ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (1,079)
  • Published Data from GFZ  (1,079)
Collection
  • Data  (1,079)
Source
Language
  • 1
    Publication Date: 2024-06-14
    Description: Abstract
    Description: SeisComP is a seismological software for data acquisition, processing, distribution and interactive analysis. The seismological software package has evolved within a decade from pure acquisition modules to a fully featured real-time earthquake monitoring software. The SeedLink protocol for seismic data transmission has been the core of SeisComP from the very beginning. Later additions included simple, purely automatic event detection, location and magnitude determination capabilities. Especially within the development of the 3rd-generation SeisComP, also known as SeisComP3 automatic processing capabilities have been augmented by graphical user interfaces (GUIs) for visualization, rapid event review and quality control.Communication between the modules is achieved using a dedicated messaging system that allows distributed computing and remote review. For seismological metadata exchange export/import tools to/from QuakeML and FDSN StationXML are available, which also provide convenient interfaces with 3rd-party software. The initial SeisComP3 development took place at GFZ between 2006 and 2008 within the GITEWS project (German Indonesian Tsunami Early Warning System) and continued with increasing engagement of gempa GmbH, a software company established by the initial development team of the GFZ.
    Keywords: real-time ; data ; processing ; earthquakes ; monitoring ; fdsn ; standards ; seismology ; C++ ; python ; AGPL ; open ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE
    Language: English
    Type: Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-14
    Description: Abstract
    Description: The dataset contains the seismic weight drop data acquired in Private Reserve Santa Gracia, Chile. The data acquisition was conducted as a part of the EarthShape project in the subproject of Geophysical Imaging of the Deep EarthShape (GIDES). The seismic line was setup to cut across an existing borehole location with core and geophysical logging data available (Krone et al., 2021; Weckmann et al., 2020). The data was acquired to image the deep weathering zone identified by the borehole data across the seismic profile. Included in the datasets are the raw data of the CUBE data logger, SEG-Y data of the recorded shots, and the shot and receiver geometry data. A vital aspect of comprehending the interplay between geological and biological processes lies in the imaging of the critical zone, located deep beneath the surface, where the transition from unaltered bedrock to fragmented regolith occurs. It had been hypothesized that the depth of such weathering zone is dependent on the climate condition of the area. A more humid climate with higher precipitation will result in a deeper weathering front. As a part of the EarthShape project (SPP-1803 ‘EarthShape: Earth Surface Shaping by Biota’), specifically the Geophysical Imaging of the Deep EarthShape (GIDES - Grant No. KR 2073/5-1), we aim to image the weathering zone using the geophysical approach. Using the seismic method, we can differentiate different weathered layers based on the seismic velocity while also providing a 2D subsurface image of the critical zone. We conducted a seismic weight drop experiment in the Private Reserve Santa Gracia, Chile, to observe the depth of the weathering zone in a semi-arid climate and compare the resulting model with existing borehole data (Krone et al., 2021; Weckmann et al., 2020). The acquired data can then be used for multiple seismic imaging techniques, including body wave tomography and multichannel analysis of surface waves.
    Description: Other
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022; https://www.earthshape.net/) explored between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the young geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions.
    Keywords: Geophysics ; seismic ; weight drop ; weathering zone ; critical zone ; bedrock ; granite ; passive seismic ; 3C sensor ; EarthShape ; Chile ; Coastal Cordillera ; Private Reserve Santa Gracia ; CONTROLLED_SOURCE_SEISMOLOGY 〉 REFRACTION ; CONTROLLED_SOURCE_SEISMOLOGY 〉 WEIGHT-DROP_SOURCE ; CONTROLLED_SOURCE_SEISMOLOGY 〉 NEAR_SURFACE ; PASSIVE_SEISMIC 〉 STATIONS ; SENSOR 〉 GEOPHONE ; SENSOR 〉 3-C ; LAND ; SEG-Y_DATA_FORMAT ; MINISEED_DATA_FORMAT ; CONTROLLED_SOURCE_SEISMOLOGY 〉 RAW_DATA ; CONTROLLED_SOURCE_SEISMOLOGY 〉 VERTICALLY_STACKED_DATA ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-13
    Description: Abstract
    Description: Raw-, SEG-Y and other supplementary data of the landside deployment from the amphibious wide-angle seismic experiment ALPHA are presented. The aim of this project was to reveal the crustal and lithospheric structure of the subducting Adriatic plate and the external accretionary wedge in the southern Dinarides. Airgun shots from the RV Meteor were recorded along two profiles across Montenegro and northern Albania.
