance and data quality. The stress map and data are available on the landing page at https://doi.org/10.5880/WSM.Taiwan2022 where further information is provided. The earthquake focal mechanism that are used for this stress map are provided by the Taiwan Earthquake Research Center (TEC) available at the TEC Data Center (https://tec.earth.sinica.edu.tw).
    Description: Other
    Description: The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System. All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale.
    Type: Other , Other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-17
    Description: Abstract
    Description: Analysis of prehistoric lithic artefacts helps to answer a wide array of questions concerning archaeological contexts and prehistoric human behaviour. Typological studies allow for a chronological and partly also cultural attribution of the sites, while the analysis of raw materials used is fundamental for the reconstruction of mobility patterns, communication networks and land use of Stone Age communities. Within the framework of two projects funded by the German Research Foundation, and a regional initiative of Werner Schön, it was possible to determine the origin of the raw materials of 32 inventories from the Late Glacial and Early Holocene in northwest and southern Germany. The petrographic analysis was conducted by the geologist and petro-archaeologist Jehanne Affolter. In addition, data of more than 60 Stone Age assemblages from Switzerland as well as western and southern Germany were recorded, that had already been published elsewhere. The origin of the flint raw materials from most of these inventories was determined using the micro-facial method. Some inventories, where the raw material sources were determined exclusively macroscopically, are also tentatively mapped to complement the chronological sequence. GIS-based maps of the raw material sources from the aforementioned regions are compiled and raw material catchment areas of the Stone Age sites are mapped. The area calculations of the raw material catchments revealed a diachronic alternation of larger and smaller areas, which above all suggest culturally determined cycles in the range of mobility and communication networks.
    Keywords: Late and Final Palaeolithic ; Mesolithic ; Switzerland ; central europe ; lithic raw material catchments ; lithic raw material sources ; neolithic ; south-eastern France ; south-western Germany ; western germany
    Type: Dataset , dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-18
    Description: Abstract
    Description: The DFG Priority Program 1803 “EarthShape” (www.earthshape.net) investigates Earth surface shaping by biota. As part of this project, we present Light Detection and Ranging (LiDAR) data of land surface areas for the four core research sites of the project. The research sites are located along a latitudinal gradient between ~26 °S and ~38 °S in the Chilean Coastal Cordillera. From north to south, the names of these sites are: National Park Pan de Azúcar; Private Reserve Santa Gracia; National Park La Campana; and National Park Nahuelbuta. The three datasets contain raw 3D point cloud data captured from an airborne LiDAR system, and the following derivative products: a) digital terrain models (DTM, sometimes also referred to as DEM [digital elevation model]) which are (2.5D) raster datasets created by rendering only the LiDAR returns which are assumed to be ground/bare-earth returns and b) digital surface models (DSM) which are also 2.5D raster datasets produced by rendering all the returns from the top of the Earth’s surface, including all objects and structures (e.g. buildings and vegetation). The LiDAR data were acquired in 2008 (southernmost Nahuelbuta [NAB] catchment), 2016 (central La Campana [LC] catchment) and 2020 (central Santa Gracia [SGA] catchment). Except for Nahuelbuta (data already was available from the data provider from a previous project), the flights were carried out as part of the "EarthShape" project. The LiDAR raw data (point cloud/ *.las files) were compressed, merged (as *.laz files) and projected using UTM 19 S (UTM 18 S for the southernmost Nahuelbuta catchment, respectively) and WGS84 as coordinate reference system. A complementary fourth dataset for the northernmost site in the National Park Pan de Azúcar, derived from Uncrewed Aerial Vehicle (UAV) flights and Structure from Motion (SfM) photogrammetry, is expected to be obtained during the first half of 2022 and will be added to the above data set.
    Description: Other
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022) explored between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the young geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions. For more information visit: www.earthshape.net
    Keywords: 3D point cloud ; LiDAR scanner ; Elevation Models ; EarthShape ; Chile ; Coastal Cordillera ; Private Reserve Santa Gracia ; National Park La Campana ; National Park Nahuelbuta ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Altimeters 〉 Lidar/Laser Altimeters 〉 AIRBORNE LASER SCANNER ; EARTH SCIENCE 〉 LAND SURFACE 〉 TOPOGRAPHY 〉 TERRAIN ELEVATION ; EARTH SCIENCE 〉 LAND SURFACE 〉 TOPOGRAPHY 〉 TOPOGRAPHICAL RELIEF ; EARTH SCIENCE 〉 SPECTRAL/ENGINEERING 〉 LIDAR ; EARTH SCIENCE SERVICES 〉 MODELS 〉 LAND SURFACE MODELS ; Models/Analyses 〉 DEM ; radiation 〉 laser
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2022-01-28
    Description: Abstract
    Description: PDToolbox is a collection of methods helpful for doing probability distribution computations in Python. The aim of the PDToolbox Python module is to provide a set of features, based on simple probability distributions, that are not available from the scipy.stats module. This includes fast batch computations of (weighted) maximum likelihood estimates, computation of critical empirical distribution statistics, and more niche probability distributions or related code in the pdtoolbox.special module. The module contains code that is described in (ADD citations of the two articles).
    Description: Other
    Description: LICENSE: GNU General Public License, Version 3, 29 June 2007 Copyright © 2021 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany PDToolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PDToolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see 〈http://www.gnu.org/licenses/〉.
    Keywords: goodness-of-fit ; Anderson-Darling ; Lilliefors ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY 〉 ENERGY DISTRIBUTION ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 STATISTICAL APPLICATIONS
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-01
    Description: Abstract
    Description: The River Plume Workflow is part of the Flood Event Explorer (FEE, Eggert et al., 2022), developed at the GFZ German Research Centre for Geosciences in close collaboration with Helmholtz-Zentrum Hereon. It is funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/). The focus of the River Plume Workflow is the impact of riverine flood events on the marine environment. At the end of a flood event chain, an unusual amount of nutrients and pollutants is washed into the North Sea, which can have consequences, such as increased algae blooms. The workflow aims to enable users to detect a river plume in the North Sea and to determine its spatio-temporal extent. Identifying river plume candidates can either happen manually in the visual interface or also through an automatic anomaly detection algorithm, using Gaussian regression. In both cases a combination of observational data, namely FerryBox transects and satellite data, and model data are used. Once a river plume candidate is found, a statistical analysis supplies additional detail on the anomaly and helps to compare the suspected river plume to the surrounding data. Simulated trajectories of particles starting on the FerryBox transect at the time of the original observation and modelled backwards and forwards in time help to verify the origin of the river plume and allow users to follow the anomaly across the North Sea. An interactive map enables users to load additional observational data into the workflow, such as ocean colour satellite maps, and provides them with an overview of the flood impacts and the river plume’s development on its way through the North Sea. In addition, the workflow offers the functionality to assemble satellite-based chlorophyll observations along model trajectories as a time series. They allow scientists to understand processes inside the river plume and to determine the timescales on which these developments happen. For example, chlorophyll degradation rates in the Elbe river plume are currently investigated using these time series. The workflow's added value lies in the ease with which users can combine observational FerryBox data with relevant model data and other datasets of their choice. Furthermore, the workflow allows users to visually explore the combined data and contains methods to find and highlight anomalies. The workflow’s functionalities also enable users to map the spatio-temporal extent of the river plume and investigate the changes in productivity that occur in the plume. All in all, the River Plume Workflow simplifies the investigation and monitoring of flood events and their impacts in marine environments.
    Description: TechnicalInfo
    Description: Copyright 2022 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany / DE Flood Event Explorer Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Keywords: Digital Earth ; Flood ; DASF ; Workflow ; river plume ; ferrybox ; impact ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 FLOODS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-01
    Description: Abstract
    Description: The Socio-Economic Flood Impacts Workflow is part of the Flood Event Explorer (FEE, Eggert et al., 2022), developed at the GFZ German Research Centre for Geosciences . It is funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/). The Socio-Economic Flood Impacts Workflow aims to support the identification of relevant controls and useful indicators for the assessment of flood impacts. It should support answering the question What are useful indicators to assess socio-economic flood impacts?. Floods impact individuals and communities and may have significant social, economic and environmental consequences. These impacts result from the interplay of hazard - the meteo-hydrological processes leading to high water levels and inundation of usually dry land, exposure - the elements affected by flooding such as people, build environment or infrastructure, and vulnerability - the susceptibility of exposed elements to be harmed by flooding. In view of the complex interactions of hazard and impact processes a broad range of data from disparate sources need to be compiled and analysed across the boundaries of climate and atmosphere, catchment and river network, and socio-economic domains. The workflow approaches this problem and supports scientists to integrate observations, model outputs and other datasets for further analysis in the region of interest. The workflow provides functionalities to select the region of interest, access hazard, exposure and vulnerability related data from different sources, identifying flood periods as relevant time ranges, and calculate defined indices. The integrated input data set is further filtered for the relevant flood event periods in the region of interest to obtain a new comprehensive flood data set. This spatio-temporal dataset is analysed using data-science methods such as clustering, classification or correlation algorithms to explore and identify useful indicators for flood impacts. For instance, the importance of different factors or the interrelationships among multiple variables to shape flood impacts can be explored. The added value of the Socio-Economic Flood Impacts Workflow is twofold. First, it integrates scattered data from disparate sources and makes it accessible for further analysis. As such, the effort to compile, harmonize and combine a broad range of spatio-temporal data is clearly reduced. Also, the integration of new datasets from additional sources is much more straightforward. Second, it enables a flexible analysis of multivariate data and by reusing algorithms from other workflows it fosters a more efficient scientific work that can focus on data analysis instead of tedious data wrangling.
    Description: TechnicalInfo
    Description: Copyright 2022 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany / DE Flood Event Explorer Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Keywords: Digital Earth ; Flood ; DASF ; Workflow ; hydrometeorological controls ; indicators ; impact assessment ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 FLOODS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-02-01
    Description: Abstract
    Description: The Flood Similarity Workflow is part of the Flood Event Explorer (FEE, Eggert et al., 2022), developed at the GFZ German Research Centre for Geosciences . It is funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/). River floods and associated adverse consequences are caused by complex interactions of hydro-meteorological and socio-economic pre-conditions and event characteristics. The Flood Similarity Workflow supports the identification, assessment and comparison of hydro-meteorological controls of flood events. The analysis of flood events requires the exploration of discharge time series data for hundreds of gauging stations and their auxiliary data. Data availability and accessibility and standard processing techniques are common challenges in that application and addressed by this workflow. The Flood Similarity Workflow allows the assessment and comparison of arbitrary flood events. The workflow includes around 500 gauging stations in Germany comprising discharge data and the associated extreme value statistics as well as precipitation and soil moisture data. This provides the basis to identify and compare flood events based on antecedent catchment conditions, catchment precipitation, discharge hydrographs, and inundation maps. The workflow also enables the analysis of multidimensional flood characteristics including aggregated indicators (in space and time), spatial patterns and time series signatures. The added value of the Flood Event Explorer comprises two major points. First, scientist work on a common, homogenized database of flood events and their hydro-meteorological controls for a large spatial and temporal domain , with fast and standardized interfaces to access the data. Second, the standardized computation of common flood indicators allows a consistent comparison and exploration of flood events.
