ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (92)
  • Published Data from GFZ  (92)
  • 2020-2022  (88)
  • 1990-1994  (2)
  • 1980-1984  (2)
  • 1955-1959
Collection
  • Data  (92)
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    Publication Date: 2024-04-11
    Description: Abstract
    Description: GEOFON (GEOFOrschungsNetz) is the global seismological broad-band network operated by the German GeoForschungsZentrum (GFZ). The GEOFON seismic network came into being in 1993 as one of the three pillars of the GEOFON program dedicated to Ernst von Rebeur-Paschwitz, proposer of a global earthquake monitoring system, who recorded the first teleseismic seismogram in Potsdam in 1889. The program and its seismic network were created to provide high quality broad-band data for scientific use and foster common standards in the seismological community. The network has evolved towards real-time data acquisition and distribution while keeping the high quality broad-band data in focus. Today the network plays a leading role in global real-time seismology providing valuable data for almost all fundamental and applied global/regional seismological research projects at GFZ and the wider seismological community. The GEOFON network is operated jointly with more than 50 international partners and in 2014 consists of about 80 active stations on all continents, but concentrated in Europe and the Mediterranean region as well as in the Indian Ocean. Station operation is mostly performed by local partners with GFZ guidance and logistic support, allowing the global network to be well-advanced technically while still extremely cost-effective. All stations are equipped with broad-band sensors (generally STS-2) that allow resolution of the complete seismic spectrum from small high-frequency local earthquakes to the largest global earthquakes. Data from all stations are freely redistributed in real-time for earthquake monitoring and tsunami warning centers immediately after acquisition at the GEOFON data centre via wired or satellite links. Archived data is also available. GEOFON is part of the Modular Earth Science Infrastructure (MESI) housed at GFZ.
    Keywords: In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Global network ; Permanent ; Velocity ; Seismometers ; MiniSEED ; MESI
    Type: Dataset , Seismic Network
    Format: Approximately 80 active stations; greater than 440MB/day.
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-05-12
    Description: Abstract
    Description: Sodankylä geophysical observatory (SGO) has operated in Sodankylä in northern Finland since 1913. SGO was originally founded by the Finnish Academy of Science and Letters. Now it takes care of national and international duties studying the space and geoenvironment as an independent research organisation in the University of Oulu. SGO performs long-term measurements, builds instruments, innovates and maintains domestic and international measurements, and performs research from these measurements. The seismic observations at SGO started in Sodankylä 1956. In 2005-2006 SGO seismic stations were updated to broadband instrumentation and connected to GEOFON data center. Today, the number of seismic stations has increased to 9. The stations have Streckeisen STS-2 or Nanometrics Trillium PA/PH broadband sensors. 3 of the stations are so called Posthole stations located in borehole 7-20 m below surface. The rest of the stations are located on the surface or in a more traditional type of vault. Data acquisition systems are either Earth Data PS6-24 digitisers and PC with Seiscomp or Nanometrics Centaurs. The continuous wave form data is collected at 100 Hz sampling frequency. The VH, LH and BH channel data is available from GEOFON data center and the 100Hz HH data from SGO by request. Further information about instrumentation can be found at the Institute’s web site (https://www.sgo.fi/). Waveform data are available from the GEOFON data centre, under network code FN, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-13
    Description: Abstract
    Description: The Hungarian National Seismological Network (HNSN) is a permanent seismological network operated by the Kövesligethy Radó Seismological Observatory (Geodetic and Geophysical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences). The main purpose of the network is the continuous monitoring of the seismicity of Hungary and to provide high quality data for the seismological and geodynamic scientific research. The first digital seismological station of the HNSN started its operation in 1992. The network covers the entire Hungarian territory although the geometry is driven by the topography. Most of the stations are concentrated in hilly/mountain regions to move away from the human related activities and to avoid basin effects. All data are acquired in real-time to the HNSN data centre located at the Kövesligethy Radó Seismological Observatory in Budapest. The HNSN follows an open data policy, seismic waveform data are available in real time without any restriction within from the HNSN data centre as well as from the European Integrated Data Archive via the GEOFON data centre.
