ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-06-14
    Description: Abstract
    Description: SeisComP is a seismological software for data acquisition, processing, distribution and interactive analysis. The seismological software package has evolved within a decade from pure acquisition modules to a fully featured real-time earthquake monitoring software. The SeedLink protocol for seismic data transmission has been the core of SeisComP from the very beginning. Later additions included simple, purely automatic event detection, location and magnitude determination capabilities. Especially within the development of the 3rd-generation SeisComP, also known as SeisComP3 automatic processing capabilities have been augmented by graphical user interfaces (GUIs) for visualization, rapid event review and quality control.Communication between the modules is achieved using a dedicated messaging system that allows distributed computing and remote review. For seismological metadata exchange export/import tools to/from QuakeML and FDSN StationXML are available, which also provide convenient interfaces with 3rd-party software. The initial SeisComP3 development took place at GFZ between 2006 and 2008 within the GITEWS project (German Indonesian Tsunami Early Warning System) and continued with increasing engagement of gempa GmbH, a software company established by the initial development team of the GFZ.
    Keywords: real-time ; data ; processing ; earthquakes ; monitoring ; fdsn ; standards ; seismology ; C++ ; python ; AGPL ; open ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE
    Language: English
    Type: Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Earthquake swarms occur frequently in Vogtland/West Bohemia at the German-Czech border. The link between these earthquakes and magmatic fluids that escape at the surface has been debated and investigated. The Rohrbach/Vogtland seismic array, installed by the University of Potsdam, Germany, was a small-aperture array that monitored the major earthquake swarm in 2008 and the background seismicity between October 16, 2008 and March 18, 2009. The array consisted of 11 stations equipped with MarsLite data loggers and Lennartz Le3D-5s seismometers. Data were recorded in continuous mode at 250 Hz. Sensors were buried in the ground at 0.5 m depth. High-precision station coordinates were obtained using differential GPS measurements. The array data has been used for analyses of earthquakes and seismic structures. Waveform data is fully open.
    Keywords: Seismic waveforms ; Germany ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approx. 95 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The Toba caldera is located in north Sumatra, Indonesia. It is part of the volcanic arc associated with the subduction of the Australian Plate beneath the Southeast-Asian Plate. The subduction zone, and the Sumatra Fault, a right lateral strike-slip fault which marks the plate boundary, are seismically active. In order to investigate the volcano-related seismic activity and image the volcano related structures (i.e. a potential magma chamber) using ambient noise techniques a dense seismic network was installed around Lake Toba between May and October 2008. The network, deployed within a German-Indonesian cooperation, comprised 42 continuously recording seismic stations equipped with three-component, short-period seismic sensors with 1 Hz natural frequency. The GPS-synchronised data loggers recorded at 100 samples per second for the experiment's time span of 6 months. During this time period local and regional seismicity was recorded. The array of stations covers an area of approx. 150 by 200 km with inter-station distances of about 20 km. The station distribution is quite irregular due to the difficult environmental conditions. Data from all stations are freely available from the GFZ seismological data archive.
    Keywords: Seismic waveforms ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approximately 287 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    Publication Date: 2024-02-23
    Description: Abstract
    Description: We study deep structures and geodynamic processes in the Tien Shan and Pamir collision zones, central Asia, with passive source seismic experiments in Kyrgyzstan and Tajikistan. In 2008, a total of 40 seismic stations were deployed predominantly along a 350 km long N-S profile and partly as a sparse 2D seismic network covering an area of 300x300 km of the central Pamir plateau. In 2009, the array was rearranged into a 2D network with higher station density. The proposed scientific tasks to study the crust and upper mantle with seismic methods include (i) teleseismic P and S receiver functions, (ii) shear wave splitting, (iii) location of local earthquakes and waveform inversion for source mechanism, (iv) seismic tomography using local and teleseismic earthquakes, and (v) tomography of surface waves and ambient noise.