    Description: TechnicalInfo
    Description: Copyright 2022 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany / DE Flood Event Explorer Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Keywords: Digital Earth ; Flood ; DASF ; Workflow ; hydrometeorological controls ; compare ; assess ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 FLOODS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-02-01
    Description: Abstract
    Description: The Smart Monitoring Workflow (Tocap) is part of the Flood Event Explorer (FEE, Eggert et al., 2022), developed at the GFZ German Research Centre for Geosciences in close collaboration with the Helmholtz-Centre for Environmental Research UFZ Leipzig. It is funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/). A deeper understanding of the Earth system as a whole and its interacting sub-systems depends not only on accurate mathematical approximations of the physical processes but also on the availability of environmental data across time and spatial scales. Even though advanced numerical simulations and satellite-based remote sensing in conjunction with sophisticated algorithms such as machine learning tools can provide 4D environmental datasets, local and mesoscale measurements continue to be the backbone in many disciplines such as hydrology. Considering the limitations of human and technical resources, monitoring strategies for these types of measurements should be well designed to increase the information gain provided. One helpful set of tools to address these tasks are data exploration frameworks providing qualified data from different sources and tailoring available computational and visual methods to explore and analyse multi-parameter datasets. In this context, we developed a Smart Monitoring Workflow to determine the most suitable time and location for event-driven, ad-hoc monitoring in hydrology using soil moisture measurements as our target variable. The Smart Monitoring Workflow consists of three main steps. First is the identification of the region of interest, either via user selection or recommendation based on spatial environmental parameters provided by the user. Statistical filters and different color schemes can be applied to highlight different regions. The second step is accessing time-dependent environmental parameters (e.g., rainfall and soil moisture estimates of the recent past, weather predictions from numerical weather models and swath forecasts from Earth observation satellites) for the region of interest and visualizing the results. Lastly, a detailed assessment of the region of interest is conducted by applying filter and weight functions in combination with multiple linear regressions on selected input parameters. Depending on the measurement objective (e.g highest/lowest values, highest/lowest change), most suitable areas for monitoring will subsequently be visually highlighted. In combination with the provided background map, an efficient route for monitoring can be planned directly in the exploration environment. The added value of the Smart Monitoring Workflow is multifold. The workflow gives the user a set of tools to visualize and process their data on a background map and in combination with data from public environmental datasets. For raster data from public databases, tailor-made routines are provided to access the data in the spatial-temporal limits required by the user. Aiming to facilitate the design of terrestrial monitoring campaigns, the platform and device-independent approach of the workflow gives the user the flexibility to design a campaign at the desktop computer first and to refine it later in the field using mobile devices. In this context, the ability of the workflow to plot time-series of forecast data for the region of interest empowers the user to react quickly to changing conditions, e.g thunderstorm showers, by adapting the monitoring strategy, if necessary. Finally, the integrated routing algorithm assists to calculate the duration of a planned campaign as well as the optimal driving route between often scattered monitoring locations.
    Description: TechnicalInfo
    Description: Copyright 2022 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany / DE Flood Event Explorer Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Keywords: Digital Earth ; Flood ; DASF ; Workflow ; smart monitoring ; campaign planning ; tocap ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 FLOODS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-02-01
    Description: Abstract
    Description: The Climate Change Workflow is part of the Flood Event Explorer (FEE, Eggert et al., 2022), developed at the GFZ German Research Centre for Geosciences in close collaboration with Helmholtz-Zentrum Hereon , Climate Service Center Germany. It is funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/). The goal of the Climate Change Workflow is to support the analysis of climate-driven changes in flood-generating climate variables, such as precipitation or soil moisture, using regional climate model simulations from the Earth System Grid Federation (ESGF) data archive. It should support to answer the geoscientific question How does precipitation change over the course of the 21st century under different climate scenarios, compared to a 30-year reference period over a certain region? Extraction of locally relevant data over a region of interest (ROI) requires climate expert knowledge and data processing training to correctly process large ensembles of climate model simulations, the Climate Change Workflow tackles this problem. It supports scientists to define the regions of interest, customize their ensembles from the climate model simulations available on the Earth System Grid Federation (ESGF), define variables of interest, and relevant time ranges. The Climate Change Workflow provides: (1) a weighted mask of the ROI ; (2) weighted climate data of the ROI; (3) time series evolution of the climate over the ROI for each ensemble member; (4) ensemble statistics of the projected change; and lastly, (5) an interactive visualization of the region’s precipitation change projected by the ensemble of selected climate model simulations for different Representative Concentration Pathways (RCPs). The visualization includes the temporal evolution of precipitation change over the course of the 21st century and statistical characteristics of the ensembles for two selected 30 year time periods for the mid and the end of the 21st century (e.g. median and various percentiles). The added value of the Climate Change Workflow is threefold. First, there is a reduction in the number of different software programs necessary to extract locally relevant data. Second, the intuitive generation and access to the weighted mask allows for the further development of locally relevant climate indices. Third, by allowing access to the locally relevant data at different stages of the data processing chain, scientists can work with a vastly reduced data volume allowing for a greater number of climate model ensembles to be studied; which translates into greater scientific robustness. Thus, the Climate Change Workflow provides much easier access to an ensemble of high-resolution simulations of precipitation, over a given ROI, presenting the region’s projected precipitation change using standardized approaches and supporting the development of additional locally relevant climate indices.
    Description: TechnicalInfo
    Description: Copyright 2022 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany / DE Flood Event Explorer Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Keywords: Digital Earth ; Flood ; DASF ; Workflow ; Climate Change ; ESGF ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 FLOODS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-02-01
    Description: Abstract
    Description: The Digital Earth Flood Event Explorer supports geoscientists and experts to analyse flood events along the process cascade event generation, evolution and impact across atmospheric, terrestrial, and marine disciplines. It applies the concept of scientific workflows and the component-based Data Analytics Software Framework (DASF, Eggert and Dransch, 2021) to an exemplary showcase. It aims at answering the following geoscientific questions: - How does precipitation change over the course of the 21st century under different climate scenarios over a certain region? - What are the main hydro-meteorological controls of a specific flood event? - What are useful indicators to assess socio-economic flood impacts? - How do flood events impact the marine environment? - What are the best monitoring sites for upcoming flood events? The Flood Event Explorer developed scientific workflows for each geoscientific question providing enhanced analysis methods from statistics, machine learning, and visual data exploration that are implemented in different languages and software environments, and that access data form a variety of distributed databases. The collaborating scientists are from different Helmholtz research centers and belong to different scientific fields such as hydrology, climate-, marine-, and environmental science, and computer- and data science. It is funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/).
    Description: TechnicalInfo
    Description: Copyright 2022 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany / DE Flood Event Explorer Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Keywords: Digital Earth ; Flood ; DASF ; Workflows ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 FLOODS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-02-10
    Description: Abstract
    Description: Integrated water vapor above Iquique airport from March 2018 to March 2019 measured with Microwave radiometer HATPRO-FOGHAT. Retrieval is based on 20 Years of Radiosonde Data from Antofagasta. Radiosonde data has been preprocessed with a relative humidity threshold of 90% for cloud formation.
    Keywords: Climatology/Meteorology/Atmosphere ; Meteorology ; Remote Sensing ; Integrated water vapor (IWV)
    Type: Dataset , Dataset
    Format: NetCDF
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-02-10
    Description: Abstract
    Description: Liquid water path above Iquique airport from March 2018 to March 2019 measured with Microwave radiometer HATPRO-FOGHAT. Retrieval is based on 20 Years of Radiosonde Data from Antofagasta. Radiosonde data has been preprocessed with a relative humidity threshold of 80% for cloud formation.
    Keywords: Climatology/Meteorology/Atmosphere ; Meteorology ; Remote Sensing ; Cloud liquid water path (LWP)
    Type: Dataset , Dataset
    Format: NetCDF
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-02-10
    Description: Abstract
    Description: Liquid water path above Iquique airport from March 2018 to March 2019 measured with Microwave radiometer HATPRO-FOGHAT. Retrieval is based on 20 Years of Radiosonde Data from Antofagasta. Radiosonde data has been preprocessed with a relative humidity threshold of 85% for cloud formation.
    Keywords: Climatology/Meteorology/Atmosphere ; Meteorology ; Remote Sensing ; Cloud liquid water path (LWP)
    Type: Dataset , Dataset
    Format: NetCDF
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-02-10
    Description: Abstract
    Description: Integrated water vapor above Iquique airport from March 2018 to March 2019 measured with Microwave radiometer HATPRO-FOGHAT. Retrieval is based on 20 Years of Radiosonde Data from Antofagasta. Radiosonde data has been preprocessed with a relative humidity threshold of 95% for cloud formation.
    Keywords: Climatology/Meteorology/Atmosphere ; Meteorology ; Remote Sensing ; Integrated water vapor (IWV)
    Type: Dataset , Dataset
    Format: NetCDF
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-02-10
    Description: Abstract
    Description: Liquid water path above Iquique airport from March 2018 to March 2019 measured with Microwave radiometer HATPRO-FOGHAT. Retrieval is based on 20 Years of Radiosonde Data from Antofagasta. Radiosonde data has been preprocessed with a relative humidity threshold of 90% for cloud formation.
    Keywords: Climatology/Meteorology/Atmosphere ; Meteorology ; Remote Sensing ; Cloud liquid water path (LWP)
    Type: Dataset , Dataset
    Format: NetCDF
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-02-10
    Description: Abstract
    Description: Liquid water path above Iquique airport from March 2018 to March 2019 measured with Microwave radiometer HATPRO-FOGHAT. Retrieval is based on 20 Years of Radiosonde Data from Antofagasta. Radiosonde data has been preprocessed with a relative humidity threshold of 95% for cloud formation.
