ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (18,645)
  • Latest Papers from Table of Contents or Articles in Press  (18,645)
  • Molecular Diversity Preservation International  (8,609)
  • Institute of Electrical and Electronics Engineers  (3,676)
  • American Meteorological Society  (3,224)
  • American Geophysical Union  (1,733)
  • Copernicus  (1,403)
  • Blackwell Publishing Ltd
  • Springer Science + Business Media
  • 2020-2024  (159)
  • 2020-2022  (18,205)
  • 2010-2014
  • 1960-1964  (281)
  • 1940-1944
  • 2021  (6,300)
  • 2021  (6,300)
  • 2020  (12,064)
  • 2020  (12,064)
  • 1960  (281)
  • Geography  (16,422)
  • Architecture, Civil Engineering, Surveying  (13,620)
  • History  (46)
Collection
  • Articles  (18,645)
Source
Publisher
Years
  • 2020-2024  (159)
  • 2020-2022  (18,205)
  • 2010-2014
  • 1960-1964  (281)
  • 1940-1944
Year
Journal
  • 1
    Publication Date: 2020-01-01
    Print ISSN: 1545-598X
    Electronic ISSN: 1558-0571
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-01
    Print ISSN: 0196-2892
    Electronic ISSN: 1558-0644
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-26
    Description: The evaluation of potential landslides in mountain areas is a very complex process. Currently, event understanding is scarce due to information limitations. Identifying the whole chain of events is not a straightforward task, and the impacts of mass-wasting processes depend on the conditions downstream of the origin. In this paper, we present an example that illustrates the complexities in the evaluation of the chain of events that may lead to a natural disaster. On 16 December 2017, a landslide occurred in the Yelcho mountain range (southern Chile). In that event, 7 million m3 of rocks and soil fell on the Yelcho glacier, depositing 2 million m3 on the glacier terminal, and the rest continued downstream, triggering a mudflow that hit Villa Santa Lucía in Chilean Patagonia and killing 22 people. The complex event was anticipated in the region by the National Geological and Mining Survey (Sernageomin in Spanish). However, the effects of the terrain characteristics along the run-out area were more significant than anticipated. In this work, we evaluate the conditions that enabled the mudflow that hit Villa Santa Lucía. We used the information generated by Sernageomin's professionals after the mudflow. We carried out geotechnical tests to characterize the soil. We simulated the mudflow using two hydrodynamic programs (r.avaflow and Flo-2D) that can handle the rheology of the water–soil mixture. Our results indicate that the soil is classified as volcanic pumices. This type of soil can be susceptible to the collapse of the structure when subjected to shearing (molding), flowing as a viscous liquid. From the numerical modeling, we concluded that r.avaflow performs better than Flo-2D. The mudflow was satisfactorily simulated using a water content in the mixture ranging from 30 % to 40 %, which would have required a source of about 3 million m3 of water. Coupling the simulations and the soil tests that we performed, we estimated that in the area scoured by the mudflow, there were probably around 2 800 000 m3 of water within the soil. Therefore, the conditions of the valley were crucial to enhancing the impacts of the landslide. This result is relevant because it highlights the importance of evaluating the complete chain of events to map hazards. We suggest that in future hazard mapping, geotechnical studies in combination with hydrodynamic simulation should be included, in particular when human lives are at risk.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-09-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-27
    Description: Evapotranspiration (ET) from tropical forests serves as a critical moisture source for regional and global climate cycles. However, the magnitude, seasonality, and interannual variability of ET in the Congo Basin remain poorly constrained due to a scarcity of direct observations, despite the Congo being the second-largest river basin in the world and containing a vast region of tropical forest. In this study, we applied a water balance model to an array of remotely sensed and in situ datasets to produce monthly, basin-wide ET estimates spanning April 2002 to November 2016. Data sources include water storage changes estimated from the Gravity Recovery and Climate Experiment (GRACE) satellites, in situ measurements of river discharge, and precipitation from several remotely sensed and gauge-based sources. An optimal precipitation dataset was determined as a weighted average of interpolated data by Nicholson et al. (2018), Climate Hazards InfraRed Precipitation with Station data version 2 (CHIRPS2) , and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record product (PERSIANN-CDR), with the relative weights based on the error magnitudes of each dataset as determined by triple collocation. The resulting water-balance-derived ET (ETwb) features a long-term average that is consistent with previous studies (117.2±3.5 cm yr−1) but displays greater seasonal and interannual variability than seven global ET products. The seasonal cycle of ETwb generally tracks that of precipitation over the basin, with the exception that ETwb is greater in March–April–May (MAM) than in the relatively wetter September–October–November (SON) periods. This pattern appears to be driven by seasonal variations in the diffuse photosynthetically active radiation (PAR) fraction, net radiation (Rn), and soil water availability. From 2002 to 2016, Rn, PAR, and vapor-pressure deficit (VPD) all increased significantly within the Congo Basin; however, no corresponding trend occurred in ETwb. We hypothesize that the stability of ETwb over the study period despite sunnier and less humid conditions may be due to increasing atmospheric CO2 concentrations that offset the impacts of rising VPD and irradiance on stomatal water use efficiency (WUE).
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-26
    Description: Geospatial data is urgently needed in decision-making processes to achieve Sustainable Development Goals (SDGs) at global, national, regional and local scales. While the advancement of geo-technologies to obtain or produce geospatial data has become faster and more affordable, many countries in the global south still experience a geospatial data scarcity at the rural level due to complex geographical terrains, weak coordination among institutions and a lack of knowledge and technologies to produce visualised geospatial data like maps. We proposed a collaborative spatial learning framework that integrates the spatial knowledge of stakeholders to obtain geospatial data. By conducting participatory mapping workshops in three villages in the Deli Serdang district in Indonesia, we tested the framework in terms of facilitating communication and collaboration of the village stakeholders while also supporting knowledge co-production and social learning among them. Satellite images were used in digital and non-digital mapping workshops to support village stakeholders to produce proper village maps while fulfilling the SDGs’ emphasis to make geospatial data available through a participatory approach.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-26
    Description: East Asia is the most complex region in the world for aerosol studies, as it encounters a lot of varieties of aerosols, and aerosol classification can be a challenge in this region. In the present study, we focused on the relationship between aerosol types and aerosol optical properties. We analyzed the long-term (2005–2012) data of vertical profiles of aerosol extinction coefficients, lidar ratio (Sp), and other aerosol optical properties obtained from a NASA Micro-Pulse Lidar Network and Aerosol Robotic Network site in northern Taiwan, which frequently receives Asian continental outflows. Based on aerosol extinction vertical profiles, the profiles were classified into two types: type 1 (single-layer structure) and type 2 (two-layer structure). Fall season (October–November) was the prevailing season for the Type 1, whereas type 2 mainly happened in spring (March–April). In type 1, air masses normally originated from three regional sectors, i.e., Asia continental (AC), Pacific Ocean (PO), and Southeast Asia (SA). The mean Sp values were 39 ± 17 sr, 30 ± 12 sr, and 38 ± 18 sr for the AC, PO, and SA sectors, respectively. The Sp results suggested that aerosols from the AC sector contained dust and anthropogenic particles, and aerosols from the PO sector were most likely sea salts. We further combined the EPA dust event database and backward trajectory analysis for type 2. Results showed that Sp was 41 ± 14 sr and 53 ± 21 sr for dust storm and biomass-burning events, respectively. The Sp for biomass-burning events in type 2 showed two peaks patterns. The first peak occurred within range of 30–50 sr corresponding to urban pollutant, and the second peak occurred within range of 60–80 sr in relation to biomass burning. Finally, our study summarized the Sp values for four major aerosol types over northern Taiwan, viz., urban (42 ± 18 sr), dust (34 ± 6 sr), biomass-burning (69 ± 12 sr), and oceanic (30 ± 12 sr). Our findings provide useful references for aerosol classification and air pollution identification over the western North Pacific.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-27
    Description: Urbanization is a complex process closely involving the economy, society, and population. While monitoring urban development and exploring the industry-driving force in a real-time and effective way are the prerequisites for optimizing industry structure, narrowing the urban development gap, and achieving sustainable development. Nighttime light is an effective tool to monitor urban development from a macro perspective. However, the systematic research of nighttime light spatiotemporal variation modes and the industry-driving force of urban nighttime light are still unknown. Considering these issues, this paper analyzes the spatiotemporal variation modes of the average light index (ALI) and investigates the industry-driving force of ALI in 100 major prefecture-level cities across China mainland based on National Polar-Orbiting Partnership Satellite Visible Infrared Imaging Radiometer Suite (NPP VIIRS). The conclusions are as following three aspects. First, ALI is observed a funnel pattern among four regions in spatial dimension, with low in center and high in the surrounding, and it shows 5 variation modes (“W,” “√,” “Exponent,” “Logarithm,” and “N”) in temporal dimension, of which the “√” mode accounts for the highest proportion (60%). Second, the industry structure is closely related to ALI. Besides, the factor analysis result illustrates that the secondary and tertiary industry are the driving industries of ALI. Third, the classification result based on the industry contribution rate indicates that cities driven by different industries show significant spatial distribution differences. The three major industry-driving cities are mainly distributed in central and western regions, the secondary and tertiary industry-driving cities are evenly distributed, and the tertiary industry-driving cities are mainly distributed in provincial capitals. From 2013 to 2018, the fluctuation of city distribution driven by different industries changes obviously. The number of tertiary industry-driving cities increases steadily and the three major industry-driving cities are distributed wider spatially. Additionally, the impacts of location and raw coal on ALI are discussed. In general, these findings are essential to further research urban development mode and can be considered as the reference to narrow urban development gap.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-27
    Description: A low-mass and low-volume dual-polarization L-band radiometer is introduced that has applications for ground-based remote sensing or unmanned aerial vehicle (UAV)-based mapping. With prominent use aboard the ESA Soil Moisture and Ocean Salinity (SMOS) and NASA Soil Moisture Active Passive (SMAP) satellites, L-band radiometry can be used to retrieve environmental parameters, including soil moisture, sea surface salinity, snow liquid water content, snow density, vegetation optical depth, etc. The design and testing of the air-gapped patch array antenna is introduced and is shown to provide a 3-dB full power beamwidth of 37°. We present the radio-frequency (RF) front end design, which uses direct detection architecture and a square-law power detector. Calibration is performed using two internal references, including a matched resistive source (RS) at ambient temperature and an active cold source (ACS). The radio-frequency (RF) front end does not require temperature stabilization, due to characterization of the ACS noise temperature by sky measurements. The ACS characterization procedure is presented. The noise equivalent delta (Δ) temperature (NEΔT) of the radiometer is ~0.14 K at 1 s integration time. The total antenna temperature uncertainty ranges from 0.6 to 1.5 K.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-27
    Description: Avalanche disasters are extremely destructive and catastrophic, often causing serious casualties, economic losses and surface erosion. However, far too little attention has been paid to utilizing remote sensing mapping avalanches quickly and automatically to mitigate calamity. Such endeavors are limited by formidable natural conditions, human subjective judgement and insufficient understanding of avalanches, so they have been incomplete and inaccurate. This paper presents an objective and widely serviceable method for regional auto-detection using the scattering and interference characteristics of avalanches extracted from Sentinel-1 SLC images. Six indices are established to distinguish avalanches from surrounding undisturbed snow. The active avalanche belts in Kizilkeya and Aktep of the Western TianShan Mountains in China lend urgency to this research. Implementation found that smaller avalanches can be consistently identified more accurately in descending images. Specifically, 281 and 311 avalanches were detected in the ascending and descending of Kizilkeya, respectively. The corresponding numbers on Aktep are 104 and 114, respectively. The resolution area of single avalanche detection can reach 0.09 km2. The performance of the model was excellent in all cases (areas under the curve are 0.831 and 0.940 in descending and ascending of Kizilkeya, respectively; and 0.807 and 0.938 of Aktep, respectively). Overall, the evaluation of statistical indices are POD 〉 0.75, FAR 〈 0.34, FOM 〈 0.13 and TSS 〉 0.75. The results indicate that the performance of the innovation proposed in this paper, which employs multivariate comprehensive descriptions of avalanche characteristics to actualize regional automatic detection, can be more objective, accurate, applicable and robust to a certain extent. The latest and more complete avalanche inventory generated by this design can effectively assist in addressing the increasingly severe avalanche disasters and improving public awareness of avalanches in alpine areas.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...