ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-09-20
    Description: Abstract
    Description: The 'Earthquake Network’ (EQN) is an app which detects earthquakes by creating an ad-hoc network of smartphones' accelerometer sensors and provides early warnings for earthquakes via the same smartphone app. Detections are not due to individual smartphone measurements but due to near-simultaneous trigger signals from clusters of smartphones running the app. Therefore detections are normally located in the closest populated regions to an earthquake's epicentre. These datasets compare sets of detections with the earthquake parameters published by seismic institutes in order to analyse the performance of the EQN network. One dataset contains 550 detections made by EQN between 2017-12-15 and 2020-01-31 in Chile, USA and Italy. Wherever possible, each detection was associated with an earthquake from the parameter catalogue of each country's seismic institute (CSN for Chile, USGS for USA and INGV for Italy). Associations were carried out automatically but also checked manually. The other dataset contains 134 detections from around the world that could be associated to earthquakes with magnitude ≥ M5 or magnitude ≥ M4.5 in Italy and the USA. There are 68 detections that are common to the first dataset. All detections were associated to parameters from the the USGS earthquake parameter catalogue for consistency.
    Description: Methods
    Description: Earthquake parameters were retrieved from the seismic institutes via the FDSN protocol. The two datasets are encoded in csv files using ',' delimiters and with headers on the first row. Additional material is included to explain the contents of each column.
    Description: TableOfContents
    Description: 2021_xxxx_steed-et-al_D1_usa_chl_ita.csv 2021_xxxx_steed-et-al_D2_mag_gt_4.5.csv
    Keywords: Earthquake Network ; earthquakes ; strong motion ; seismic waves ; smartphone ; citizen science ; seismic surface waves ; accelerometry ; ground motion ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC SURFACE WAVES ; geological process 〉 seismic activity 〉 earthquake ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 FDSN ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 IRIS-GSN ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; monitoring 〉 seismic monitoring ; safety 〉 safety system 〉 warning system 〉 early warning system
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-20
    Description: Abstract
    Description: The 'Earthquake Network’ (EQN) is an app which detects earthquakes by creating an ad-hoc network of smartphones' accelerometer sensors and provides early warnings for earthquakes via the same smartphone app. Detections are not due to individual smartphone measurements but due to near-simultaneous trigger signals from clusters of smartphones running the app. Therefore detections are normally located in the closest populated regions to an earthquake's epicentre. In order to investigate the mechanisms of EQN's earthquake detection system, we searched for seismic accelerometer stations with publically available data that were close to the EQN detection locations (rather than close to the epicentre). This confirmed that EQN's detections followed strong shaking motions but that detections could follow both P-phase or S-phase rather than consistantly being sensitive to only one particular phase. It also showed that detections generally occurred between 0 - 5 seconds after the peak ground acceleration measured by the seismic station. Analysis was conducted on 550 detections made by the EQN system between 2017-12-15 and 2020-01-31 in Chile, Italy and the USA. Strong motion accelerometer data was collected from seismic stations via the FDSN protocol. The data was calibrated, detrended and a small time shift was applied to correct for differences in distances from the epicentre between the EQN detection and the strong motion seismic station. Calibrated waveform data was obtained for 410 EQN detections. Plots were made for each event and an analysis was carried out on the dataset to compare EQN detection times with the peak ground acceleration measured by the nearest seismic station. The dataset consists of a zip-file containing a table of results and some summary graphs derived from it as well as a set of 410 graphs of strong motion files that are presented as image files (png-files). The graphs show the waveform data for a seismic station within 20 km of each EQN detection.
    Description: Methods
    Description: Ground motion data was retrieved from seismic networks via the FDSN protocol via the IRIS and ORFEUS institutes. This data was calibrated using station inventory files also downloaded via FDSN and filtered between 0.5 - 12 Hz. A small time shift was applied to correct for differences in distances from the epicentre between the EQN detection and the strong motion seismic station. This time shift assumed a seismc phase velocity of 8.04km/s.