    Keywords: Climatology/Meteorology/Atmosphere ; Meteorology ; Remote Sensing ; Cloud liquid water path (LWP)
    Type: Dataset , Dataset
    Format: NetCDF
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-02-10
    Description: Abstract
    Description: Geophysical section of Dublin institute for Advanced studies is a publicly funded (government) academic research organization that develop new methods for studying the earth. In this project we are trying to develop new environmentally friendly ways to monitoring ground integrity. The idea is to use ground vibrations from natural and man-made sources, that already exist in everyday life for monitoring ground integrity. Here we would like to see if ground vibrations made by passing trains can be used to determine the integrity of the ground beneath the train track itself. This project involves the recording and analysis in detail the seismic vibrations generated by trains in order to better understand the proprieties of the waves propagating from the railway trough the shallow underground. Waveform data are available from the GEOFON data centre.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~8GB
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-02-10
    Description: Abstract
    Description: Geophysical section of Dublin institute for Advanced studies is a publicly funded (government) academic research organization that develop new methods for studying the earth. In this project we are trying to develop new environmentally friendly ways to monitoring ground integrity. The idea is to use ground vibrations from natural and man-made sources, that already exist in everyday life for monitoring ground integrity. Here we would like to see if ground vibrations made by passing trains can be used to determine the integrity of the ground beneath the train track itself. This project involves the recording and analysis in detail the seismic vibrations generated by trains in order to better understand the proprieties of the waves propagating from the railway trough the shallow underground. Waveform data are available from the GEOFON data centre.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~8GB
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-02-11
    Description: Abstract
    Description: This dataset provides friction data from ring-shear tests (RST) on twice broken rice used in the GEC Laboratory in CY Cergy Paris University in stick-slip experiments. They were obtained by Sarah Visage as part of her doctoral training (funded by the ANR DISRUPT programme) during an invitation at the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. Like any granular material, the twice broken rice is characterized by several internal friction coefficients μ and cohesions C, classicaly qualified as dynamic, static, and reactivation coefficients. In adition, since the rice exhibits a stick slip behaviour, the various shear - velocity or shear-displacement curves exhibit high frequency oscillations and we therefore define maximum, minimum, and mean values corresponding respectively to the curve peaks, curve troughs and smoothed curve.
    Keywords: EPOS ; Multiscale laboratories ; analogue models of geologic processes ; property data of analogue modelling materials ; analogue modelling results ; software tools ; Cohesion ; deformation 〉 fracturing ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; fault ; Flour 〉 Rice ; Force sensor ; Friction coefficient ; Matlab (Mathworks) ; Rate-state parameters ; Ring-shear tester
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-02-17
    Description: Abstract
    Description: Volcanic projectiles are centimeter- to meter-sized clasts – both solid-to-molten rock fragments or lithic eroded from conduits – ejected during explosive volcanic eruptions that follow ballistic trajectories. Despite being ranked as less dangerous than large-scale processes such as pyroclastic density currents (hot avalanches of gas and pyroclasts), volcanic projectiles still represent a constant threat to life and properties in the vicinity of volcanic vents, and frequently cause fatal accidents on volcanoes. Mapping of their size, shape, and location in volcanic deposits can be combined to model possible trajectories of projectiles from the vent to their final position, and to estimate crucial source parameters of the driving eruption, such as ejection velocity and pressure differential at the vent. Moreover, size and spatial distributions of volcanic projectiles from past eruptions, coupled with ballistic modelling of their trajectory, are crucial to forecast their possible impact in future eruptions. The reliability of such models strongly depends on i) the appropriate physical functions and input parameters and ii) observational validations. In this study, we aimed to unravel intra-conduit processes that strongly control the dynamic of volcanic projectiles by combining numerical modelling and novel experimentally-determined source parameter. In particular, the multiphase ASHEE model (Cerminara 2016; Cerminara et al. 2016) suited for testing post-fragmentation conduit dynamics based on a robust shock tube experimental dataset. By exploding mixtures of pumice and dense lithic particles within a specially designed transparent autoclave, and by using a raft of pressure sensors, ultra-high-speed cameras and pre-sieved natural particles, we observed and quantified: i) kinematic data of the particles and of the gas front along the shock tube and outside, ii) pressure decay at 1GHz resolution. By feeding the ASHEE model with these datasets, and using initial and boundary conditions similar to that of the experiment, we defined domains composed by a pressurized shock tube and the outside chamber at ambient conditions, and tested particles particle motion according to a Lagrangian approach, as well as gas flow with a Eulerian approach (a 3D finite-volume numerical solver, compressible). The comparison between data and model yields estimate of the particle kinematic inside the tube, the pressure evolution at the top and the bottom of the tube, and the eruption source parameters at the tube exit.
    Description: Methods
    Description: We designed a series of rapid decompression experiments in which we systematically varied componentry, particle size, and packing arrangement of the initial samples. We also carried empty run experiments, where only the gas phase is decompressed. We used the pressure evolution and high-speed footage of these experiments to i) benchmark the expansion of the gas phase against the expansion of gas and particle mixture, and ii) develop 1D and 3D models of particle acceleration.
    Keywords: Eperimental volcanology ; ASHEE model ; Conduit dynamic ; Ejection behavior ; Numerical modelling ; EPOS ; multi-scale laboratories ; rock and melt physical properties ; analysis 〉 physicochemical analysis 〉 granulometry ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS 〉 IGNEOUS ROCK PHYSICAL/OPTICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY 〉 ERUPTION DYNAMICS 〉 PYROCLASTIC PARTICAL SIZE DISTRIBUTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY 〉 ERUPTION DYNAMICS 〉 PYROCLASTICS COMPOSITION/TEXTURE ; experiment 〉 test 〉 comparative test ; experiment 〉 test 〉 testing method 〉 calibration ; research 〉 scientific research 〉 experimental study ; science 〉 natural science 〉 earth science 〉 geology 〉 volcanology ; science 〉 physical science
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-02-18
    Description: TechnicalInfo
    Description: This is a synthetic dataset. It was created from the outputs of the glacial isostatic adjustment model VILMA (Klemann et al. 2008). It consists of realtive sea level (RSL) data on a global regular grid. The resolution is 256 x 512 points (Lat x Lon). The tomporal range is from 123 ka BP until present day. Time steps vary between 2.5 kyrs at the beginning and 0.5 kyrs towards the end. The data were created for a specific configuration of the GIA model: lithosphere thickness = 60 km, lithosphere viscosity = 1.0E31 Pa s, upper mantle thickness = 610 km, upper mantle viscosity = 1.0E20 Pa s, lower mantle thickness = 3,221 km, lower mantle viscosity = 1.0E21 Pa s. The RSL data are accompanied by a observation locations mask. This mask was used to identify those locations in the global RSL dataset where real observations are available.
    Description: TechnicalInfo
    Description: The dataset consists of realtive sea level (RSL) data on a global regular grid. The resolution is 256 x 512 points (Lat x Lon). The temporal range is from 123 ka BP until present day. Time steps vary between 2.5 kyrs at the beginning and 0.5 kyrs towards the end. The data were created for a specific configuration of the GIA model: lithosphere thickness = 60 km, lithosphere viscosity = 1.0E31 Pa s, upper mantle thickness = 610 km, upper mantle viscosity = 1.0E20 Pa s, lower mantle thickness = 3,221 km, lower mantle viscosity = 1.0E21 Pa s. The RSL data are accompanied by observation locations masks. These masks were used to mark those locations in the global RSL dataset where real-life observations are available in order to restrict usage of the synthetic data to those locations.
    Keywords: Synthetic data ; Relative sea level ; EARTH SCIENCE 〉 OCEANS 〉 SEA SURFACE TOPOGRAPHY 〉 SEA SURFACE HEIGHT ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 GLACIAL PROCESSES 〉 CRUST REBOUND ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 GLACIAL PROCESSES 〉 GLACIER CRUST SUBSIDENCE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 CRUSTAL MOTION 〉 ISOSTATIC ADJUSTMENTS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-02-23
    Description: Abstract
    Description: This data set is Part 2 of the compiles whole-rock chemical data for late-Variscan low-F biotite and two-mica granites in the German Erzgebirge, in the Saxothuringian Zone of the Variscan Orogen. The group of F-poor biotite granites is represented by the composite massifs of Kirchberg and Niederbobritzsch, the Plohn Granite Suite (PGS), the Aue Granite Suite (AGS), and the subsurface granites of Beiersdorf und Bernsbach. For the group of two-mica granites, compositional data for the multi-stage Bergen massif and the granites from Lauter and Schwarzenberg are reported (Figure 1). Crystal-melt fractionation was the dominant process controlling the evolution of bulk composition in the course of massif/pluton formation. However, metasomatic and hydrothermal processes involving late-stage residual melts and high-T late- to post-magmatic fluids became increasingly more important in highly evolved units and have variably modified the abundances of mobile elements. Interaction with the various metamorphic country rocks and infiltration of meteoric low-T fluids have further disturbed the initial chemical patterns in the endocontact zones and zones influenced by surface weathering. The data set reports whole-rock geochemical analyses for enclaves, granites, aplites, endocontact rocks, and some facial varieties. The data are presented as Excel (xlsx) and machine-readable txt formats. The content of the excel sheet and further information on the granites and regional geology are provided in the data description file.
    Keywords: granite ; peraluminous granite ; aplite ; enclave ; fractional crystallization ; composite pluton ; alteration ; ore mineralization ; whole-rock geochemistry ; tungsten ; molybdenum ; uranium ; Kirchberg pluton ; Plohn granite suite ; Bergen pluton ; Aue-Schwarzenberg Granite Zone ; late Carboniferous ; Variscan orogen ; Saxothuringian Zone ; Erzgebirge ; Germany ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 ELEMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-02-24
    Description: Abstract
    Description: The Central Andes (~21°S) is a subduction-type orogeny formed in the last ~50 Ma from the subduction of the Nazca oceanic plate beneath the South American continental plate. However, the most important phases of deformation occur in the last 20 Ma. Pulses of shortening have led to the sudden growth of the by the Altiplano-Puna plateau. Previous studies have provided insights on the importance of various mechanisms on the overall shortening such as the weakening of the overriding plate from crustal eclogitization and delamination, or the importance of a relatively high friction at the subduction interface, and weak sediments in foreland. However none of them has addressed the mechanism behind these shortening pulses yet. Therefore, we built a series of high resolution 2D visco-plastic subduction models using the ASPECT geodynamic code, in which the oceanic plate is buoyancy-driven and the velocity of the continent is prescribed. We have also implemented a realistic geometry for the south American plate at ~30 Ma. We propose a new plausible mechanism (buckling and steepening of the slab) as the cause of these pulses. The buckling leads to the blockage of the trench. Consequently, the difference of velocity between the South American plate and the trench is accommodated by shortening. The data presented here includes the parameters files, for the reference model (S1) and the following alternative simulations: models with variation of the friction at the subduction interface (S2a-c), a model without eclogitization of the lower crust (S3) and a model with higher thermal conductivity of the upper crust (S4). Additionally, this publication includes the initial composition and thermal state of the lithosphere used for the models and a Readme file that gives all the instructions to run them.