    Keywords: Seismic monitoring ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approximately 14 active stations
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The Institute of Seismology, University of Helsinki (ISUH) was founded in 1961 as a response to the growing public concern for environmental hazards caused by nuclear weapon testing. Since then ISUH has been responsible for seismic monitoring in Finland. The current mandate covers government regulator duties in seismic hazard mitigation and nuclear test ban treaty verification, observatory activities and operation of the Finnish National Seismic Network (FNSN) as well as research and teaching of seismology at the University of Helsinki.The first seismograph station of Finland was installed at the premises of the Department of Physics, University of Helsinki in 1924. However, the mechanical Mainka seismographs had low magnification and thus the recordings were of little practical value for the study of local seismicity. The first short-period seismographs were set up between 1956 and 1963. The next significant upgrade of FNSN occurred during the late 1970’s when digital tripartite arrays in southern and central Finland became fully operational, allowing for systematic use of instrumental detection, location and magnitude determination methods. By the end of the 1990’s, the entire network was operating using digital telemetric or dial-up methods. The FNSN has expanded significantly during the 21st Century. It comprises now 36 permanent stations. Most of the stations have Streckeisen STS-2, Nanometrics Trillium (Compact/P/PA/QA) or Guralp CMG-3T broad band sensors. Some Teledyne-Geotech S13/GS13 short period sensors are also in use. Data acquisition systems are a combination of Earth Data PS6-24 digitizers and PC with Seiscomp/Seedlink software or Nanometrics Centaurs. The stations are connected to the ISUH with Seedlink via Internet and provide continuous waveform data at 40 Hz (array) or 100-250 Hz sampling frequency. Further information about instrumentation can be found at the Institute’s web site (www.seismo.helsinki.fi). Waveform data are available from the GEOFON data centre, under network code HE, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-23
    Description: Abstract
    Description: The deep seismic reflection survey DEKORP 1-Laacher See was conducted as additional measurements in the Laacher See area in 1987 as part of the DEKORP-1 project, one main traverse of the German continental seismic reflection program. This small survey was an attempt to reveal the 3-D crustal structure in an area of the Quaternary East Eifel Volcanism and possibly find some magma chambers in the crust with high-fold near-vertical incidence vibroseis acquisition (DEKORP Research Group, 1991). The measurement consists of a 8,64 km long, multifold 2D seismic line 8701 across the Laacher See in NE-SW direction and two pseudo-3D seismic areas 8702 north of the lake and 8703 beneath the lake with one-fold coverage in each case. Laacher See or Lake Laach is a caldera lake in the Rhineland-Palatinate, Germany, one of the volcanic centres of the East Eifel Volcanic Field. It belongs together with the West Eifel to the youngest volcanic areas in Central Europe. The caldera of the Laacher See was formed about 12 900 years ago after the volcano explosively erupted, and the remaining crust collapsed into the empty magma chamber below. The Laacher See is still considered to be an active volcano, proven by seismic activities and thermal anomalies under the lake. The first processing of the Laacher See data was carried out at the Geophysical Institute of the CAU University Kiel in 1990. Unfortunately, these results have not been preserved or published. According to DEKORP Research Group (1991) the first processing resulted in poor data quality caused by high scattering and attenuation in the volcanic material near the surface. This reflected energy was not enough to image a magma chamber beneath the lake or any other structures. Thus, information about the structure of the Earth’s crust of the Eifel is mainly based on the deep seismic reflexion profile DEKORP 1B, running ca. 25 km to the west from the Laacher See und crossing DEKORP 1A at its northern profile end. In recent years, deep low‐frequency (DLF) earthquakes have been detected in the Laacher See area indicating ongoing magmatic activity in the lower crust and upper mantle (Hensch et al., 2019, Dahm et al. 2020). These and other signatures suggested the reprocessing of the Laacher See data with modern methods. Thus, the 2D seismic line 8701 has been reprocessed in 2020 within the framework of the Master’s thesis by Agafonova (2020) written at the Technical University of Berlin and supervised by the GFZ Potsdam. All reprocessed data come in SEGY trace format, the final sections additionally in PNG or PDF graphic format: as raw FF-sorted unstacked data, as preprocessed CDP-/FF-sorted unstacked data as well as poststack-time/-depth unmigrated and migrated sections. Moreover, the results of the tomographic inversion are included. Detailed information about acquisition and reprocessing parameters of line 8701 can be found in the accompanying Technical Report (Agafonova & Stiller, 2021). The reprocessed results of the Laacher See survey 1987 can be of importance for better understanding the structure of the Eifel crust. Even though significant knowledge gaps and uncertainties exist due to the insufficient data quality, such important questions can already be discussed as: •How complex is the structure beneath the Laacher See? •Can the Mantle-Crust Boundary be defined at ca. 34 km depth? •Are the strongly inclined events in the Upper Crust between 1-5 km depth parts of caldera ring-faults? •Do the reflections between 5-7 km depth indicate boundaries of a possible magma chamber?