    Keywords: Seismic waveforms ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approximately 440 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-01-26
    Description: Abstract
    Description: As part of the INDEPTH IV passive-source experiment from May 2007 until October 2008, 50 broadband seismographs (35 from GIPP, Germany and 15 from SEIS-UK) were deployed along two profiles across the Kunlun mountains and the Jinsha river suture in northeast Tibet. The aims of the project are to determine the crust and upper mantle structure beneath northeast Tibet, detect the sharpness of any steps in major crustal boundaries (e.g. Moho) and detect how deep major faults penetrate in order to examine the viability of the crustal flow hypothesis. The data from the 35 GIPP seismographs are archived at GEOFON at https://geofon.gfzpotsdam.de/waveform/archive/network.php?ncode=XO The data from the 15 SEIS-UK seismographs are archived at the IRIS-DMC at http://ds.iris.edu/mda/XO?timewindow=2007-2009. Waveform data are available from the GEOFON data centre, under network code XO.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Earth structure ; Tibet ; passive seismology ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~200G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-30
    Description: Abstract
    Description: The Austrian Geoid 2008 is the official geoid model for Austria provided by the Austrian Federal Office for Metrology and Surveying (BEV). This model describes the transformation surface (EPSG:9276) between ellipsoidal heights w.r.t. the GRS80 ellipsoid (EPSG:4937) and orthometric heights (EVRF2000 Austrian, EPSG:9274). The grid is defined in ETRS89 (EPSG:4258), covering the area within 46.3° 〈 latitude 〈 49.1° and 9.5° 〈 longitude 〈 17.3°, with a spacing of 1.5' in latitude and 2.5' in longitude. The model is based on 14001 gravity anomaly values, 672 deflections of the vertical and 170 GPS/levelling observations. The computation was performed in the framework of a remove-restore procedure, modelling the long wavelengths of the gravity field by the EIGEN-GL04S global model, and the short wavelengths by the Airy-Heiskanen model with a standard density of 2670 kg/m3. A digital terrain model with a resolution of 44 x 49 m was assembled as a combination of regional Austrian and Swiss models, as well as SRTM for the neighboring countries. The Least Squares Collocation (LSC) technique was used for the geoid computation, interpolating the empirical covariance of the residual quantities by the Tscherning-Rapp analytic covariance model. Special care was devoted to the optimal relative weighting of the input data, namely to the noise covariance models, especially concerning the GPS/levelling observations. The resulting hybrid geoid model was assessed by comparing it with independent GPS/levelling information, leading to an estimated accuracy of the order of 2-3 cm over the whole Austrian territory. The model is also available at the BEV open data portal, and more information about it can be found on the BEV website. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Least Squares Collocation ; Austria ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-30
    Description: Abstract
    Description: The Austrian Geoid 2008 is the official geoid model for Austria provided by the Austrian Federal Office for Metrology and Surveying (BEV). This model describes the transformation surface (EPSG:9277) between ellipsoidal heights w.r.t. the Bessel ellipsoid (datum MGI, EPSG:9267) and orthometric heights (EVRF2000 Austrian, EPSG:9274). The grid is defined in MGI (EPSG:4312), covering the area within 46.3° 〈 latitude 〈 49.1° and 9.5° 〈 longitude 〈 17.3°, with a spacing of 1.5' in latitude and 2.5' in longitude. The model is based on 14001 gravity anomaly values, 672 deflections of the vertical and 170 GPS/levelling observations. The computation was performed in the framework of a remove-restore procedure, modelling the long wavelengths of the gravity field by the EIGEN-GL04S global model, and the short wavelengths by the Airy-Heiskanen model with a standard density of 2670 kg/m3. A digital terrain model with a resolution of 44 x 49 m was assembled as a combination of regional Austrian and Swiss models, as well as SRTM for the neighboring countries. The Least Squares Collocation (LSC) technique was used for the geoid computation, interpolating the empirical covariance of the residual quantities by the Tscherning-Rapp analytic covariance model. Special care was devoted to the optimal relative weighting of the input data, namely to the noise covariance models, especially concerning the GPS/levelling observations. The resulting hybrid geoid model was assessed by comparing it with independent GPS/levelling information, leading to an estimated accuracy of the order of 2-3 cm over the whole Austrian territory. The model is also available at the BEV open data portal, and more information about it can be found on the BEV website. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Least Squares Collocation ; Austria ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...