    Keywords: Andes ; geodynamics ; subduction ; Buckling ; Altiplano ; Puna ; shortening ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Type: Model , Model
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-03-01
    Description: Abstract
    Description: Fatbox - Fault Analysis Toolbox is a python module for the extraction and analysis of faults (and fractures) in raster data. We often observer faults in 2-D or 3-D raster data (e.g. geological maps, numerical models or seismic volumes), yet the extraction of these structures still requires large amounts of our time. The aim of this module is to reduce this time by providing a set of functions, which can perform many of the steps required for the extraction and analysis of fault systems. The basic idea of the module is to describe fault systems as graphs (or networks) consisting of nodes and edges, which allows us to define faults as components, i.e. sets of nodes connected by edges, of a graph. Nodes, which are not connected through edges, thus belong to different components (faults).
    Description: TechnicalInfo
    Description: Copyright [2022] Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Keywords: clustering ; signal-processing ; image-processing ; network-analysis ; deformation ; faults ; Python 3 ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 STATISTICAL APPLICATIONS ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 TRANSFORMATION/CONVERSION
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-03-09
    Description: Abstract
    Description: 1.Nature conservation is fostered through the expansion of protected areas. This is particularly evident in Sub-Saharan Africa (SSA), where conservation is intended to simultaneously promote the recovery of megafauna like elephants. Rising numbers of megaherbivores induce woody biomass losses but restore soil organic carbon (SOC). We hypothesized that increases of SOC under conservation with wildlife in SSA go directly along with increases in the preservation of plant residues in soil organic matter (SOM), traceable by plant biomarkers such as lignin and n-alkane. In contrast, intensification with agriculture leads to a reduction of them. To test this, we sampled topsoil (0-10 cm) and corresponding plant samples along different intensities of conservation and intensification in the Zambezi Region of Namibia, comprising a) conservation sites with low, medium and high elephant densities and b) adjacent intensification sites with rangeland and cropland. We found that lignin and n-alkane patterns of the above-ground vegetation were preserved in the soil. Confirming our hypothesis, increasing SOC contents with rising elephant densities went along with increasing accumulation of lignin-derived phenols. Under conservation, lignin concentrations were influenced by the input of woody debris into the soil, traced by carbon isotopes, clay, and total woody biomass. This could not be proved for n-alkanes. Under intensification, lignin derived phenols were lower than under conservation, but again, there was no clear pattern for n-alkanes. We showed that conservation with wildlife leads to an increase of SOC, which was accompanied by an accumulation of lignin-derived phenols in the soil organic matter. Increased input of woody debris, clay content and total biomass were important parameters for this lignin accumulation. In contrast, intensification with agriculture leads to a loss of lignin. Contrary, n- alkanes were not sensitive to detect effects of conservation or intensification. We conclude that increasing incorporation of woody residues into soil is a key mechanism controlling SOC accrual and to offset losses of aboveground biomass on SOC in sites under conservation with wildlife. The dataset contains raw data of lignin and n-alkanes and related soil properties. A third sheet contains a legend with information on abbreviations.
    Keywords: Ecology ; Environment ; Conservation ; Intensification ; Soil Organic Carbon ; Carbon Storage Dynamics ; Carbon Sequestration ; Biomarker ; Lignin ; n-Alkanes
    Type: Dataset , Microsoft excel file
    Format: MS Excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-03-10
    Description: Abstract
    Description: Stress maps show the orientation of the current maximum horizontal stress (SHmax) in the earth's crust. Assuming that the vertical stress (SV) is a principal stress, SHmax defines the orientation of the 3D stress tensor; the minimum horizontal stress Shmin is than perpendicular to SHmax. In stress maps SHmax orientations are represented as lines of different lengths. The length of the line is a measure of the quality of data and the symbol shows the stress indicator and the color the stress regime. The stress data are freely available and part of the World Stress Map (WSM) project. For more information about the data and criteria of data analysis and quality mapping are plotted along the WSM website at http://www.world-stress-map.org. The stress map of Great Britain and Ireland 2022 is based on the WSM database release 2016. All data records have been checked and we added a number of new data from earthquake focal mechanisms from the national earthquake catalog and borehole data. The number of data records has increased from n=377 in the WSM 2016 to n=474 in this map. Some locations and assigned quality of WSM 2016 data were corrected due to new information. The digital version of the map is a layered pdf generated with GMT (Wessel et al., 2019) using the topography of Tozer et al. (2019). We also provide on a regular 0.1° grid values of the mean SHmax orientation which have a standard deviation 〈 25°. The mean SHmax orientation is estimated using the tool stress2grid of Ziegler and Heidbach (2019). For this estimation we used only data records with A-C quality and applied weights according to data quality and distance to the grid points. The stress map is available at the landing page of the GFZ Data Services at http://doi.org/10.5880/WSM.GreatBritainIreland2022 where further information is provided.
    Description: Other
    Description: The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System. All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale.
    Keywords: crustal stress ; in situ stress ; tectonic stress ; crustal stress pattern ; geophysics ; tectonics ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 NEOTECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-03-14
    Description: Abstract
    Description: This data set is the source of my doctoral thesis and of three resulting publications. Through whole rock geochemistry of selected samples and microprobe and geochronological analyses of key minerals, formerly selected by extensive microscopical studies, standard geothermobarometry and modelling was applied. It has been shown that metamorphic rocks, in particular, the eclogites of the northern Kaghan Valley, Pakistan, were buried to depths of 140-100 km (36-30 kbar) at 790-640°C. Subsequently, cooling during decompression (exhumation) towards 40-35 km (17-10 kbar) and 630-580°C has been superseded by a phase of reheating to about 720-650°C at roughly the same depth before final exhumation has taken place. In the southern-most part of the Kaghan Valley, amphibolite facies assemblages with formation conditions similar to the deduced reheating phase indicate a juxtaposition of both areas after the eclogite facies stage and thus a stacking of Indian Plate units. Radiometric dating of zircon, titanite and rutile by U-Pb and amphibole and micas by Ar-Ar reveal peak pressure conditions at 47-48 Ma. With a maximum exhumation rate of 14 cm/a these rocks reached the crust-mantle boundary at 40-35 km within 1 Ma. Subsequent exhumation (46-41 Ma, 40-35 km) decelerated to ca. 1 mm/a at the base of the continental crust but rose again to about 2 mm/a in the period of 41-31 Ma, equivalent to 35-20 km. Apatite fission track (AFT) and (U-Th)/He ages from eclogites, amphibolites, micaschists and gneisses yielded moderate Oligocene to Miocene cooling rates of about 10°C/Ma in the high altitude northern parts of the Kaghan Valley using the mineral-pair method. AFT ages are of 24.5±3.8 to 15.6±2.1 Ma whereas apatite (U-Th)/He analyses yielded ages between 21.0±0.6 and 5.3±0.2 Ma. The southern-most part of the Valley is dominated by younger late Miocene to Pliocene apatite fission track ages of 7.6±2.1 and 4.0±0.5 Ma that support earlier tectonically and petrologically findings of a juxtaposition and stack of Indian Plate units. As this nappe is tectonically lowermost, a later distinct exhumation and uplift driven by thrusting along the Main Boundary Thrust is inferred. Out of this geochemical, petrological, isotope-geochemical and low temperature thermochronology investigations it was concluded that the exhumation was buoyancy driven and caused an initial rapid exhumation: exhumation as fast as recent normal plate movements (ca. 10 cm/a). As the exhuming units reached the crust-mantle boundary the process slowed down due to changes in buoyancy. Most likely, this exhumation pause has initiated the reheating event that is petrologically evident (e.g. glaucophane rimmed by hornblende, ilmenite overgrowth of rutile). Late stage processes involved widespread thrusting and folding with accompanied regional greenschist facies metamorphism, whereby contemporaneous thrusting on the Batal Thrust (seen sometimes equivalent to the MCT) and back sliding of the Kohistan Arc along the inverse reactivated Main Mantle Thrust caused final exposure of these rocks. Similar circumstances have been seen at Tso Morari, Ladakh, India, 200 km further east where comparable rock assemblages occur. In conclusion, as exhumation was already done well before the initiation of the monsoonal system, climate dependent effects (erosion) appear negligible in comparison to far-field tectonic effects. Thus, the channel flow model is not applicable for this part of the Himalayas.
    Keywords: whole rock geochemistry ; microprobe ; U-Pb geochronology ; Ar/Ar geochronology ; apatite fission track ; U-Th/He thermochronology ; metamorphic rocks ; eclogite ; Himalayas ; Pakistan ; Kaghan Valley ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPIC AGE ; In Situ/Laboratory Instruments 〉 Spectrometers/Radiometers 〉 LA-ICP-MS ; In Situ/Laboratory Instruments 〉 Spectrometers/Radiometers 〉 XRF
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-03-16
    Description: Abstract
    Description: Understanding physical processes prior and during eruptions remains challenging, due to uncertainties about subsurface structures and undetected processes within the volcano. Here, the authors use a dedicated fibre-optic cable to obtain strain data and identify volcanic events and image hidden near-surface volcanic structural features at Etna volcano, Italy. In the paper Jousset et al. (2022), we detect and characterize strain signals associated with explosions, and we find evidences for non-linear grain interactions in a scoria layer of spatially variable thickness. We also demonstrate that wavefield separation allows us to incrementally investigate the ground response to various excitation mechanisms, and we identify very small volcanic events, which we relate to fluid migration and degassing. We recorded seismic signals from natural and man-made sources with 2-m spacing along a 1.5-km-long fibre-optic cable layout near the summit of actives craters of Etna volcano, Italy. Those results provide the basis for improved volcano monitoring and hazard assessment using DAS. This data publication contains the full data set used for the analysis. This data set comprises strain-rate data from 1 iDAS interrogator (~750 traces), velocity data from 15 geophones and 4 broadband seismometers, and infrasonic pressure data from infrasound sensors. For further explanation of the data and related processing steps, please refer to Jousset et al. (2022). Waveform data are available from the GEOFON data centre, under network code 9N.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; DAS ; fibre optics ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~600G
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-03-16
    Description: Abstract
    Description: A sequence of three strong (M W 7.2–6.4) and several moderate (M W 4.4–5.7) earthquakes struck the Pamir Plateau and surrounding mountain ranges of Tajikistan, China, and Kyrgyzstan in 2015–2017. With a local seismic network in operation in the Xinjiang province since August 2015, an aftershock network on the Pamir Plateau of Tajikistan since February 2016, and additional permanent regional seismic stations, we were able to record the succession of the fore-, main-, and aftershock sequences at local distances with good azimuthal coverage. We located 11,784 seismic events and determined the moment tensor for 33 earthquakes. The seismicity delineates the major tectonic structures of the Pamir, i.e., the thrusts that absorb shortening along the plateau thrust front, and the strike-slip and normal faults that dissect the Plateau into a westward extruding and a northward advancing block. Fault ruptures were activated subsequently at increasing distances from the initial M W 7.2 Sarez. All mainshock areas but the initial one exhibited foreshock seismicity which was not modulated by the occurrence of the earlier earthquakes. The tabular ASCII data of the seismic event catalog consist of origin date, time, location, depth and magnitude of the events, along with the quality measures: number of P- and S-wave arrival time picks, location root-mean-square misfit and localization method. The tabular ASCII data of the moment tensor catalog consist of origin date, time, location, the six independent components of the moment tensor, the moment magnitude, and the orientation of the preferred fault plane parameterized as fault strike, dip and rake.