    Keywords: Earthquake Network ; earthquakes ; strong motion ; seismic waves ; smartphone ; citizen science ; seismic surface waves ; accelerometry ; ground motion ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC SURFACE WAVES ; geological process 〉 seismic activity 〉 earthquake ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 FDSN ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 IRIS-GSN ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; monitoring 〉 seismic monitoring ; safety 〉 safety system 〉 warning system 〉 early warning system
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-02
    Description: Abstract
    Description: We perform a teleseismic P-wave travel-time tomography to examine the geometry and structure of subducted lithosphere in the upper mantle beneath the Alpine orogen. The tomography is based on waveforms recorded at over 600 temporary and permanent broadband stations of the dense AlpArray Seismic Network deployed by 24 different European institutions in the greater Alpine region, reaching from the Massif Central to the Pannonian Basin and from the Po plain to the river Main. Teleseismic travel times and travel-time residuals of direct teleseismic P-waves from 331 teleseismic events of magnitude 5.5 and higher recorded between 2015 and 2019 by the AlpArray Seismic Network are extracted from the recorded waveforms using a combination of automatic picking, beamforming and cross-correlation. The resulting database contains over 162.000 highly accurate absolute P-wave travel times and travel-time residuals. For tomographic inversion, we define a model domain encompassing the entire Alpine region down to a depth of 600 km. Predictions of travel times are computed in a hybrid way applying a fast Tau-P method outside the model domain and continuing the wavefronts into the model domain using a fast marching method. We iteratively invert demeaned travel-time residuals for P-wave velocities in the model domain using a regular discretization with an average lateral spacing of about 25 km and a vertical spacing of 15 km. The inversion is regularized towards an initial model constructed from a 3D a priori model of the crust and uppermost mantle and a 1D standard earth model beneath. The resulting model provides a detailed image of slab configuration beneath the Alpine and Apenninic orogens. Major features are a partly overturned Adriatic slab beneath the Apennines reaching down to 400 km depth still attached in its northern part to the crust but exhibiting detachment towards the southeast. A fast anomaly beneath the western Alps indicates a short western Alpine slab whose easternmost end is located at about 100 km depth beneath the Penninic front. Further to the east and following the arcuate shape of the western Periadriatic Fault System, a deep-reaching coherent fast anomaly with complex internal stucture generally dipping to the SE down to about 400 km suggests a slab of European origin limited to the east by the Giudicarie fault in the upper 200 km but extending beyond this fault at greater depths. In its eastern part it is detached from overlying lithosphere. Further to the east, well-separated in the upper 200 km from the slab beneath central Alps but merging with it below, another deep-reaching, nearly vertically dipping high-velocity anomaly suggests the existence of a slab beneath the Eastern Alps of presumably the same origin which is completely detached from the orogenic root. The data are fully described in Paffrath et al. (2021). The model is provided as tabular data with six columns (1) Longitude (deg), (2) Latitude (deg), (3) Depth (km), (4) vp (km/s), (5) dVp (%), (6) Resolution.
    Keywords: geophysics ; seismology ; P-wave ; elastic waves ; body waves ; tomography ; 4DMB ; 4D Mountain Building ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC BODY WAVES ; geological process 〉 seismic activity 〉 earthquake ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; monitoring 〉 seismic monitoring ; science 〉 natural science 〉 earth science 〉 geophysics
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-01
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. The Hurbanovo gravimetric observatory in southern Slovakia was established in 2019 as a part of the integrated station HUVO (GNSS permanent station and seismic station). HUVO is located on a ground floor in a small building in the vicinity of the Hurbanovo Geomagnetic Observatory, which was founded on September 30, 1900. Integration of InSAR transponder into current station architecture is also planned in 2022. The gravimetric observatory equipped with the spring gravimeter gPhoneX #108 provides continuous time-varying gravity and atmospheric pressure data. The spring gravimeter gPhoneX #108 is installed on a concrete block isolated from the rest of the building grounding. The room containing gravimeter is thermally stabilized at around 22 ± 1°C using an air conditioning unit. An additional thermal polystyrene insulation is placed around the instrument further decreasing temperature variations on its surface. Concerning signal to noise ratio, the HUVO station can be characterized as moderately noisy. The operation and maintenance of the HUVO gravimetric instrumentation is done mainly by the staff of the Slovak University of Technology. HUVO gravimetric observatory is also equipped with the accelerometer Raspberry Shake (4D) installed on the same concrete block as the spring gravimeter, operated by the staff of the Slovak Academy of Sciences. Several other meteorological sensors are also present at the site in the close vicinity of the gPhoneX #108: the meteorological station MWS 9-5, a well equipped with the ground-water level sensor and a total number of 16 sensors measuring the soil moisture. These sensors provide information necessary for modelling the gravity response associated with the variation of local hydrological masses.