    Keywords: Seismology ; Adriatic Plate ; Montenegro ; Albania ; CONTROLLED_SOURCE_SEISMOLOGY 〉 REFRACTION ; CONTROLLED_SOURCE_SEISMOLOGY 〉 WIDE-ANGLE_REFLECTION_REFRACTION ; CONTROLLED_SOURCE_SEISMOLOGY 〉 AIRGUN_SOURCE ; CONTROLLED_SOURCE_SEISMOLOGY 〉 REGIONAL_SCALE ; CONTROLLED_SOURCE_SEISMOLOGY 〉 DSS ; SENSOR 〉 GEOPHONE ; SENSOR 〉 3-C ; AMPHIBIOUS ; MINISEED_DATA_FORMAT ; SEISMIC_WAVEFORM_DATA ; CONTROLLED_SOURCE_SEISMOLOGY 〉 RAW_DATA ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-12
    Description: Abstract
    Description: River water and suspended sediment samples were collected between 2015 and 2018 from the Narayani, Saptakoshi and Sunkoshi rivers in Nepal. Samples formed part of the Perturbations of Earth Surface Processes by Large Earthquakes PRESSurE Project (https://www.gfz-potsdam.de/en/section/geomorphology/projects/pressure/). This project aims to better understand the role of earthquakes on earth surface processes. Hydrological stations were installed on the rivers draining the epicentral area following the April 2015 Gorkha earthquake (Mw 7.9). The stations were operated for four consecutive monsoon seasons. All stations were equipped with river stage height measurements and manned daily for sampling. A small batch of river water samples were also collected from the Narayani River. These samples were collected upstream of Narayanghat using a raft between 2015 and 2017. These samples were collected at varying depths in the river. Dissolved river water ion concentrations (N=672) and sediment-adsorbed cation concentrations (N=74) were determined. Radiogenic strontium isotopes (87Sr/86Sr) of both phases were measured for a small number of paired samples (N=9). Dissolved river water anion concentrations were measured at the GFZ German Research Centre for Geosciences, Potsdam, Germany. Dissolved river water cation concentrations were measured at GFZ German Research Centre for Geosciences, Potsdam, Germany and the Department of Earth Sciences, University of Cambridge, Cambridge, UK. Sediment-adsorbed cation concentrations and radiogenic strontium isotope ratios were measured at the Department of Earth Sciences, University of Cambridge, Cambridge, UK.
    Description: Other
    Description: This data set forms part of the Perturbations of Earth Surface Processes by Large Earthquakes PRESSurE Project (https://www.gfz-potsdam.de/en/section/geomorphology/projects/pressure/). Strong earthquakes cause transient perturbations to the near Earth’s surface system. These include widespread land-sliding, subsequent mass movement, and the loading of rivers with sediments. In addition, brittle-rock deformation occurs during the event, forming cracks that affect rock strength and hydrological conductivity. Often overlooked in the immediate aftermath of an earthquake, these perturbations can represent a major part of the overall disaster with impacts that can persist for years before restoring to background conditions. This relaxation phase is therefore part of seismically induced earthquake changes and needs to be monitored to understand the full impact on the Earth system. The fundamental questions motivating the PRESSurE project are ‘How do earthquakes impact erosion during and following seismic activity?’ and ‘What is the role of earthquakes on Himalayan landscape evolution?’. In early June, shortly after the April 2015 Gorkha earthquake, we installed twelve hydrological stations covering all rivers draining the epicentral area. Each station was equipped for daily river water and suspended sediment sampling. Samples are filtered and packed in Nepal, before being shipped to the sediment lab at GFZ for further analysis (SedLab: https://labinfrastructure.geo-x.net/laboratories/91). The sampling network is complemented by an array of seismometers, repeated satellite image observations, and on-side stage high recording. This array is optimized for the monitoring of Earth surface processes (land-sliding, mass wasting and debris flows) and for the monitoring of properties of the shallow subsurface by coda analysis. The monitoring network is the first and most complete observatory to monitor the perturbation of Earth surface process by a major earthquake.
    Type: Collection , Collection
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-12
    Description: Abstract
    Description: The data present the intermediate to final results when we introduce a two-step fully Bayesian approach with coupled uncertainty propagation for estimating crustal isotropic and radial anisotropy models using Rayleigh and Love dispersion data along with receiver functions in Sri Lanka. In the first step, 2D surface wave tomography is used to generate period-wise ambient noise phase velocity maps for Rayleigh and Love waves along with their associated uncertainties. Here we provide the inter-station dispersion data (folder: 2024-003_1_Ke-et-al_interstation_surface_ dispersion_curves; ASCII) for the 2D surface wave tomography process, along with the results of the tomography, including the velocity maps (folder: 2024-003_Ke-et-al_2_velocity_map; ASCII). In addition, the results (folder: 2024-003_3_Ke-et-al_2Dmcmc_inversion_results) are available in MAT format, along with a MATLAB script to allow users to extract the data independently. In a second step, local surface wave dispersion and model errors are derived from the velocity maps. The surface wave dispersion receiver functions are jointly inverted to obtain the isotropic mean shear wave and radial anisotropy profiles as a function of depth at each station site. The input data (folder: 2024-003_Ke-et-al_4_inv_data; ASCII) of surface dispersion and receiver function for the inversion are presented here, as well as the final result model from the inversion (folder: 2024-003_Ke-et-al_5_model; ASCII and .dat formats).
    Keywords: seismic crustal structure ; Bayesian joint inversion ; seismic ambient noise ; receiver functions ; radial anisotropy ; Bayesian joint inversion ; seismic ambient noise ; receiver functions ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS ; science 〉 natural science 〉 earth science 〉 geophysics
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-12
    Description: Abstract
    Description: This data set was taken within the Perturbations of Earth Surface Processes by Large Earthquakes PRESSurE Project (https://www.gfz-potsdam.de/en/section/geomorphology/projects/pressure/), Hazard and Risk Team (HART) project by the German Center for Geosciences GFZ Potsdam. This project aims to better understand the role of earthquakes on earth surface processes. Strong earthquakes cause transient perturbations of the near Earth’s surface system. These include the widespread landsliding and subsequent mass movement and the loading of rivers with sediments. In addition, rock mass is shattered during the event, forming cracks that affect rock strength and hydrological conductivity. Often overlooked in the immediate aftermath of an earthquake, these perturbations can represent a major part of the overall disaster with an impact that can last for years before restoring to background conditions. Thus, the relaxation phase is part of the seismical-ly induced change by an earthquake and needs to be monitored in order to understand the full impact of earthquakes on the Earth system. Following the April 2015 Mw 7.9 Gorkha earthquake, 6 hydrological stations were installed on the Buri Gandaki, Trisuli, Bhotekoshi, Sunkoshi, Koshi and Kahole Khola rivers, draining the epicentral area. The stations were operated for 4 monsoon sea-sons from May/June 2015 to October 2018. The stations were equipped with river stage height measurements and manned daily river sampling for suspended river sediments and water geo-chemistry. In this data publication we present the data from the small head water catchment Ka-hule Khole (see also Andermann et al. 2021, https://doi.org/10.5880/GFZ.4.6.2021.003). Bhotekoshi at Barabise, Sunkoshi at Khurkot and Koshi at Chatara. The samples were filtered at the sampling location and analyzed at the GFZ Potsdam SedLab, section 4.6 Geomorphology, for suspended sed-iment concentration and grainsize distribution. A small sample batch of suspended sediment concentrations was published already in Cook et al. 2018. The samples BA_01.07.2016 – BA_25.07.2016 have been published in this manuscript in figure 4. This data publication contains 920 suspended sediment measurements and respective grainsize distributions. List after station: Kahule Khola 230 samples, Bhotekoshi 282, Sunkoshi 189, and Sapta Koshi 219 samples.
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-10
    Description: Abstract
    Description: Global database of  〉20, 000 geochemical analyses of Neogene-Quaternary intraplate volcanic rocks. The database collates major, trace element and Sr-Nd-Pb isotopic data for whole-rock samples 〈20 Ma old that were published between 1990 and 2020. Database as published in Ball et al. (2021). Key publication: Ball, P. W., White, N. J., Maclennan, J., & Stephenson, S. N. (2021). Global influence of mantle temperature and plate thickness on intraplate volcanism. Nature Communications, 12(1), 2045. https://doi.org/10.1038/s41467-021-22323-9
    Description: Other
    Description: The DIGIS geochemical data repository is a research data repository in the Earth Sciences domain with a specific focus on geochemical data. It is hosted at GFZ Data Services through a collaboration between the Digital Geochemical Data Infrastructure (DIGIS) for GEOROC 2.0 (https://digis.geo.uni-goettingen.de) and the GFZ German Research Centre for Geosciences. The repository archives, publishes and makes accessible user-contributed, peer-reviewed research data that fall within the scope of the GEOROC database. Compilations of previously published data are also made available on the GEOROC website (https://georoc.eu) as Expert Datasets.
    Keywords: intraplate ; volcanic ; major elements ; trace elements ; Sr87_Sr86 ; Nd143_Nd144 ; Pb206_Pb204 ; Pb207_Pb206 ; Pb208_Pb204 ; andesite ; basalt ; basaltic andesite ; basaltic trachyandesite ; basanite ; dacite ; foidite ; phonolite ; phonotephrite ; picrobasalt ; rhyolite ; tephriphonolite ; trachyandesite ; trachybasalt ; trachyte ; Sr-Nd-Pb isotopes ; GEOROC Expert Dataset ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY ; Phanerozoic 〉 Cenozoic 〉 Neogene ; Phanerozoic 〉 Cenozoic 〉 Quaternary
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-06-04
    Description: Abstract
    Description: This data publication provides the results of the investigations and measurements of thermal rock properties conducted on site in the Tournemire field laboratory and at the Thermal Petrophysics Lab at GFZ. The thermal characterization of the clayey Jurassic (Upper Toarcian, ca. 180 My old) is contributing to the site characterization of the Tournemire Underground Research Lab (URL), located in Southern France. This URL is installed in a former railway tun-nel to better understand the physical processes resulting from thermal and hydrau-lic loading in a small fault zone in a highly consolidated shale formation (Bonnelye et al., 2023). At the Tournemire site, faults and fractures of different sizes extend from the surface (sedimentary cover) to the crystalline basement. At one specific gallery (Gallery East 03) installed in the former tunnel, thermally controlled in-situ fluid injection experiments are scheduled on a strike-slip fault zone outcropping at the URL (Bonnelye et al., 2023). In 2022, we visited the URL for baseline characteri-zation of thermal properties and to study the heterogeneity of the clay-dominated formation. Therefore, we took the chance to collect data and samples for a laborato-ry measurement campaign and to measure thermal conductivity in-situ in the tun-nel wall of Gallery East 03. The thermal data shall provide the baseline for the pa-rameterization of future numerical 3D models to better understand the thermal-hydraulic processes related to the experiment. This data publication provides the results of the investigations and measurements conducted on-site in the field la-boratory and at the Thermal Petrophysics Lab at GFZ.
    Keywords: thermal conductivity ; claystone ; host rocks ; URL ; compound material 〉 sedimentary material 〉 sedimentary rock 〉 generic mudstone 〉 mudstone 〉 claystone ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTARY ROCKS 〉 SEDIMENTARY ROCK FORMATION
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-03
    Description: Abstract
    Description: All datasets provided in the operational dataset (Heubeck et al., 2024) of the ICDP project BASE (ICDP 5069) consist of metadata, data and/or images. Here, a summary of explanations of the tables, data and images exported from the database of the project (mDIS BASE) are given and are complemented by additional information on data from measurements done in the laboratory prior to the sampling party. Finally, the sampling data from the first two sampling parties are added. Some basic definitions of identifiers used in ICDP, depths corrections and measurements are also introduced. The BASE (Barberton Archean Surface Environments) scientific drilling project focused on recovering unweathered continuous core through strata of the Paleoarchean Moodies Group (ca. 3.2 Ga), central Barberton Greenstone Belt (BGB), South Africa. They comprise some of the oldest well-preserved sedimentary strata on Earth, deposited within only a few million years in alluvial, fluvial, coastal-deltaic, tidal, and prodeltaic settings; they represent a very-high-resolution record of Paleoarchean surface conditions and processes. Moodies Group strata consist of polymict conglomerates, widespread quartzose, lithic and arkosic sandstones, siltstones, shales, and rare BIFs and jaspilites, interbedded with tuffs and several thin lavas. This report describes operations from preparations to the sampling workshop and complements the related scientific report. Eight inclined boreholes between 280 and 495 m length, drilled during November 2021 through July 2022, obtained a total of 2903 m of curated core of variable quality through steeply to subvertically dipping, in part overturned stratigraphic sections. All drilling objectives were reached. Boreholes encountered a variety of conglomerates, diverse and abundant, mostly tuffaceous sandstones, rhythmically laminated shale-siltstone and banded-iron formations, and several horizons of early-diagenetic sulfate concretions. Oxidative weathering reached far deeper than expected; fracturing was more intense, and BIFs and jaspilites were thicker than anticipated. Two km-long mine adits and a water tunnel, traversing four thick stratigraphic sections within the upper Moodies Group in the central BGB, were also sampled. All boreholes were logged by geophysical instruments. Core was processed (oriented, slabbed, photographed, described, and archived) in a large, publicly accessible hall in downtown Barberton. An exhibition provided background explanations for visitors and related the drilling objectives to the recently established Barberton-Makhonjwa Mountains World Heritage Site. A substantial education, outreach and publicity program addressed the information needs of the local population and of local and regional stakeholders.
    Keywords: Africa ; South Africa ; Barberton ; Early Life Ecology ; Greenstone Belt ; Moodies ; ocean and atmosphere ; oxygen ; ICDP ; International Continental Scientific Drilling Programme ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 LAND RECORDS 〉 BOREHOLES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES ; Precambrian 〉 Archean
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-30
    Description: Abstract
    Description: The dataset contains three seismicity catalogs covering the first 5 days of the aftershock sequence of the Mw 7.8 Karamanmaraş and Mw 7.6 Elbistan earthquakes that occurred in Türkiye on February 6th, 2023. The catalogs are derived from machine learning (ML) approaches operating on continuous data from 38 permanent seismological stations covering the area of the aftershock sequence and span the time interval 06.02.2023-10.02.2023. The seismological stations are operated by AFAD (Disaster and Emergency Management Presidency of Turkey) and KOERI (Kandilli Observatory and Earthquake Research Institute). Automatic P- and S-phase picks were obtained using the deep learning PhaseNet software (Zhu & Beroza, 2019), and either GaMMA (Zhu et al., 2022) or GENIE (McBrearty & Beroza, 2023) routines were used to associate these phases into seismic events. The probabilitic NLLoc earthquake location software (Lomax et al., 2009) was used to produce single event locations and final relative relocations were obtained after applying the hypoDD software (Waldhauser & Ellsworth, 2000). This resulted in two single event location NLLoc aftershock catalogs based on GaMMA and GENIE event association and containing 17,550 and 14,805 event detections in the time interval 06.02.2023 01:18 UTC - 11.02.2023 00:00 UTC, respectively. The hypoDD based catalog of better constrained relative relocations contains 5,215 events. The magnitude range is between M-0.1 and M6.9 with time-variable magnitude of completeness. The catalog covers the area 36.00S-39.00S and 35.40E-40.00E. The full description of the data and methods is provided in the data description file.
    Keywords: East Anatolian Fault Zone ; Kahramanmaraş earthquake ; enhanced seismicity catalog ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...