    Keywords: Pamir ; Tajikistan ; China ; Xingjiang ; disaster 〉 natural disaster 〉 geological disaster ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE MAGNITUDE/INTENSITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 NEOTECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; environment 〉 geophysical environment ; geological process 〉 seismic activity 〉 earthquake ; land 〉 world 〉 Asia 〉 Central Asia ; physical process 〉 diffusion
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-03-21
    Description: Abstract
    Description: Organic matter (OM) is known to be an important reductant in sediment-hosted base metal deposits like the European Kupferschiefer. However, the precise nature of interactions between OM and hydrothermal fluids are still debated as well as how the interconnected reactions develop over geological timescales. This dataset provides for the first time bulk, compositional and stable isotope data of hydrocarbons, biomarkers and organonitrogen, -sulfur and-oxygen (NSO) compounds for the mineralized Kupferschiefer Spremberg-Graustein field in Eastern Germany based on samples from two drill cores. The study aims to help to better understand the role that organic matter plays during the mineralisation and formation of the sedimentary ore deposit within the Kupferschiefer with a focus on stable hydrogen isotope compositions and NSO compositional data to especially address the origin and to assess the oxidative nature of the brines that caused the mineralization in the Spremberg-Graustein field. The data publication includes bulk, compositional and stable isotope data on inorganic metals and organic matter. The data about metal contents were generated using ICP-MS while those on the organic matter were generated using Rock-Eval pyrolysis, a microscope, a Soxhlet apparatus, medium pressure liquid chromatography (MPLC), gas chromatography with flame ionization (GC-FID) and mass spectrometric detection (GC-MS), gas chromatography isotope ratio mass spectrometry (GC-IRMS) and ultrahigh resolution mass spectrometry (Fourier Transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) with Electrospray ionization (ESI) and Atmospheric pressure photoionization (APPI). The full description of samples, methods and data is given in the following sections.
    Keywords: Kupferschiefer ; Permian ; Organic Matter ; NSO compounds ; hydrogen exchange ; metal porphyrins ; compound specific stable hydrogen isotopic composition ; FT-ICR-MS ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS 〉 PETROLEUM ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METALS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTARY ROCKS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-03-22
    Description: Abstract
    Description: We present a dataset of in-situ measurements in the marginal area of a CO2- and brine-rich cavernous structure in an underground salt mine. The data were collected within the framework of the BMBF-project ProSalz. One aim was to reveal the sources and dynamics of fluid movement as well as temporal and spatial distribution of fluids in a potentially weakened cavern rim. Over a period of three years pressure and gas monitoring was carried out along a transect from a cavernous structure to undisturbed rock salt. In addition, temperature and relative humidity data from the underground gallery were recorded. The gas inflow into isolated borehole sections provided an insight into short- and long-term changes of gas migration patterns in rock salt. Pressure increases of up to 4kPa/day and CO2 concentrations of up to 1.2%, especially at the start of the campaign were measured. The gas migration is coupled to discrete fractures and was limited spatially and temporary. Overall, gas occurrences were not correlated to their distance to the cavern, suggesting no wide-ranging fluid-rock interaction within the rim of the investigated natural cavernous structure in rock salt.
    Description: Methods
    Description: The gas pressures in C1, B3, B6, B10A and B10B were measured with pressure sensors (Greisinger) connected to the packer system. The data were recorded with a data logger (ADL-MX Advanced Datalogger, Meier-NT). The humidity and temperature data were recorded using a humidity sensor (Galltec + Mela). The gases were collected underground in sampling bags (calibrated instruments), and analysed in the lab using an OmniStar mass spectrometer (Pfeiffer).
    Keywords: rock salt ; potassium bearing salt deposits ; salt cavern ; gas migration ; long time monitoring ; in situ underground study ; compound material 〉 sedimentary material 〉 chemical sedimentary material 〉 evaporite 〉 rock salt ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 LAND RECORDS 〉 BOREHOLES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-04-04
    Description: Abstract
    Description: We present a new Python-based Jupyter Notebook that helps interpreting detrital tracer thermochronometry datasets and quantifying the statistical confidence of such analysis. Users are referred to the linked GitHub repository for usage and methods. https://github.com/mdlndr/ESD_thermotrace
    Description: TechnicalInfo
    Description: MIT License Copyright (c) 2021 Andrea Madella Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    Description: Other
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022; https://www.earthshape.net/) explored between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the young geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions.
    Keywords: Detrital Tracer Thermochronology ; EarthShape ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 SEDIMENT CHEMISTRY ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 SEDIMENT COMPOSITION ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 SEDIMENT TRANSPORT ; EARTH SCIENCE 〉 LAND SURFACE 〉 GEOMORPHOLOGY ; EARTH SCIENCE 〉 LAND SURFACE 〉 GEOMORPHOLOGY 〉 FLUVIAL LANDFORMS/PROCESSES ; EARTH SCIENCE 〉 LAND SURFACE 〉 GEOMORPHOLOGY 〉 TECTONIC LANDFORMS/PROCESSES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; science 〉 natural science 〉 earth science 〉 sedimentology
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-04-06
    Description: Abstract
    Description: Starting in 2016, the Taroko Earth Surface Observatory (TESO), a catchment-wide geomorphic observatory was set up in the Liwu catchment in the Taroko National Park in Taiwan. The set up consists of two basic station types: combined seismic and weather stations, featuring a broadband seismometer logging and a multi-parameter weather sensor, and hydrometric stations, the instrumentation of which are specific at each location. Seismic data hosted by the GEOFON database is openly accessible in real time. Waveform data are available from the GEOFON data centre, under network code TQ.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: 〉1T
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-04-14
    Description: Abstract
    Description: The stochastic erosion in-situ cosmogenic nuclide model is a 1D numerical model that simulates the evolution of the concentrations of in situ-produced Be-10, C-14, and He-3 alongside the bedrock thermal field in the shallow Earth surface. It is useful for evaluating cosmogenic nuclide data derived from field samples, in order to determine the erosion rate, erosion style, as well as the time-integrated bedrock thermal history. The model simulates erosion in four styles: no erosion, uniform (steady-state) erosion, episodic erosion, and stochastic erosion. It is particularly useful for evaluating the time-temperature evolution of bedrock hillslopes in mountainous regions.
    Description: TechnicalInfo
    Description: Copyright 2022 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    Keywords: cosmogenic nuclides ; stochastic erosion ; rockfalls ; hillslopes processes ; alpine permafrost ; Beryllium-10 ; Carbon-14 ; Helium-3 ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES ; EARTH SCIENCE SERVICES 〉 MODELS
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-04-14
    Description: Abstract
    Description: This dataset provides friction data from ring-shear tests (RST) for wheat flour used as a fine-grained, cohesive analogue material for simulating brittle upper crustal rocks in the analogue labor-atory of the Institute of Geophysics of the Czech Academy of Science (IGCAS). It is characterized by means of internal friction coefficients µ and cohesion C. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak friction coefficients µP of the tested material is ~0.72, dynamic friction coeffi-cients µD is ~0.67 and reactivation friction coefficients µR is ~0.70. Cohesions of the material range between 27 and 50 Pa. The material shows a minor rate-weakening of ~1.5% per ten-fold change in shear velocity v and a stick-slip behaviour at low shear velocities.
    Keywords: EPOS ; Multi-scale laboratories ; analogue models of geologic processes ; property data of analogue modelling materials ; analogue modelling results ; software tools ; Cohesion ; deformation 〉 fracturing ; earth interior setting 〉 crust setting 〉 continental-crustal setting 〉 upper continental crustal setting ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 CALIBRATION/VALIDATION ; fault ; Force sensor ; Friction coefficient ; Iron Powder ; Ring-shear tester ; Sand 〉 Quartz Sand ; tectonic and structural features
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-04-20
    Description: Abstract
    Description: The new unconstrained GRACE monthly solution SWPU-GRACE2021 is recently developed with the dynamic approach. The reprocessed GRACE L1B RL03 data and de-aliasing product AOD1B RL06 are applied to compute SWPU-GRACE2021. The arc length is variable according to the L1B data quality, but the maximum is no more than 24 hours. The bias vector and scale matrix of the GRACE Accelerometer observation ACC1B product are estimable parameters. The data covers the period from April 2002 to Mai 2017. Due to data quality problems, there are some data gaps between September 2016 and April 2017.
    Keywords: GRACE ; monthly gravity field model ; ICGEM ; geodesy ; global gravity field model ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-04-25
    Description: Abstract
    Description: This field campaign aimed at densifying the station coverage on the Armutlu Peninsula in the eastern Sea of Marmara. The Armutlu peninsula is directly crossed by the Armutlu fault, located roughly ~50 km away from the Istanbul metropolitan region. The main objective of this experiment is to characterize the seismic and aseismic deformation of this region. Waveform data are available from the GEOFON data centre, under network code 9P.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Other , Seismic Network
    Format: ~600G
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-04-25
    Description: Abstract
    Description: Long-term tide gauge records provide valuable insights to sea level variations, but interpretation requires an accurate determination of the associated vertical land motion. Within the Tide Gauge Benchmark Monitoring Working Group of the International GNSS Service, we performed a dedicated reprocessing (1994-2020) for GNSS stations co-located with tide gauges. Based on 341 stations the GFZ contribution to the third TIGA reprocessing provides vertical land motion rates for 230 stations at or close to recently active tide gauges. We limited the processing to GPS observations.
    Description: Methods
    Description: To ensure the highest accuracy, we used the classical network approach with ambiguity fixing according to Ge et al. (2005) but without orbit determination. Therefore, we introduced the orbit and clock products provided in the GFZ repro3 solution (Männel et al., 2020, 2021). The processing strategy follows the current geodetic IERS conventions (https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.htm) and the IGS repro3 settings (http://acc.igs.org/repro3/repro3.html). The processing is described in detail in our dedicated Analysis Center Notes (ftp://isdcftp.gfz-potsdam.de/gnss/products/tiga3/gfz_tiga3.acn). In line with repro3 we applied the antenna correction file igsR3_2077.atx where the GPS transmitter offsets were adjusted to the pre-launch calibrated Galileo PCOs provided by EUSPA. The derived station coordinates are thus given in the consistently derived IGSR3 reference frame whose terrestrial scale differs by around 1.2 ppb from the ITRF2014 scale as described in IGS-mail 8026 (https://lists.igs.org/pipermail/igsmail/2021/008022.html). More details are presented in the associated publication (Männel et al., 2022). Despite daily coordinates, we also estimated hourly zenith total delays and daily gradients to account for tropospheric delays. The results are provided in the following formats: • troposphere delays and gradients (GFZ1R3TFIN_〈YYYY〉〈DDD〉0000_01D_01H_TRO.TRO.gz, data format: tro: https://files.igs.org/pub/data/format/sinex_tro_v2.00.pdf), • station coordinates (GFZ1R3FIN_〈YYYY〉〈DDD〉0000_01D_01D_SOL.SNX.gz,data format: snx: https://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex.html), The file naming follows the IGS Long Product Filename Convention (http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf). All files are .gz compressed.