    Keywords: Relative gravimetry ; Earth tides ; Geodynamics ; International Geodynamics and Earth Tide Service ; IGETS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; geodesy ; geophysics ; hydrology
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The Institute of Seismology, University of Helsinki (ISUH) was founded in 1961 as a response to the growing public concern for environmental hazards caused by nuclear weapon testing. Since then ISUH has been responsible for seismic monitoring in Finland. The current mandate covers government regulator duties in seismic hazard mitigation and nuclear test ban treaty verification, observatory activities and operation of the Finnish National Seismic Network (FNSN) as well as research and teaching of seismology at the University of Helsinki.The first seismograph station of Finland was installed at the premises of the Department of Physics, University of Helsinki in 1924. However, the mechanical Mainka seismographs had low magnification and thus the recordings were of little practical value for the study of local seismicity. The first short-period seismographs were set up between 1956 and 1963. The next significant upgrade of FNSN occurred during the late 1970’s when digital tripartite arrays in southern and central Finland became fully operational, allowing for systematic use of instrumental detection, location and magnitude determination methods. By the end of the 1990’s, the entire network was operating using digital telemetric or dial-up methods. The FNSN has expanded significantly during the 21st Century. It comprises now 36 permanent stations. Most of the stations have Streckeisen STS-2, Nanometrics Trillium (Compact/P/PA/QA) or Guralp CMG-3T broad band sensors. Some Teledyne-Geotech S13/GS13 short period sensors are also in use. Data acquisition systems are a combination of Earth Data PS6-24 digitizers and PC with Seiscomp/Seedlink software or Nanometrics Centaurs. The stations are connected to the ISUH with Seedlink via Internet and provide continuous waveform data at 40 Hz (array) or 100-250 Hz sampling frequency. Further information about instrumentation can be found at the Institute’s web site (www.seismo.helsinki.fi). Waveform data are available from the GEOFON data centre, under network code HE, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-05-12
    Description: Abstract
    Description: Sodankylä geophysical observatory (SGO) has operated in Sodankylä in northern Finland since 1913. SGO was originally founded by the Finnish Academy of Science and Letters. Now it takes care of national and international duties studying the space and geoenvironment as an independent research organisation in the University of Oulu. SGO performs long-term measurements, builds instruments, innovates and maintains domestic and international measurements, and performs research from these measurements. The seismic observations at SGO started in Sodankylä 1956. In 2005-2006 SGO seismic stations were updated to broadband instrumentation and connected to GEOFON data center. Today, the number of seismic stations has increased to 9. The stations have Streckeisen STS-2 or Nanometrics Trillium PA/PH broadband sensors. 3 of the stations are so called Posthole stations located in borehole 7-20 m below surface. The rest of the stations are located on the surface or in a more traditional type of vault. Data acquisition systems are either Earth Data PS6-24 digitisers and PC with Seiscomp or Nanometrics Centaurs. The continuous wave form data is collected at 100 Hz sampling frequency. The VH, LH and BH channel data is available from GEOFON data center and the 100Hz HH data from SGO by request. Further information about instrumentation can be found at the Institute’s web site (https://www.sgo.fi/). Waveform data are available from the GEOFON data centre, under network code FN, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...