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 – 1999 as the German national reflection seismic program funded by the Federal Ministry of Research and Technology (BMFT), Bonn (now: the Federal Ministry of Education and Research (BMBF)). DEKORP was administrated by the former Geological Survey of Lower Saxony (NLfB), Hanover (now: the State Authority for Mining, Energy and Geology (LBEG)). In 1994 the DEKORP management was taken over by the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. The aim of DEKORP was to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence (mostly vibro)seismic acquisition, supplemented by wide-angle seismic and other target-oriented piggy-back experiments, all complemented by optimized methods of data processing and interpretation. The DEKORP project was closely linked with the KTB (German continental deep-drilling program) and was an equivalent to many other deep-seismic programs world-wide such as COCORP, BIRPS, LITHOPROBE, ECORS, CROP, BELCORP, IBERSEIS and many more. The DEKORP-Atlas (Meissner & Bortfeld, 1990) gives a detailed overview about most of the different campaigns and results. In sum, the resulting DEKORP database includes approximately 40 crustal-scale 2D-seismic reflection lines covering a total of ca. 4 700 km and one 3D-seismic reflection survey covering ca. 400 km². Each DEKORP survey is provided with all datasets that are necessary for either a re-processing (i.e. raw unstacked field records in SEGY) or a re-interpretation (i.e. finally processed sections in SEGY or PNG). The raw data are sorted by records or by CDPs. The final data are available as unmigrated or migrated stacks without or with coherency enhancement. Automatical line-drawings are also included. All data come with additional meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment. Furthermore, all metadata originating from paper copies are made available as scanned files in PNG or PDF, e.g. field and observer reports, location maps in different scales, near-surface profile headers and others. The DEKORP datasets provide unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle and are increasingly requested by academic institutions and commercial companies. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; deep crustal structure ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; Vibroseis acquisition ; Rhenish Massif ; Varisca Orogenic Belt ; Rhenohercynian ; Laacher See Volcano ; East Eifel Volcanic Field ; deep low-frequency earthquakes ; Mohorovičić discontinuity ; geothermal resources ; seismic risks ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-22
    Description: Abstract
    Description: RAIN4PE is a novel daily gridded precipitation dataset obtained by merging multi-source precipitation data (satellite-based Climate Hazards Group InfraRed Precipitation, CHIRP (Funk et al. 2015), reanalysis ERA5 (Hersbach et al. 2020), and ground-based precipitation) with terrain elevation using the random forest regression method. Furthermore, RAIN4PE is hydrologically corrected using streamflow data in catchments with precipitation underestimation through reverse hydrology. Hence, RAIN4PE is the only gridded precipitation product for Peru and Ecuador, which benefits from maximum available in-situ observations, multiple precipitation sources, elevation data, and is supplemented by streamflow data to correct the precipitation underestimation over páramos and montane catchments. The RAIN4PE data are available for the terrestrial land surface between 19°S-2°N and 82-67°W, at 0.1° spatial and daily temporal resolution from 1981 to 2015. The precipitation dataset is provided in netCDF format. For a detailed description of the RAIN4PE development and evaluation of RAIN4PE applicability for hydrological modeling of Peruvian and Ecuadorian watersheds, readers are advised to read Fernandez-Palomino et al. (2021).
    Description: Other
    Description: Acknowledgements The authors thank the East Africa Peru India Climate Capacities (EPICC) Project for funding this research within the International Climate Initiative (IKI) funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU).
    Keywords: Andes ; Amazon ; Peru ; precipitation ; streamflow ; random forest ; reverse hydrology ; EARTH SCIENCE 〉 ATMOSPHERE 〉 PRECIPITATION
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-12-22
    Description: Abstract
    Description: This dataset includes surface 3D stereoscopic Digital Image Correlation (3D stereo DIC) images and videos of 9 analogue models on crustal scale rifting with a rotational component. Using a brittle-viscous two-layer setup, the experiments focused on near-surface fault growth, rift segment interaction and rift propagation. All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern (UB). All models consist of a two-layer brittle-viscous set up with a total thickness of 6 cm. Thickness variations in ductile and brittle layers are expressed by the ratio RBD = brittle layer thickness/ductile layer thickness, which ranges from RBD = 1 to RBD = 3. The model set up lies on top of a 5 cm thick foam base with a trapezoidal shape with a height of 900 mm and a pair of bases of 310 mm and 350 mm. The foam block is sliced into segments such that 7 interlayered 0.5 cm thick plexiglass bars prevent foam collapse under the model weight. The foam base is initially compressed between the longitudinal side walls and homogeneously expands during the rotational opening. Applied velocities refer to the divergence of the sidewalls at the outermost point (i.e., furthest away from the rotation axis) and decrease linearly towards the rotation axis. These velocities vary from 10 mm/h over a total run time of 4 h up to 40 mm/h over a total run time of one hour, resulting in identical total extension of ca 13% (given an initial model width of 31 cm) for all models. Detailed descriptions of the experiments as well as monitoring techniques can be found in Schmid et al. (2021).
    Keywords: analogue models of geologic processes ; multi-scale laboratories ; Digital Image Correlation (DIC) / Particle Image Velocimetry (PIV) 〉 StrainMaster (La Vision GmbH) ; continental rifting ; rotational rifting ; EPOS ; 3D stereo DIC ; software tools ; deformation 〉 rifting ; SLR camera ; Sand 〉 Quartz Sand ; surface elevation ; analogue modelling results ; property data of analogue modelling materials ; analogue modelling results ; software tools ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE SERVICES 〉 MODELS 〉 PHYSICAL/LABORATORY MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-12-21
    Description: Abstract
    Description: The stable isotopic composition of pyrite (δ34Spyrite) and barite (δ34Sbarite, δ18Obarite) in marine sedimentary rocks provides a valuable archive for reconstructing the biogeochemical processes that link the sulfur, carbon, and iron cycles. Highly positive δ34Spyrite values that exceed coeval unmodified seawater sulfate (δ34Spyrite 〉 δ34SSO4(SW)), have been recorded in both modern sediments and ancient sedimentary records and are interpreted to result from various biotic and abiotic processes under a range of environmental conditions. A host of processes, including basin restriction, euxinia, low seawater sulfate, dissimilatory microbial sulfate reduction, sulfide reoxidation, and sulfur disproportionation, have been suggested to account for the formation of highly positive δ34Spyrite values in marine environments. Significantly, determining which of these factors was responsible for the pyrite formation is impeded by a lack of constraints for coeval sulfate, with relatively few examples available where δ34Spyrite and proxies for δ34Ssulfate values (e.g., barite) have been paired at high resolution. In the Selwyn Basin, Canada, the Late Devonian sedimentary system is host to large, mudstone-hosted bedded barite units. These barite units have been interpreted in the past as distal expressions of SEDEX mineralization. However, recent studies on similar settings have highlighted how barite may have formed by diagenetic processes before being subsequently replaced during hydrothermal sulfide mineralization. Coincidentally, highly positive δ34Sbarite values have been recorded in such barite occurring coevally with pyrite in diagenetic redox front, where sulfate reduction is coupled to anaerobic oxidation of methane (SR-AOM) at the sulfate methane transition zone (SMTZ). The mechanisms of sulfur cycling and concurrent processes are, nevertheless, poorly constrained. Grema et al. (2021) integrate high-resolution scanning electron microscopy petrography of barite (+ associated barium phases) and pyrite, together with microscale isotopic microanalyses of δ34Spyrite, δ34Sbarite, and δ18Obarite of selected samples from the Late Devonian Canol Formation of the Selwyn Basin. Samples containing both barite and pyrite were targeted to develop paired isotopic constraints on the evolution of sulfur during diagenesis. We have focused on the precise mechanism by which highly positive δ34Spyrite values developed in the Canol Formation and discuss the implications for interpreting sulfur isotopes in similar settings. This data report comprises microscale secondary ion mass spectrometry (SIMS) analyses of the isotopic compositions of pyrite (δ34Spyrite; n= 200) and barite (δ34Sbarite; n= 485, δ18Obarite; n= 338) in nine stratigraphic sections of the Northwest Territories’ part of the Selwyn Basin. Microdrills of regions of interest (n= 54) were made on polished sections to obtain suitable subsamples, using a 4 mm diameter diamond core drill. Several representative subsamples were cast into 25 mm epoxy pucks, together with reference materials (RMs) of pyrite S0302A (δ34S V-CDT = 0.0 ± 0.2‰ (Liseroudi et al., 2021)) and barite S0327 (δ34SV-CDT = 11.0 ± 0.5 ‰; δ18OV-SMOW = 21.3 ± 0.2 ‰ (Magnall et al., 2016)). Microscale isotopic analyses were carried out using Cameca IMS1280 large-geometry secondary ion mass spectrometer (SIMS) operated in multi-collector mode at the NordSIMS laboratory, Stockholm, Sweden. External analytical reproducibility (1 σ) was typically ± 0.04‰ δ34S for pyrite, ± 0.15‰ δ34S, and ± 0.12‰ δ18O for barite. The sample identification, location, and depth are reported in the data files.
    Keywords: Pyrite ; Barite ; in-situ isotope analyses ; sulfur ; microbial sulfate reduction ; anaerobic oxidation of methane ; Late Devonian ; Selwyn Basin ; biochemical process 〉 anaerobic process ; chemical 〉 isotope ; compound material 〉 rock 〉 sedimentary rock 〉 generic mudstone 〉 mudstone ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 OXIDATION/REDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPE MEASUREMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS 〉 MINERAL PHYSICAL/OPTICAL PROPERTIES 〉 COMPOSITION/TEXTURE ; In Situ/Laboratory Instruments 〉 Spectrometers/Radiometers 〉 SIMS ; Phanerozoic 〉 Paleozoic 〉 Devonian 〉 Late/Upper Devonian
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-12-20
    Description: Abstract
    Description: The ColFFTWG2020 quasi-geoid model is a gravimetric model and has been computed by the Laboratory of Gravity Field Research and Applications, Aristotle University of Thessaloniki. The model has been computed in the frame of the International Association of Geodesy Joint Working Group 2.2.2 "The 1 cm geoid experiment" and the so called "Colorado experiment". The area covered by the models is 108.5°E ≤ longitude ≤ 103.5°E, 36.5°N ≤ latitude ≤ 38°N with a grid spacing of 2' in both latitude and in longitude. The computation is based on the remove-compute-restore technique with XGM2106 being used as a reference field. The topographic effects were treated using a Residual Terrain Correction (RTC) by solving the spectral filter problem of RTC using Earth2014 and ERTM2160 models. The input gravity data include terrestrial and airborne data combined using Least-Squares Collocation (LSC). The final estimation was carried out using 1D FFT with Wong-Gore modification of the Stokes kernel. The mean accuracy of the model, when compared against GSVS17 GPS/leveling, is at 1.6 cm level. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing International schools on the geoid determination.
    Keywords: Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; Wong-Gore Stokes kernel modification ; Colorado experiment ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-12-20
    Description: Abstract
    Description: The ColFFTWG2020 quasi-geoid model is a gravimetric model and has been computed by the Laboratory of Gravity Field Research and Applications, Aristotle University of Thessaloniki. The model has been computed in the frame of the International Association of Geodesy Joint Working Group 2.2.2 "The 1 cm geoid experiment" and the so called "Colorado experiment". The area covered by the models is 108.5°E ≤ longitude ≤ 103.5°E, 36.5°N ≤ latitude ≤ 38°N with a grid spacing of 2' in both latitude and in longitude. The computation is based on the remove-compute-restore technique with XGM2106 being used as a reference field. The topographic effects were treated using a Residual Terrain Correction (RTC) by solving the spectral filter problem of RTC using Earth2014 and ERTM2160 models. The input gravity data include terrestrial and airborne data combined using Least-Squares Collocation (LSC). The final estimation was carried out using 1D FFT with Wong-Gore modification of the Stokes kernel. The accuracy of the model, when compared against GSVS17 GPS/leveling, is at 2.5 cm level. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination.
    Keywords: Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; Wong-Gore Stokes kernel modification ; Colorado experiment ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...