    Keywords: GNSS ; tide gauge ; station coordinates ; vertical land motion ; TIGA ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS ; EARTH SCIENCE 〉 OCEANS 〉 COASTAL PROCESSES 〉 LOCAL SUBSIDENCE TRENDS ; EARTH SCIENCE 〉 OCEANS 〉 COASTAL PROCESSES 〉 SEA LEVEL RISE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 ISOSTATIC UPLIFT ; In Situ/Laboratory Instruments 〉 Gauges 〉 TIDE GAUGES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-04-28
    Description: Abstract
    Description: The GOCE satellite carries three magnetometers as part of its drag-free attitude orbit control system (DFACS). The magnetometers do not belong to the scientific payload of the mission. After postprocessing of the data, information on the geomagnetic field and on electric currents in near Earth space are derived. The GOCE fluxgate magnetometer data (MAG) have been combined into to a single time series. The provided data consists of raw magnetic field data as provided by Level 1b (RAW), magnetic field data aligned, calibrated and corrected (ACAL_CORR), CHAOS7 magnetic model predictions for core, crustal and large-scale magnetospheric field (CHAOS7, Finlay et al., 2020), housekeeping information, e.g. magnetorquer, solar array and battery currents (HK), Magnetic coordinates (APEX) and radial and field-aligned currents derived from magnetic data (FAC). The calibration and characterization follows the approach given in the references for GOCE calibration. The data are provided in NASA cdf format (https://cdf.gsfc.nasa.gov/) and accessible at: ftp://isdcftp.gfz-potsdam.de/platmag/MAGNETIC_FIELD/GOCE/Analytical/v0205/ and further described in a README.
    Keywords: Platform Magnetometers ; Satellite-based magnetometers ; Earth's magnetic field ; Geomagnetism ; Earth Observation Satellites 〉 Earth Explorers 〉 GOCE ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Magnetic Field/Electric Field Instruments 〉 MAGNETOMETERS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Magnetic Field/Electric Field Instruments 〉 MTQ ; Solar/Space Observing Instruments 〉 Magnetic Field/Electric Field Instruments 〉 FLUXGATE MAGNETOMETERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-02
    Description: Abstract
    Description: The dataset presented here is an earthquake catalog for the central Sea of Marmara (Turkey) obtained by applying a traditional STA/LTA technique to the continuous waveforms. The magnitude of completeness of this catalog is MW = 1.4. The full description of the data processing and creation of the catalog is provided in the paper “Near - fault monitoring reveals combined seismic and slow activation of a fault branch within the Istanbul-Marmara seismic gap in NW Turkey” published by Martínez-Garzón et al., in Seismological Research Letters. The data are provided as the following two ASCII tables: The file 2021-004_Martinez-Garcon-et-al_Initial_seismicity_catalog contains the seismic events for which we could successfully calculate an earthquake location. The ASCII table has the following columns: columns: id, year, month, day, hour, minute, second, serial time, latitude, longitude, depth [km], magnitude, horizontal error [km], vertical error [km], RMS, maximum azimuthal gap [degree]. The table 2021-004_Martinez-Garcon-et-al_Relocated_seismicity_catalog contains the seismic events for which we could refine the initial location and obtain a double-difference refined location. The ASCII table has the following columns: id, latitude, longitude, depth [km], horizontal error [km], vertical error [km].
    Keywords: Earthquake catalog ; Marmara region ; near-fault monitoring ; SMARTnet ; GONAF ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 FAULTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE MAGNITUDE/INTENSITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-02
    Description: Abstract
    Description: AnyPetro is a Matlab-based, GUI-controlled software for adjusting the parameters of arbitrary and non-linear petrophysical models to laboratory data. A Gauss-Newton scheme is applied for the minimization of a damped least-squares objective function. Thereby the Jacobian matrix is calculated explicitely with the perturbation method. Data weighting, model parameter transformations and different regularizations are provided. The petrophysical model resp. the forward operator is introduced by the user in the form of a short text file. Example data files and forward operators as well as Matlab App and standalone installers are provided. The software tool has been developed for and successfully applied to the fitting of various petrophysical data sets (e.g. porosity, specific surface, electrical conductivity, spectral induced polarization) from fluid, unconsolidated, solid and crushed samples to non-linear, multi-parameter models (e.g. electrical CO2-water interaction, Debye Decomposition, crushed rock conductivity).
    Description: Other
    Description: GNU GENERAL PUBLIC LICENSE (Version 3, 29 June 2007) Copyright (C) 〈2022〉 Jana H. Börner, Volker Herdegen This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see 〈https://www.gnu.org/licenses/〉
    Keywords: inversion ; petrophysics ; parameter fitting ; laboratory ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION ; EARTH SCIENCE SERVICES 〉 MODELS 〉 PHYSICAL/LABORATORY MODELS ; science 〉 natural science 〉 earth science 〉 geophysics
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-03
    Description: Abstract
    Description: "2-year seismological experiment near Fagradalsfjall, Reykjanes peninsula in 2021/22" is a two-year seismological experiment realized near the eruptive site at Fagradalsfjall on the Reykjanes peninsula, Iceland, by Eva Eibl (University of Potsdam) in collaboration with Gylfi P. Hersir, Egill Á. Gudnason and Friðgeir Pétursson from ISOR Iceland. From March to September 2021 an effusive, basaltic eruption happened in Geldingadalir near mount Fagradalsfjall on the Reykjanes peninsula. The aim of the seismic experiment was to monitor volcano-seismic signals such as LP events, VT events and tremor, before, during and after the eruption from 14 March 2021 to August 2022. We used two broadband seismometers (Nanometrics Trillium Compact 120 s) and two rotational sensors (iXblue blueSeis-3A) and stored the data on DataCubes and CommunicationCubes, respectively. Sensors were until mid-June installed on the surface and shielded from wind using a bucket. From mid-June they were buried 40cm deep in the ground at about 2 km from the eruptive vent. At any given time, at least one station recorded the seismic signals caused by the eruption. Waveform data are available from the GEOFON data centre, under network code 9F.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~600G
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-11
    Description: Abstract
    Description: The Gravity field and steady-state ocean circulation explorer (GOCE) satellite mission carries three platform magnetometers. After careful calibration, the data acquired through these can be used for scientific purposes by removing artificial disturbances from other satellite payload systems. This dataset is based on the dataset provided by Michaelis and Korte (2022) and uses a similar format. The platform magnetometer data has been calibrated against CHAOS7 magnetic field model predic-tions for core, crustal and large-scale magnetospheric field (Finlay et al., 2020) and is provided in the ‘chaos’ folder. The calibration results using a Machine Learning approach are provided in the ‘calcorr’ folder. Michaelis’ dataset can be used as an extension to this dataset for additional infor-mation, as they are connected using the same timestamps to match and relate the same data points. The exact approach based on Machine Learning is described in the referenced publication. The data is provided in NASA CDF format (https://cdf.gsfc.nasa.gov/) and accessible at: ftp://isdcftp.gfz-potsdam.de/platmag/MAGNETIC_FIELD/GOCE/ML/v0204/ and further de-scribed in a README.
    Description: Methods
    Description: The data was recorded onboard the GOCE satellite mission with varying time intervals of the differ-ent subsystems measuring. The magnetometer measurements (16s intervals) were aligned to match the closest position measurement (1s intervals) and interpolated accordingly. All other avail-able data of different intervals was interpolated and aligned to the same timestamps. The data was calibrated using a Machine Learning approach involving Neural Networks, the whole method of calibration is described precisely in the referenced publication. The data was mainly processed for its calibration which yields a lower residual compared to a refer-ence model than the uncalibrated data, more details about the many steps involved can be found in the referenced publication.
    Keywords: GOCE satellite ; machine learning ; platform magnetometers ; calibration ; Earth Observation Satellites 〉 Earth Explorers 〉 GOCE ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Magnetic Field/Electric Field Instruments 〉 MAGNETOMETERS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-11
    Description: Abstract
    Description: Groundwater can respond quickly to precipitation and is the main contribution to streamflow in most catchments in humid, temperate climates. To better understand shallow groundwater dynamics in a boreal headwater catchment, we installed a network of groundwater wells in two areas in the Krycklan catchment in Northern Sweden. This dataset contains groundwater level data and sampling data from a small headwater catchment (3.5 ha, 54 wells) and a hillslope (1 ha, 21 wells). The dataset is arranged in to subsets, Dataset 1 and 2, the first containing groundwater levels and related information while the second contains information on the chemical sampling procedure and laboratory results. The average wells depth was 274 cm (range: 70 - 581 cm) and recorded the groundwater level variation at a 10-30 min interval between 18. July 2018 – 1. November 2020. Manual water level measurements (0 - 26 per well) during the summer seasons in 2018 and 2019 were used to confirm and re-calibrate the water level logger results. The groundwater level data for each well was carefully processed and quality controlled, using six data labels. The location and depths of the wells are in the file 2022-020_Erdbruegger-et-al_Krycklan_gw_wells.csv and the groundwater levels and classifications 2022-020_Erdbruegger-et-al_Krycklan_gw_levels.csv. The absolute and relative positions of the wells were measured with a high-precision GPS and terrestrial laser scanner (TLS) to determine differences in groundwater levels and thus groundwater gradients (the report of the registration of the point clouds can be found in the files 2022-020_Erdbruegger-et-al_TSL_registration_report_[A/B].rtf). During the summer of 2019, all wells with sufficient water were sampled and analyzed for electrical conductivity, pH, absorbance, anion and cation concentrations, as well as δ18O and δ2H (information on the sampling and the laboratory results can be found in the files 2022-020_Erdbruegger-et-al_Krycklan_gw_chemistry.csv, 2022-020_Erdbruegger-et-al_Field_protocol.csv, 2022-020_Erdbruegger-et-al_Lab_analysis_description.pdf). This combined hydrometric and hydrochemical dataset can be useful to test models that simulate groundwater dynamics and to evaluate subsurface hydrological connectivity. The full description of the data and methods is provided in citation of article XX when available.
    Keywords: boreal catchment ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY ; hydrosphere 〉 hydrologic cycle 〉 hydrologic balance 〉 runoff 〉 drainage 〉 drainage system 〉 natural drainage system ; hydrosphere 〉 water (geographic) 〉 groundwater ; science 〉 natural science 〉 water science 〉 hydrology
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2022-05-13
    Description: Abstract
    Description: Raw, SEGY and other supplementary data are presented from the seismic refraction / wide-angle reflection profile, TTZ-South, in Poland and Ukraine. The purpose of this 550 km long seismic profile was to reveal the lithospheric structure along the Teisseyre-Tornquist Zone (TTZ), a major geophysical boundary in Europe.
    Description: Other
    Description: The Geophysical Instrument Pool Potsdam (GIPP) provides field instruments for (temporary) seismological studies (both controlled source and earthquake seismology) and for magnetotelluric (electromagnetic) experiments. The GIPP is operated by the GFZ German Research Centre for Geosciences. The instrument facility is open for academic use. Instrument applications are evaluated and ranked by an external steering board. See Haberland and Ritter (2016) and https://www.gfz-potsdam.de/gipp for more information.
    Keywords: Seismic refraction / wide-angle reflection ; lithospheric structure ; Teisseyre-Tornquist Zone ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-13
    Description: Abstract
    Description: This data publication includes the half-hourly Hp30 and ap30 indices as well as the hourly Hp60 and ap60 indices, collectively denoted as Hpo. This dataset is based on near real-time geomagnetic observatory data provided by 13 contributing observatories. It is derived and distributed by GFZ German Research Centre for Geosciences. When using the Hpo index, please cite this data publication as well as the accompanying publication Yamazaki et al. (submitted), which serves as documentation of the Hpo. The dataset is organised in yearly files, which, for the current year, are updated on a monthly basis. Typically, during the second week of a month, the data for the previous month is appended to the current year's file. The files are in ASCII files and start with header lines marked with # (hash). The Hpo index was developed within the H2020 project SWAMI (grant agreement No 776287) and is produced by Geomagnetic Observatory Niemegk, GFZ German Research Centre for Geosciences. It derives from the same 13 geomagnetic observatories that also contribute to the Kp index (Matzka et al., 2021, https://doi.org/10.5880/Kp.0001). They are listed as contributors to this data publication. With the introduction of the DOI for the Hpo index (Matzka et al, 2021, https://doi.org/10.5880/Hpo.0001), this DOI landing page and the associated HTTPS server linked to the DOI become the primary archive of Hpo (while the other established index distribution mechanisms at GFZ will be maintained in parallel). With the DOI, the dataset can grow with time, but a change of the data, once published, is not possible. If necessity arises in the future to correct already published values, then the corrected dataset will be published with a new DOI. Older DOIs and data sets will then still be available. For each DOI, an additional versioning mechanism will be available to document changes to the files such as header or format changes, which do not affect the integrity of the data. The DOI https://doi.org/10.5880/Hpo.0002 identifies the current version. A format description and a version history are provided in the data download folder.
    Description: Other
    Description: Version history: 2022-03-26 ---------- Publication of Version Hpo.0002. This version replaces version Hpo.0001. The Hpo, like the Kp nowcast, is based on the FMI algorithm (see Matzka et al., 2021, https://doi.org/10.1029/2020SW002641) and goes through a rescaling procedure to be more similar to the definitive Kp values. The data in version Hpo.0001 from 2018 onwards suffered from a slight error in this rescaling algorithm, causing for example somewhat too few Hpo 0 values and somewhat too many Hpo 0.333 values. This error was corrected for version Hpo.0002. The values from 1995 to 2017 are identical for both versions. 2021-04-26 ---------- Publication of Version Hpo.0001
    Keywords: Hpo ; Hpo index ; Hp30 ; ap30 ; Hp60 ; ap60 ; Kp ; Kp index ; ap index ; geomagnetism ; space weather ; space physics ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 GEOMAGNETIC INDICES 〉 KP INDEX ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 AURORAE ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 GEOMAGNETIC INDICES ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 MAGNETIC FIELDS/MAGNETIC CURRENTS ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 MAGNETIC STORMS ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 SOLAR WIND
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-20
    Description: Abstract
    Description: floodsimilarity provides classes and methods to conduct a similarity analysis between multiple flood events. The library mainly consists of two parts: (1) algorithms to compute indices and other statistics based on pandas and xarray (2) well-defined data structures for data exchange (e.g. through the Similarity Backend Module) floodsimilarity is used by the Digital Earth Similarity Backend Module (Eggert, 2021) as part of the Digital Earth Flood Event Explorer. It is developed at the GFZ German Research Centre for Geosciences and funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project.
    Description: TechnicalInfo
    Description: Copyright © 2022 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Keywords: Digital Earth ; Flood ; Flood Event Explorer ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 SURFACE WATER 〉 FLOODS ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 SURFACE WATER 〉 RUNOFF ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-20
    Description: Abstract
    Description: This data set includes digital image correlation data from analog earthquakes experiments. The data consists of grids of surface strain and time series of surface displacement (horizontal and vertical) and strain. The data have been derived using a stereo camera setup and processed with LaVision Davis 10 software. Detailed descriptions of the experiments and results regarding the surface pattern of the strain can be found in Kosari et al. (2022), to which this data set is supplementary. We use an analog seismotectonic scale model approach (Rosenau et al., 2019 and 2017) to generate a catalog of analog megathrust earthquakes (Table 1). The presented experimental setup is modified from the 3D setup used in Rosenau et al. (2019) and Kosari et al. ( 2020). The subduction forearc model wedge is set up in a glass-sided box (1000 mm across strike, 800mm along strike, and 300 mm deep) with a dipping, elastic basal conveyor belt and a rigid backwall. An elastoplastic sand-rubber mixture (50 vol.% quartz sandG12: 50 vol.% EPDM rubber) is sieved into the setup representing a 240 km long forearc segment from the trench to the volcanic arc. The shallow part of the wedge includes a basal layer of sticky rice grains characterized by unstable stick-slip sliding representing the seismogenic zone. Stick-slip sliding in rice is governed by a rate-and-state dependent friction law similar to natural rocks. According to Coulomb wedge theory (Dahlen et al., 1984), two types of wedge configurations have been designed: a “compressional” configuration represents an interseismically compressional and coseismically stable wedge (compressional configuration), and a “critical” configuration, which is interseismically stable (close to critically compressional) and may reach a critical extensional state coseismically (critical configuration). In the compressional configuration, a flat-top (surface slope α=0) wedge overlies a single large rectangular in map view stick-slip patch (Width*Length=200*800 mm) over a 15-degree dipping basal thrust. In the critical configuration, the surface angle of the elastoplastic wedge varies from the coastal segment onshore (α=10) to the inner-wedge offshore (α=15) segments over a 5-degree dipping basal thrust. Slow continuous compression of the wedge by moving the basal conveyor belt at a speed velocity of 0.05 mm/s simulates plate convergence and results in the quasi-periodic nucleation of quasi-periodic stick-slip events (analog earthquakes) within the rice layer. The wedge responds elastically to these basal slip events, similar to crustal rebound during natural subduction megathrust earthquakes.
    Keywords: EPOS ; multi-scale laboratories ; analogue models of geologic processes ; analogue modeling results ; Digital Image Correlation (DIC) / Particle Image Velocimetry (PIV) 〉 StrainMaster (La Vision GmbH) ; High frame rate camera ; Time lapse camera ; megathrust ; Rubber ; Sand 〉 Quartz Sand ; Subduction box ; tectonic and structural features ; tectonic process 〉 subduction ; tectonic setting 〉 plate margin setting 〉 active continental margin setting ; tectonic setting 〉 plate margin setting 〉 subduction zone setting ; Digital Image Correlation (DIC) / Particle Image Velocimetry (PIV) 〉 StrainMaster (La Vision GmbH) ; High frame rate camera ; Sand 〉 Quartz Sand ; Subduction box ; Time lapse camera ; megathrust ; tectonic and structural features ; tectonic process 〉 subduction ; tectonic setting 〉 plate margin setting 〉 active continental margin setting ; tectonic setting 〉 plate margin setting 〉 subduction zone setting ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-19
    Description: Abstract
    Description: The Fagradalsfjall eruption from 19 March to 18 September 2021 featured lava fountaining episodes from 2 May to 14 June. These episodes were recorded as tremor pulses on our broadband seismic station NUPH (Nanometrics Trillium Compact 120s) at 5.5 km southeast of the active vent. We used the seismic data bandpass filtered between 1 and 4 Hz to mark the start and end of 7058 tremor pulses. The catalog hence comprises 14116 markers, that are statistically further evaluated in Eibl et al. (in review). From 2 May to 14 June, several changes in pulse duration and repose time were found and used to subdivide this time interval into 6 periods with characteristic pulse pattern. We find exponentially decreasing pulse durations, coexisting short and long pulses and stable pulse durations superimposed by gradually increasing or suddenly decreasing repose times. We discuss the findings in the context of an evolving shallow-conduit container, the crater geometries, partial collapses from the crater rim and the amount of accumulating outgassed magma in Eibl et al. (in review). This data publications releases the catalog of 14116 tremor pulses /lava fountaining episodes.
    Description: Methods
    Description: We installed a Trillium Compact 120 s seismometer (Nanometrics) as station NUPH (9F seismic network) at the southeast corner of Núpshlídarháls 5.5 km southeast of the eruptive site in Geldingadalir, Iceland. The instrument stood on a concrete base slab shielded from wind and rain using a bucket partly covered by rocks. The instrument was powered using batteries from 16 March, solar panels from 24 March and a wind generator at 10 m distance from 6 April 2021. Data were sampled at 200 Hz, they were stored on a Datacube and regularly downloaded. We used a compass to align the instrument to geographic north.
    Keywords: eruption catalogue ; Iceland ; seismology ; volcanic tremor ; lava fountaining ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 GEYSER ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-18
    Description: Abstract
    Description: This data publication presents data from a solaroptical spectral investigation in the area of the Rammelsberg non-ferrous metal mine in the Harz Mountains near the city of Goslar. The investigation refers to the local communion stone quarry (“Kommunionssteinbruch”) above the former mining area. As this is a nature conservation zone, all measurements were carried out in-situ without any physical sampling action. The field measurements were carried out in June 2019 in cooperation with Bergbau Goslar GmbH and the German Research Centre for Geosciences (GFZ). The data were collected within the research project ReMon (Remote Monitoring of Tailings Using Satellites and Drones, https://www.gfz-potsdam.de/en/section/remote-sensing-and-geoinformatics/projects/remon/) which aims at developing a prototypical monitoring system for mine tailings by using different sensors scaling from satellite- to drone-based. The data were analysed in the unpublished B.Sc. thesis of Constantin Hildebrand (Hildebrand, 2019). Sixteen different surface materials were determined and examined on-site. Point and imaging hyperspectral data were acquired (with the spectroradiometer PSR+ 3500 operating in the range of 350 - 2500 nm and with the Cubert FireflEYEUHD-185 hyperspectral camera with a range of 450 - 950 nm, respectively), both data sets are presented as spectral libraries. Chemical analyses of the samples were performed by using Laser-Induced Breakdown Spectroscopy (LIBS). LIBS data were collected using a handheld LIBS analyzer, the SciAps Z-300. In this data publication the different in-situ measurements are presented for each of the sixteen samples. Detailed information about the analysed material, the area of spectral sampling and geochemical analyses are explained in this report and can also be found in the additional Excel® sheet provided with the data.
    Keywords: Hyperspectral Imagery ; Imaging spectroscopy ; Mineral mapping ; 3D reconstruction ; non-ferrous metals ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS 〉 IGNEOUS ROCK PHYSICAL/OPTICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTARY ROCKS 〉 SEDIMENTARY ROCK PHYSICAL/OPTICAL PROPERTIES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-23
    Description: Abstract
    Description: The 50 km long KTB Line 4 was recorded in 1985 as part of deep seismic reflection investigations for the DEKORP (German Continental Seismic Reflection Program) and KTB (German Continental Deep Drilling Program) projects. The network of lines consists of two DEKORP profiles, DEKORP 4N and its appendix 4Q, and six shorter KTB profiles, KTB 8501 – 8506, arranged in the form of a grid parallel and perpendicular to the main tectonic lineaments. The purpose of the investigations was to explore the planned target area for the Continental Deep Drilling Site in the Upper Palatinate with high-fold near-vertical incidence vibroseis acquisition. The main focus was on the crustal structure of the central Mid-European Variscides down to the Moho and the uppermost mantle and, in particular, on the suture between the Moldanubian Zone and the northward adjacent Saxothuringian Zone as well as on the metamorphic Zone of Erbendorf-Vohenstrauss. The array of the KTB profiles represents the pre-cursor of the 3-D seismic survey ISO 1989 (Integrated Seismics Oberpfalz). Details of the experiment, first results and interpretations were published by DEKORP Research Group (1987, 1988). Results discussed together with the drilling site were presented in a number of works which can be found in Emmermann & Wohlenberg (1989). The Technical Report of KTB 8504 gives complete information about acquisition and processing parameters. The European Variscides, extending from the French Central Massif to the East European Platform, originated during the collision between Gondwana and Baltica in the Late Palaeozoic. Due to involvement of various crustal blocks in the orogenesis, the mountain belt is subdivided into distinct zones. The external fold-and-thrust belts of the Rhenohercynian and Saxothuringian as well as the predominantly crystalline body of the Moldanubian dominate the central European segment of the Variscides. Polyphase tectonic deformation, magmatism and metamorphic processes led to a complex interlinking between the units. The Saxothuringian represents the infill of a Cambro-Ordovician basin. The Moldanubian contains blocks of pre-Variscan crust and their Palaezoic cover. During the Variscan orogeny the Moldanubian crust was thrust toward the northwest over the Saxothuringian foreland. Both units were welded to one another by a low-pressure metamorphism accompanied by polyphase deformation (DEKORP Research Group, 1987, 1988). The NNW-SSE trending line KTB 8504 runs ca. 15 km southwest from the KTB drill site, nearly parallel to KTB 8505, KTB 8506 and DEKORP 4N and perpendicular to KTB 8501 – 8503. The profile is located southwest of the Franconian Line inside the Permo-Carboniferous and younger sediments of the Mesozoic foreland, which is underlain by a westward continuation of the Erbendorf-Vohenstrauss Zone (DEKORP Research Group, 1988).
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 – 1999 as the German national reflection seismic program funded by the Federal Ministry of Research and Technology (BMFT), Bonn [now: the Federal Ministry of Education and Research (BMBF)]. DEKORP was administrated by the former Geological Survey of Lower Saxony (NLfB), Hannover [now: the State Authority for Mining, Energy and Geology (LBEG)]. In 1994 the DEKORP management was taken over by the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. The aim of DEKORP was to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence (mostly vibro)seismic acquisition, supplemented by wide-angle seismic and other target-oriented piggy-back experiments, all complemented by optimized methods of data processing and interpretation. The DEKORP project was closely linked with the KTB (German continental deep-drilling program) and was an equivalent to many other deep-seismic programs world-wide such as COCORP, BIRPS, LITHOPROBE, ECORS, CROP, BELCORP, IBERSEIS and many more. The DEKORP-Atlas (Meissner & Bortfeld, 1990) gives a detailed overview about most of the different campaigns and results. In sum, the resulting DEKORP database includes approximately 40 crustal-scale 2D-seismic reflection lines covering a total of ca. 4 700 km and one 3D-seismic reflection survey covering ca. 400 km². Each DEKORP survey is provided with all datasets that are necessary for either a re-processing (i.e. raw unstacked field records in SEGY) or a re-interpretation (i.e. finally processed sections in SEGY or PNG). The raw data are sorted by records or by CDPs. The final data are available as unmigrated or migrated stacks without or with coherency enhancement. Automatical line-drawings are also included. All data come with additional meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment. Furthermore, all metadata originating from paper copies are made available as scanned files in PNG or PDF, e.g. field and observer reports, location maps in different scales, near-surface profile headers and others. The DEKORP datasets provide unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle and are increasingly requested by academic institutions and commercial companies. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; KTB ; Kontinentales Tiefbohrprogramm ; deep crustal structure ; crustal-scale seismics ; near-vertical incidence reflection ; Vibroseis acquisition ; Variscan Orogenic Belt ; Saxothuringian ; Moldanubian ; Bohemian Massif ; Zone of Tirschenreuth-Mähring ; Mohorovičić discontinuity ; scientific drilling ; tectonothermal activity ; seismic risks ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-23
    Description: Abstract
    Description: The 47 km long KTB Line 1 was recorded in 1985 as part of deep seismic reflection investigations for the DEKORP (German Continental Seismic Reflection Program) and KTB (German Continental Deep Drilling Program) projects. The network of lines consists of two DEKORP profiles, DEKORP 4N and its appendix 4Q, and six shorter KTB profiles, KTB 8501 – 8506, arranged in the form of a grid parallel and perpendicular to the main tectonic lineaments. high-fold near-vertical incidence vibroseis acquisition. The main focus was on the crustal structure of the central Mid-European Variscides down to the Moho and the uppermost mantle and, in particular, on the suture between the Moldanubian Zone and the northward adjacent Saxothuringian Zone as well as on the metamorphic Zone of Erbendorf-Vohenstrauss. The array of the KTB profiles represents the pre-cursor of the 3-D seismic survey ISO 1989 (Integrated Seismics Oberpfalz). Details of the experiment, first results and interpretations were published by DEKORP Research Group (1987, 1988). Results discussed together with the drilling site were presented in a number of works which can be found in Emmermann & Wohlenberg (1989). The Technical Report of KTB 8501 gives complete information about acquisition and processing parameters. The European Variscides, extending from the French Central Massif to the East European Platform, originated during the collision between Gondwana and Baltica in the Late Palaeozoic. Due to involvement of various crustal blocks in the orogenesis, the mountain belt is subdivided into distinct zones. The external fold-and-thrust belts of the Rhenohercynian and Saxothuringian as well as the predominantly crystalline body of the Moldanubian dominate the central European segment of the Variscides. Polyphase tectonic deformation, magmatism and metamorphic processes led to a complex interlinking between the units. The Saxothuringian represents the infill of a Cambro-Ordovician basin. The Moldanubian contains blocks of pre-Variscan crust and their Palaezoic cover. During the Variscan orogeny the Moldanubian crust was thrust toward the northwest over the Saxothuringian foreland. Both units were welded to one another by a low-pressure metamorphism accompanied by polyphase deformation (DEKORP Research Group, 1987, 1988). The WSW – ENE striking line KTB 8501 is located ca. 12 km north of the KTB borehole. From southwest to northeast KTB 8501 crosses KTB 8504, DEKORP 4N, KTB 8505 and KTB 8506. As well as the lines KTB 8502 and 8503 the profile 8501 was arranged parallel to strike running across the NW-SE directed system of block-faults at the southwestern margin of the Bohemian Massif (DEKORP Research Group, 1988). The most important tectonic lineament, crossed by KTB 8501, is the NW-trending Franconian Line. The fault zone separates the crystalline Bohemian Massif from the foreland, which is covered by Mesozoic and Upper Palaeozoic sedimentary rocks (DEKORP Research Group, 1987).
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 – 1999 as the German national reflection seismic program funded by the Federal Ministry of Research and Technology (BMFT), Bonn [now: the Federal Ministry of Education and Research (BMBF)]. DEKORP was administrated by the former Geological Survey of Lower Saxony (NLfB), Hannover [now: the State Authority for Mining, Energy and Geology (LBEG)]. In 1994 the DEKORP management was taken over by the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. The aim of DEKORP was to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence (mostly vibro)seismic acquisition, supplemented by wide-angle seismic and other target-oriented piggy-back experiments, all complemented by optimized methods of data processing and interpretation. The DEKORP project was closely linked with the KTB (German continental deep-drilling program) and was an equivalent to many other deep-seismic programs world-wide such as COCORP, BIRPS, LITHOPROBE, ECORS, CROP, BELCORP, IBERSEIS and many more. The DEKORP-Atlas (Meissner & Bortfeld, 1990) gives a detailed overview about most of the different campaigns and results. In sum, the resulting DEKORP database includes approximately 40 crustal-scale 2D-seismic reflection lines covering a total of ca. 4 700 km and one 3D-seismic reflection survey covering ca. 400 km². Each DEKORP survey is provided with all datasets that are necessary for either a re-processing (i.e. raw unstacked field records in SEGY) or a re-interpretation (i.e. finally processed sections in SEGY or PNG). The raw data are sorted by records or by CDPs. The final data are available as unmigrated or migrated stacks without or with coherency enhancement. Automatical line-drawings are also included. All data come with additional meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment. Furthermore, all metadata originating from paper copies are made available as scanned files in PNG or PDF, e.g. field and observer reports, location maps in different scales, near-surface profile headers and others. The DEKORP datasets provide unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle and are increasingly requested by academic institutions and commercial companies. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; KTB ; Kontinentales Tiefbohrprogramm ; deep crustal structure ; crustal-scale seismics ; near-vertical incidence reflection ; Vibroseis acquisition ; Variscan Orogenic Belt ; Saxothuringian ; Moldanubian ; Bohemian Massif ; Franconian Line ; Zone of Erbendorf-Vohenstrauss ; Mohorovičić discontinuity ; scientific drilling ; tectonothermal activity ; seismic risks ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset