ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5,186)
  • Latest Papers from Table of Contents or Articles in Press  (5,186)
  • 2010-2014  (5,186)
  • Applied Microbiology and Biotechnology  (1,277)
  • 843
  • Process Engineering, Biotechnology, Nutrition Technology  (5,186)
  • Technology
Collection
  • Articles  (5,186)
Source
  • Latest Papers from Table of Contents or Articles in Press  (5,186)
Publisher
Years
Year
Topic
  • Process Engineering, Biotechnology, Nutrition Technology  (5,186)
  • Technology
  • Biology  (5,186)
  • 1
    Publication Date: 2014-12-09
    Description: The protein 3D8 single-chain variable fragment (3D8 scFv) has potential anti-viral activity due to its ability to penetrate into cells and hydrolyze nucleic acids. Probiotic Lactobacillus paracasei engineered to secrete 3D8 scFv for oral administration was used to test the anti-viral effects of 3D8 scFv against gastrointestinal virus infections. We found that injection of 3D8 scFv into the intestinal lumen resulted in the penetration of 3D8 scFv into the intestinal villi and lamina propria. 3D8 scFv secreted from engineered L. paracasei retained its cell-penetrating and nucleic acid-hydrolyzing activities, which were previously shown with 3D8 scFv expressed in Escherichia coli . Pretreatment of RAW264.7 cells with 3D8 scFv purified from L. paracasei prevented apoptosis induction by murine norovirus infection and decreased messenger RNA (mRNA) expression of the viral capsid protein VP1. In a mouse model, oral administration of the engineered L. paracasei prior to murine norovirus infection reduced the expression level of mRNA encoding viral polymerase. Taken together, these results suggest that L. paracasei secreting 3D8 scFv provides a basis for the development of ingestible anti-viral probiotics active against gastrointestinal viral infection.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-18
    Description: Bacterial contamination and biomass harvesting are still challenges associated with coupling of microalgae and wastewater treatment technology. This study investigated aggregation, bacterial growth, lipid production, and pollutant removal during bacteria contaminated Chlorella regularis cultivation under nutrient starvation stress, by supposing the C/N/P ratios of the medium to 14/1.4/1 (MB 2.5 ) and 44/1.4/1 (MB 4.0 ), respectively. Granules of 500–650 μm were formed in the bacteria contaminated inoculum; however, purified C. regularis were generally suspended freely in the medium, indicating that bacterial presence was a prerequisite for granulation. Extracellular polymeric substance (EPS) analysis showed that polysaccharides were dominant in granules, while protein mainly distributed in the outer layer. Denaturing gradient gel electrophoresis (DGGE) results revealed Sphingobacteriales bacterium and Sphingobacterium sp . are vital organisms involved in the flocculation of microalgae, and nitrifiers ( Stenotrophomonas maltophilia ) could co-exist in the granular. Both EPS and DGGE results further supported that bacteria played key roles in granulation. C. regularis was always dominant and determined the total biomass concentration during co-cultivation, but bacterial growth was limited owing to nutrient deficiency. Starvation strategy also contributed to enhancement of lipid accumulation, as lipid content in MB 4.0 with a greater C/N/P led to the greatest increase in the starvation period, and the maximum lipid productivity reached 0.057 g/(L·day). Chemical oxygen demand and nitrogen removal in MB 4.0 reached 92 and 96 %, respectively, after 3 days of cultivation. Thus, cultivation of microalgae in high C/N/P wastewater enabled simultaneous realization of biomass granulation, bacterial overgrowth limitation, enhanced lipid accumulation, and wastewater purification.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-18
    Description: Understanding the impact of polycyclic aromatic hydrocarbons (PAHs) on soil environments is of increasingly important concern. Therefore, the microbial degradation of PAHs in soils has drawn considerable attention, but little is known about the PAH degradation genes in urban soils. In this study, we examined the diversity and abundance of the PAH degradation bacteria and evaluated whether the specific bacteria can reflect PAH contents in the soils from urban roadsides directly receiving traffic emission. The results of phylogenetic analysis indicated that low PAH degradation bacterial diversity occurred in the urban roadside soils, only including Mycobacterium sp., Terrabacter sp., and one novel cluster. The community composition diversity of PAH degradation bacteria did not show a significant difference across the sampling sites. The abundance of PAH degradation genes ranged from 5.70 × 10 6 to 6.44 × 10 7  gene copies g −1 dry soil, with an average abundance of 1.43 × 10 7  gene copies g −1 dry soil, and their spatial variations were related significantly to PAH contents in the soils. The Mycobacterium sp. was the most widely detected and estimated to occupy 65.9–100 % of the total PAH degradation bacteria at most of the soil samples, implying that the Mycobacterium sp. might play a primary role in degrading PAHs in the contaminated urban soil environments.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-11
    Description: The ability of acetic acid bacteria (AAB) to produce cellulose has gained much industrial interest due to the physical and chemical characteristics of bacterial cellulose. The production of cellulose occurs in the presence of oxygen and in a glucose-containing medium, but it can also occur during vinegar elaboration by the traditional method. The vinegar biofilm produced by AAB on the air-liquid interface is primarily composed of cellulose and maintains the cells in close contact with oxygen. In this study, we screened for the ability of AAB to produce cellulose using different carbon sources in the presence or absence of ethanol. The presence of cellulose in biofilms was confirmed using the fluorochrome Calcofluor by microscopy. Moreover, the process of biofilm formation was monitored under epifluorescence microscopy using the Live/Dead BacLight Kit. A total of 77 AAB strains belonging to 35 species of Acetobacter , Komagataeibacter , Gluconacetobacter , and Gluconobacter were analysed, and 30 strains were able to produce a cellulose biofilm in at least one condition. This cellulose production was correlated with the PCR amplification of the bcsA gene that encodes cellulose synthase. A total of eight degenerated primers were designed, resulting in one primer pair that was able to detect the presence of this gene in 27 AAB strains, 26 of which formed cellulose.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-11
    Description: Pseudomonas aeruginosa is an opportunistic pathogen that localizes to and colonizes mucosal tissue. Thus, vaccines that elicit a strong mucosal response against P. aeruginosa should be superior to other vaccination strategies. In this study, to stimulate rapid and enhanced mucosal immune responses, mannose-modified chitosan microspheres loaded with the recombinant outer membrane protein OprF 190–342 -OprI 21–83 (FI) (FI-MCS-MPs) of P. aeruginosa were developed as a potent subunit vaccine for mucosal delivery. FI-MCS-MPs were successfully obtained via the tripolyphosphate ionic crosslinking method. Confocal and immunohistochemical analyses indicated that FI-MCS-MPs exhibited the ability to bind the macrophage mannose receptor (MMR, CD206) in vitro and in vivo. After intranasal immunization of mice with FI-MCS-MPs, FI-specific humoral immune responses were detected, measured as local IgM antibody titers in lung tissue slurry; IgA antibody titers in nasal washes, bronchoalveolar lavage (BAL), and intestinal lavage; and systemic IgA and IgG antibody titers in serum. FI-MCS-MPs induced early and high mucosal and systemic humoral antibody responses comparable to those in the group vaccinated with unmodified mannose. High levels of IFN-γ and IL-4 in addition to T lymphocyte subsets induced a mixed Th1/Th2 response in mice immunized with FI-MCS-MPs, resulting in the establishment of cellular immunity. Additionally, when immunized mice were challenged with P. aeruginosa via the nasal cavity, FI-MCS-MPs demonstrated 75 % protective efficacy. Together, these data indicate that mannose-modified chitosan microspheres are a promising subunit delivery system for vaccines against P. aeruginosa infection.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-11
    Description: The methylotrophic yeast Pichia pastoris is an attractive expression system due to its ability to secrete large amounts of recombinant protein, with the potential for glycosylation. Advances in glycoengineering of P. pastoris have successfully demonstrated the humanization of both the N- and O-linked glycosylation pathways in this organism. However, in certain cases, the presence of O-linked glycans on a therapeutic protein may not be desirable. Recently, we have reported the in vitro utility of jack bean α-1,2/3/6-mannosidase to remove O-linked mannose from intact undenatured glycoproteins produced in glycoengineered P. pastoris . However, one caveat of this strategy is that jack bean mannosidase has yet to be cloned and as such is only available as crude cellular extracts. This raises several concerns for using this reagent to treat large preparations of therapeutic proteins generated in P. pastoris . Therefore, we postulated that lysosomal mannosidases which have been cloned and demonstrated to have similar activities to jack bean mannosidase on N-linked glycans would also process O-linked glycans in a similar fashion. To this end, we screened a panel of recombinant lysosomal mannosidases from different organisms and identified several which cannot only reduce extended O-linked mannose chains but which can also hydrolyze the Man-α- O -Ser/Thr glycosidic bond on intact glycoproteins. As such, not only do we show for the first time the utility of lysosomal mannosidase for O-linked mannose processing, but since this is a recombinant enzyme, it has several benefits over the use of crude jack bean mannosidase extracts.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-11
    Description: The unfolded protein response (UPR) represents a mechanism to preserve endoplasmic reticulum (ER) homeostasis that is conserved in eukaryotes. ER stress caused by the accumulation of potentially toxic un- or misfolded proteins in the ER triggers UPR activation and the induction of genes important for protein folding in the ER, ER expansion, and transport from and to the ER. Along with this adaptation, the overall capacity for protein secretion is markedly increased by the UPR. In filamentous fungi, various approaches to employ the UPR for improved production of homologous and heterologous proteins have been investigated. As the effects on protein production were strongly dependent on the expressed protein, generally applicable strategies have to be developed. A combination of transcriptomic approaches monitoring secretion stress and basic research on the UPR mechanism provided novel and important insight into the complex regulatory cross-connections between UPR signalling, cellular physiology, and developmental processes. It will be discussed how this increasing knowledge on the UPR might stimulate the development of novel strategies for using the UPR as a tool in biotechnology.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-11-11
    Description: So far, the contribution of ammonia-oxidizing archaea (AOA) to ammonia oxidation in wastewater treatment processes has not been well understood. In this study, two soil aquifer treatment (SATs) systems were built up to treat synthetic domestic wastewater (column 1) and secondary effluent (column 4), accomplishing an average of 95 % ammonia removal during over 550 days of operation. Except at day 322, archaeal amoA genes always outnumbered bacterial amoA genes in both SATs as determined by using quantitative polymerase chain reaction (q-PCR). The ratios of archaeal amoA to 16S rRNA gene averaged at 0.70 ± 0.56 and 0.82 ± 0.62 in column 1 and column 4, respectively, indicating that all the archaea could be AOA carrying amoA gene in the SATs. The results of MiSeq-pyrosequencing targeting on archaeal and bacterial 16S rRNA genes with the primer pair of modified 515R/806R indicated that Nitrososphaera cluster affiliated with thaumarchaeal group I.1b was the dominant AOA species, while Nitrosospira cluster was the dominant ammonia-oxidizing bacteria (AOB). The statistical analysis showed significant relationship between AOA abundance (compared to AOB abundance) and inorganic and total nitrogen concentrations. Based on the mathematical model calculation for microbial growth, AOA had much greater capacity of ammonia oxidation as compared to the specific influent ammonia loading for AOA in the SATs, implying that a small fraction of the total AOA would actively work to oxidize ammonia chemoautotrophically whereas most of AOA would exhibit some level of functional redundancy. These results all pointed that AOA involved in microbial ammonia oxidation in the SATs.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-11-11
    Description: Selective capture of transcribed sequences (SCOTS) is an effective method to identify bacterial genes differentially expressed during different biological processes, including pathogenic interactions with a host species. The method can be used to elucidate molecular mechanisms driving and maintaining such interactions. The method is a powerful genetic tool that overcomes limitations found in other methods, by working with small amounts of mRNA and allowing for the separation of bacterial cDNA from host cDNA. It has been increasingly used in the discovery of genes involved in the bacterium-host interaction. In this review, we briefly introduce the SCOTS method, outline the technical advances offered in the method, and focus on the method’s applications in several microbial pathogens.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-11
    Description: A maltotriose-producing α-amylase, AmyA, from a newly isolated bacterial strain Microbulbifer thermotolerans DAU221 was purified and characterized in the heterologous host, Escherichia coli , using the pCold I vector. The amyA gene encoded a 761-residue protein composed of a 33 amino acid secretion signal peptide. The purified α-amylase with a molecular mass of 80 kDa, approximately, shared a sequence motif characteristic of the glycoside hydrolase family 13. The enzyme was optimally active, at 50 °C in sodium phosphate buffer (pH 6.0), by the traditional one factor-at-a-time method. But the optimal conditions of time, temperature, and pH for production of maltotriose from soluble starch were 1.76 h, 44.95 °C, and pH 6.35 by response surface methodology, respectively. Maltotriose, as the major enzyme reaction product, was analyzed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The enzyme was found to be inhibited by the addition of 10 mM Cu 2+ , Fe 3+ , Hg 2+ , Zn 2+ , and EDTA, but exhibited extreme stability toward hexane. The K m and V max values for the hydrolysis of soluble starch were 1.08 mg/mL and 1.736 mmol maltotriose/mg protein/min, respectively.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-11-11
    Description: The single-copy genes encoding putative polyphosphate–glucose phosphotransferases (PPGK, EC 2.7.1.63) from two nitrogen-fixing Cyanobacteria , Nostoc sp. PCC7120 and Nostoc punctiforme PCC73102, were cloned and functionally characterized. In contrast to their actinobacterial counterparts, the cyanobacterial PPGKs have shown the ability to phosphorylate glucose using strictly inorganic polyphosphates (polyP) as phosphoryl donors. This has proven to be an economically attractive reagent in contrast to the more costly ATP. Cyanobacterial PPGKs had a higher affinity for medium–long-sized polyP (greater than ten phosphoryl residues). Thus, longer polyP resulted in higher catalytic efficiency. Also in contrast to most their homologs in Actinobacteria , both cyanobacterial PPGKs exhibited a modest but significant polyP-mannokinase activity as well. Specific activities were in the range of 180–230 and 2–3 μmol min −1  mg −1 with glucose and mannose as substrates, respectively. No polyP-fructokinase activity was detected. Cyanobacterial PPGKs required a divalent metal cofactor and exhibited alkaline pH optima (approx. 9.0) and a remarkable thermostability (optimum temperature, 45 °C). The preference for Mg 2+ was noted with an affinity constant of 1.3 mM. Both recombinant PPGKs are homodimers with a subunit molecular mass of ca. 27 kDa. Based on database searches and experimental data from Southern blots and activity assays, closely related PPGK homologs appear to be widespread among unicellular and filamentous mostly nitrogen-fixing Cyanobacteria . Overall, these findings indicate that polyP may be metabolized in these photosynthetic prokaryotes to yield glucose (or mannose) 6-phosphate. They also provide evidence for a novel group-specific subfamily of strictly polyP-dependent gluco(manno)kinases with ancestral features and high biotechnological potential, capable of efficiently using polyP as an alternative and cheap source of energy-rich phosphate instead of costly ATP. Finally, these results could shed new light on the evolutionary origin of sugar kinases.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-11-11
    Description: Estuarine and tidal wetlands with high primary productivity and biological activity play a crucial role in coastal nutrient dynamics. Here, to better reveal the effects of extracellular enzymes and microbial community on carbon (C) and nitrogen (N) mineralization, the incubation experiments with different C and N addition patterns to the tidal sediments of the Yangtze Estuary (China) were conducted. The results suggested a significant increase in cumulative CO 2 effluxes in the C and CN treatment experiments, while no significant difference in cumulative CO 2 effluxes between the N treatment and control (CK) experiments was observed. In addition, the nutrient addition patterns had a great influence on dissolve organic C and N levels, but a small effect on microbial biomass C and N. Microbial community composition and microbial activity were found to be positively correlated with organic C (OC) and the molar ratio of C to N (C/N). Partial correlation analysis, controlling for C/N, supported direct effects of OC on the activity of carbon-cycling extracellular enzymes (cellulase and polyphenol oxidase), while C/N exhibited negatively correlations with urease and Gram-positive bacteria to Gram-negative bacteria (G+/G−). Strong relationships were found between CO 2 efflux and mineral nitrogen with the activity of specific enzymes (sucrase, cellulase, and polyphenol oxidase) and abundances of Gram-negative bacteria, arbuscular mycorrhizal fungi, and fungi, suggesting the significant influences of microbial community and enzyme activity on C and N mineralization in the estuarine and tidal wetlands. Furthermore, this study could highlight the need to explore effects of nutrient supply on microbial communities and enzyme activity changes associated with the C and N mineralization in these wetlands induced by the climate change.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-11-11
    Description: In this study, the process of pyrite colonization and leaching by three iron-oxidizing Acidithiobacillus species was investigated by fluorescence microscopy, bacterial attachment, and leaching assays. Within the first 4–5 days, only the biofilm subpopulation was responsible for pyrite dissolution. Pyrite-grown cells, in contrast to iron-grown cells, were able to oxidize iron(II) ions or pyrite after 24 h iron starvation and incubation with 1 mM H 2 O 2 , indicating that these cells were adapted to the presence of enhanced levels of reactive oxygen species (ROS), which are generated on metal sulfide surfaces. Acidithiobacillus ferrivorans SS3 and Acidithiobacillus ferrooxidans R1 showed enhanced pyrite colonization and biofilm formation compared to A. ferrooxidans T . A broad range of factors influencing the biofilm formation on pyrite were also identified, some of them were strain-specific. Cultivation at non-optimum growth temperatures or increased ionic strength led to a decreased colonization of pyrite. The presence of iron(III) ions increased pyrite colonization, especially when pyrite-grown cells were used, while the addition of 20 mM copper(II) ions resulted in reduced biofilm formation on pyrite. This observation correlated with a different extracellular polymeric substance (EPS) composition of copper-exposed cells. Interestingly, the addition of 1 mM sodium glucuronate in combination with iron(III) ions led to a 5-fold and 7-fold increased cell attachment after 1 and 8 days of incubation, respectively, in A. ferrooxidans T . In addition, sodium glucuronate addition enhanced pyrite dissolution by 25 %.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-11-11
    Description: Background Monoacetylated xylosyl residues of the main hardwood hemicellulose acetylglucuronoxylan undergo acetyl group migration between positions 2 and 3, and predominantly to position 4 of the non-reducing end xylopyranosyl (NRE-Xyl p ) residues which are amplified by saccharifying enzymes. On monoacetylated non-reducing end xylopyranosyl (NRE-Xyl p ) residues of xylooligosaccharides the acetyl group migrates predominantly to position 4 and hinders their hydrolysis by β-xylosidase. Methods Acetyl migration on the NRE-Xyl p residues and their enzymatic deacetylation by various xylan deacetylases was followed by 1 H-NMR spectroscopy and TLC. Results A 5-min heat treatment of 4-nitrophenyl 3- O -acetyl-β-D-xylopyranoside was sufficient to establish equilibrium between monoacetate derivatives acetylated at positions 2, 3 and 4. Rapid acetyl migration along the NRE-Xyl p ring at elevated temperature was confirmed in derivatives of methyl β-1,4-xylotrioside (Xyl 3 Me) monoacetylated solely on the NRE-Xyl p residue, the analogues of naturally occurring acetylated xylooligosaccharides. The Xyl 3 Me monoacetates were used as substrates to study regioselectivity of the NRE-Xyl p residue deacetylation by various acetylxylan esterases (AcXEs) of distinct carbohydrate esterase (CE) families. CE1, CE4 and CE6 AcXEs hydrolyzed considerably faster the 2″- O -acetyl derivative than the 3″- O -acetyl derivative. In contrast, the CE16 acetyl esterase preferred to attack the ester bond at position 3 followed by position 4. Conclusions Redistribution of acetyl group on the NRE-Xyl p residues is extremely rapid at elevated temperature and includes the formation of 4-acetate. Regioselectivity of AcXEs and CE16 acetyl esterase on these monoacetates is complementary. General significance The formation of all isomers of acetylated xylosyl residues must be taken into account after a long-term incubation of acetylxylan and acetylated xylooligosaccharides solutions or upon their treatment at elevated temperatures. This phenomenon emphasizes requirement of both types of xylan deacetylases to enable a rapid saccharification of xylooligosaccharides by glycoside hydrolases.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-11-11
    Description: Foot-and-mouth disease (FMD) remains a major threat to livestock worldwide, especially in developing countries. To improve the efficacy of vaccination against FMD, various types of vaccines have been developed, including synthetic peptide vaccines. We designed three synthetic peptide vaccines, 59 to 87 aa in size, based on immunogenic epitopes in the VP1, 3A, and 3D proteins of the A/HuBWH/CHA/2009 strain of the foot-and-mouth disease virus (FMDV), corresponding to amino acid positions 129 to 169 of VP1, 21 to 35 of 3A, and 346 to 370 of 3D. The efficacies of the vaccines were evaluated in cattle and guinea pigs challenged with serotype-A FMDV. All of the vaccines elicited the production of virus-neutralizing antibodies. The PB peptide, which contained sequences corresponding to positions 129 to 169 of V P1 and 346 to 370 of 3D, demonstrated the highest levels of immunogenicity and immunoprotection against FMDV. Two doses of 50 μg of the synthetic PB peptide vaccine provided 100 % protection against FMDV infection in guinea pigs, and a single dose of 100 μg provided 60 % protection in cattle. These findings provide empirical data for facilitating the development of synthetic peptide vaccines against FMD.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-11-11
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-11-05
    Description: Corynebacterium glutamicum can consume glucose to excrete glycerol under oxygen deprivation. Although glycerol synthesis from 1,3-dihydroxyacetone (DHA) has been speculated, no direct evidence has yet been provided in C. glutamicum . Enzymatic and genetic investigations here indicate that the glycerol is largely produced from DHA and, unexpectedly, the reaction is catalyzed by ( S , S )-butanediol dehydrogenase (ButA) that inherently catalyzes the interconversion between S -acetoin and ( S , S )-2,3-butanediol. Consequently, the following pathway for glycerol biosynthesis in the bacterium emerges: dihydroxyacetone phosphate is dephosphorylated by HdpA to DHA, which is subsequently reduced to glycerol by ButA. This study emphasizes the importance of promiscuous activity of the enzyme in vivo.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-11-05
    Description: Cofactor is especially important for biotransformation catalyzed by oxidoreductases. Many attempts in enhancing performance of the reactions by improving cofactor utilization have been reported. In this study, efficiency of cofactor-requiring biocatalysis was enhanced by improving cofactor recycling via spatially programmed assembling glycerol dehydrogenase (GlyDH, Escherichia coli MG1655) and glutamate dehydrogenase (GluDH, Bacillus subtilis str168), with the aid of single-stranded DNA (ssDNA). The two enzymes were first independently expressed as molecules fused with a phage protein A* that could covalently link ssDNA with certain features. After an enzymatic cross-linking reaction taking place under mild conditions, the conjugate of fused enzyme and ssDNA was assembled into desired structures through base pairing enabled by the ssDNA. Results showed that, to some extent, the fusion with protein A* could improve the specific activity of the enzymes (GlyDH-A*/GlyDH = 116.0 %; GluDH-A*/GluDH = 105.2 %). Additionally, in the coupled reaction system with glycerol and α-ketoglutaric acid as substrates, regarding the production of glutamic acid based on HPLC analysis, the efficiency of cofactor utilization was significantly enhanced (by 23.8- to 41.9-folds), indicating the existence of a substrate-channeling mechanism for cofactor utilization in the assembled reaction system due to the proximity effects. The degree of substrate channeling was calculated as from 1.65 to 1.73. Furthermore, the efficiency of cofactor utilization was influenced in an architecture-dependent manner when complexes with different stoichiometry of GlyDH and GluDH were utilized in biotransformation. This study demonstrated a novel strategy of cofactor recycling for enhanced performance of coupled oxidoreductive reactions.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-12-16
    Description: In the present study, the use of Rhodococcus erythropolis mutant strain RG9 expressing the cytochrome P450 BM3 mutant M02 enzyme has been evaluated for whole-cell biotransformation of a 17-ketosteroid, norandrostenedione, as a model substrate. Purified P450 BM3 mutant M02 enzyme hydroxylated the steroid with 〉95 % regioselectivity to form 16-β-OH norandrostenedione, as confirmed by NMR analysis. Whole cells of R. erythropolis RG9 expressing P450 BM3 M02 enzyme also converted norandrostenedione into the 16-β-hydroxylated product, resulting in the formation of about 0.35 g/L. Whole cells of strain RG9 itself did not convert norandrostenedione, indicating that metabolite formation is P450 BM3 M02 enzyme mediated. This study shows that R. erythropolis is a novel and interesting host for the heterologous expression of highly selective and active P450 BM3 M02 enzyme variants able to perform steroid bioconversions.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-12-16
    Description: 2,4-Dichlorophenol (2,4-DCP) is considered as an important pollutant because of its high toxicity and wide distribution in wastewaters. Innocuous remediation technologies have been studied for the removal of this pollutant. This study investigated the feasibility of using garlic roots as a plant system for the removal of 2,4-DCP. The optimal conditions for its removal were established based on orthogonal experiments (OA 25 matrix). Significant factors that affect removal efficiency, arranged from high to low importance, include pH, reaction time, 2,4-DCP concentration, and H 2 O 2 concentration. In addition, garlic roots could be re-used for as much as three consecutive cycles. The decrease in pH and the increase of Cl − ion content in the post-removal solutions indicated that 2,4-DCP dehalogenation occurred during transformation. Changes in the deposition pattern of lignin in roots exposed to 2,4-DCP suggested that several of the products deposited were lignin-type polymers. The acute toxicity test revealed that the post-removal solutions were less toxic than the parent solutions. Therefore, garlic roots have considerable potential to effectively and safely remove 2,4-DCP from wastewater.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-12-15
    Description: Yro2 and its paralogous protein Mrh1 of Saccharomyces cerevisiae have seven predicted transmembrane domains and predominantly localize to the plasma membrane. Their physiological functions and regulation of gene expression have not yet been elucidated in detail. We herein demonstrated that MRH1 was constitutively expressed, whereas the expression of YRO2 was induced by acetic acid stress and entering the stationary phase. Fluorescence microscopic analysis revealed that Mrh1 and Yro2 were distributed as small foci in the plasma membrane under acetic acid stress conditions. The null mutants of these genes ( mrh1 ∆, yro2 ∆, and mrh1 ∆ yro2 ∆) showed delayed growth and a decrease in the productivity of ethanol in the presence of acetic acid, indicating that Yro2 and Mrh1 are involved in tolerance to acetic acid stress.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-12-15
    Description: The use of the food-grade bacterium Lactococcus lactis as a vehicle for the oral delivery of DNA vaccine plasmids constitutes a promising strategy for vaccination. The delivery of DNA plasmids into eukaryotic cells is of critical importance for subsequent DNA expression and effectiveness of the vaccine. In this context, the use of the recombinant invasive L. lactis FnBPA+ (fibronectin-binding protein A) strain for the oral delivery of the eukaryotic expression vector vaccination using lactic acid bacteria (pValac), coding for the 6-kDa early secreted antigenic target (ESAT-6) gene of Mycobacterium tuberculosis , could represent a new DNA vaccine strategy against tuberculosis. To this end, the ESAT-6 sequence was cloned into the pValac vector; the L. lactis fibronectin-binding protein A (FnBPA)+ (pValac: ESAT -6) strain was obtained, and its immunological profile was checked in BALB/c mice. This strain was able to significantly increase interferon gamma (IFN-γ) production in spleen cells, showing a systemic T helper 1 (Th1) cell response. The mice also showed a significant increase in specific secretory immunoglobulin A (sIgA) production in colon tissue and fecal extracts. Thus, this is the first time that L. lactis has been used to deliver a plasmid DNA harboring a gene that encodes an antigen against tuberculosis through mucous membranes.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-12-18
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-12-19
    Description: Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn -1,2-diacylglycerol to produce triacylglycerol (TAG). This enzyme, which is critical to numerous facets of oilseed development, has been highlighted as a genetic engineering target to increase storage lipid production in microorganisms designed for biofuel applications. Here, four transcriptionally active DGAT1 genes were identified and characterized from the oil crop Brassica napus . Overexpression of each BnaDGAT1 in Saccharomyces cerevisiae increased TAG biosynthesis. Further studies showed that adding an N-terminal tag could mask the deleterious influence of the DGATs’ native N-terminal sequences, resulting in increased in vivo accumulation of the polypeptides and an increase of up to about 150-fold in in vitro enzyme activity. The levels of TAG and total lipid fatty acids in S. cerevisiae producing the N-terminally tagged BnaDGAT1.b at 72 h were 53 and 28 % higher than those in cultures producing untagged BnaA.DGAT1.b, respectively. These modified DGATs catalyzed the synthesis of up to 453 mg fatty acid/L by this time point. The results will be of benefit in the biochemical analysis of recombinant DGAT1 produced through heterologous expression in yeast and offer a new approach to increase storage lipid content in yeast for industrial applications.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-12-19
    Description: Naphtho-γ-pyrones (NGPs) are secondary metabolites mainly produced by filamentous fungi ( Fusarium sp., Aspergillus sp.) that should be considered by industrials. Indeed, these natural biomolecules show various biological activities: anti-oxidant, anti-microbial, anti-cancer, anti-HIV, anti-hyperuricuric, anti-tubercular, or mammalian triacylglycerol synthesis inhibition which could be useful for pharmaceutical, cosmetic, and/or food industries. In this review, we draw an overview on the interest in studying fungal NGPs by presenting their biological activities and their potential values for industrials, their biochemical properties, and what is currently known on their biosynthetic pathway. Finally, we will present what remains to be discovered about NGPs.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-12-19
    Description: In Bacillus subtilis , natural genetic competence is subject to complex genetic regulation and quorum sensing dependent. Upon extracellular accumulation of the peptide-pheromone ComX, the membrane-bound sensor histidine kinase ComP initiates diverse signaling pathways by activating—among others—DegQ and ComS. While DegQ favors the expression of extracellular enzymes rather than competence development, ComS is crucial for competence development as it prevents proteolytic degradation of ComK, the key transcriptional activator of all genes required for the uptake and integration of DNA. In Bacillus licheniformis , ComX/ComP sensed cell density negatively influences competence development, suggesting differences from the quorum-sensing-dependent control mechanism in Bacillus subtilis . Here, we show that each of six investigated strains possesses both of two different, recently identified putative comS genes. When expressed from an inducible promoter, none of the comS candidate genes displayed an impact on competence development neither in B. subtilis nor in B. licheniformis . Moreover, disruption of the genes did not reduce transformation efficiency. While the putative comS homologs do not contribute to competence development, we provide evidence that the degQ gene as for B. subtilis negatively influences genetic competency in B. licheniformis .
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-12-03
    Description: To better understand the quantitative relationships between messenger RNA (mRNA) and protein biomarkers relevant to bioremediation, we quantified and compared respiration-associated gene products in an anaerobic syntrophic community. Respiration biomarkers for Dehalococcoides , an organohalide reducer, and Methanospirillum , a hydrogenotrophic methanogen, were quantified via qRT-PCR for mRNA and multiple reaction monitoring (MRM) of proteotypic peptides for protein. mRNA transcripts of the Dehalococcoides reductive dehalogenases PceA, TceA, and DMC1545, and hydrogenase HupL, as well as the Methanospirillum oxidoreductases MvrD and FrcA were shown to be similarly regulated with respect to their temporal responses to substrate addition. However, MvrD was two orders of magnitude lower in mRNA abundance. Per cell, Dehalococcoides protein biomarkers quantified were more abundant than Methanospirillum proteins. Comparing mRNA with protein abundance, poor correlations were observed between mRNA transcript levels and the net protein produced. For example, Dehalococcoides HupL and TceA transcripts were similarly abundant though TceA was far more abundant at the protein level (167 ± 121 vs. 1095 ± 337 proteins per cell, respectively). In Methanospirillum , MvrD maintained comparable per-cell protein abundance to FrcA (42 ± 14 vs. 60 ± 1 proteins per cell, respectively) despite the significantly lower transcript levels. Though no variability in protein decay rates was observed, the mRNA translation rate quantified for TceA was greater than the other Dehalococcoides targets monitored. These data suggest that there is considerable variation in the relationship between mRNA abundance and protein production both across transcripts within an organism and across organisms. This highlights the importance of empirically based studies for interpreting biomarker levels in environmentally relevant organisms.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-12-03
    Description: Pyroligneous acid (PA) is a complex highly oxygenated aqueous liquid fraction obtained by the condensation of pyrolysis vapors, which result from the thermochemical breakdown or pyrolysis of plant biomass components such as cellulose, hemicellulose, and lignin. PA produced by the slow pyrolysis of plant biomass is a yellowish brown or dark brown liquid with acidic pH and usually comprises a complex mixture of guaiacols, catechols, syringols, phenols, vanillins, furans, pyrans, carboxaldehydes, hydroxyketones, sugars, alkyl aryl ethers, nitrogenated derivatives, alcohols, acetic acid, and other carboxylic acids. The phenolic components, namely guaiacol, alkyl guaiacols, syringol, and alkyl syringols, contribute to the smoky odor of PA. PA finds application in diverse areas, as antioxidant, antimicrobial, antiinflammatory, plant growth stimulator, coagulant for natural rubber, and termiticidal and pesticidal agent; is a source for valuable chemicals; and imparts a smoky flavor for food.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-12-03
    Description: Two-stage process based on photofermentation of dark fermentation effluents is widely recognized as the most effective method for biological production of hydrogen from organic substrates. Recently, it was described an alternative mechanism, named capnophilic lactic fermentation, for sugar fermentation by the hyperthermophilic bacterium Thermotoga neapolitana in CO 2 -rich atmosphere. Here, we report the first application of this novel process to two-stage biological production of hydrogen. The microbial system based on T. neapolitana DSM 4359 T and Rhodopseudomonas palustris 42OL gave 9.4 mol of hydrogen per mole of glucose consumed during the anaerobic process, which is the best production yield so far reported for conventional two-stage batch cultivations. The improvement of hydrogen yield correlates with the increase in lactic production during capnophilic lactic fermentation and takes also advantage of the introduction of original conditions for culturing both microorganisms in minimal media based on diluted sea water. The use of CO 2 during the first step of the combined process establishes a novel strategy for biohydrogen technology. Moreover, this study opens the way to cost reduction and use of salt-rich waste as feedstock.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-12-04
    Description: Mycoinsecticides application within Integral Pest Management requires high quantities of conidia, with the proper quality and resistance against environmental conditions. Metarhizium anisopliae var. lepidiotum conidia were produced in normal atmospheric conditions (21 % O 2 ) and different concentrations of oxygen pulses (16, 26, 30, and 40 %); conidia obtained under hypoxic conditions showed significantly lower viability, hydrophobicity, and virulence against Tenebrio molitor larvae or mealworm, compared with those obtained under normal atmospheric conditions. Higher concentrations of oxygen (26 and 30 %) improved conidial production. However, when a 30 % oxygen concentration was applied, maximal conidial yields were obtained at earlier times (132 h) relative to 26 % oxygen pulses (156 h); additionally, with 30 % oxygen pulses, conidia thermotolerance was improved, maintaining viability, hydrophobicity, and virulence. Although conidial production was not affected when 40 % oxygen pulses were applied, viability and virulence were diminished in those conidia. In order to find a critical time for mycelia competence to respond to these oxidant conditions, oxygen pulses were first applied either at 36, 48, 60, and 72 h. A critical time of 60 h was determined to be the best time for the M. anisopliae var. lepidiotum mycelia to respond to oxygen pulses in order to increase conidial production and also to maintain the quality features. Therefore, oxygen-enriched (30 %) pulses starting at 60 h are recommended for a high production without the impairment of quality of M. anisopliae var. lepidiotum conidia.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-12-04
    Description: Butenoic acid is a C 4 short-chain unsaturated fatty acid mainly used in the preparation of resins, pharmaceuticals, and fine chemicals. However, butenoic acid derived from petroleum is costly and unfriendly to the environment. Here, we report a novel biosynthetic strategy to produce butenoic acid by utilizing the intermediate of fatty acid biosynthesis pathway in engineered Escherichia coli . A thioesterase gene ( B. thetaiotaomicron thioesterase ( bTE )) from Bacteroides thetaiotaomicron was heterologously expressed in E. coli to specifically convert butenoyl-acyl carrier protein (ACP), a fatty acid biosynthesis intermediate, to butenoic acid. The titer of butenoic acid ranged from 0.07 to 11.4 mg/L in four different E. coli strains with varied expressing vectors. Deletion of endogenous fadD gene (encoding acyl-CoA synthetase) to block fatty acid oxidation improved the butenoic acid production in all strains to some extent. The highest butenoic acid accumulation of 18.7 mg/L was obtained in strain XP-2 (BL21-∆ fadD /pET28a- bTE ). Moreover, partially inhibiting the enoyl-ACP reductase (FabI) of strain XP-2 by triclosan increased butenoic acid production by threefold, and the butenoic acid titer was further increased to 161.4 mg/L by supplying glucose and tryptone in the M9 medium. Fed-batch fermentation of this strain further enhanced butenoic acid production to 4.0 g/L within 48 h. The butenoic acid tolerance assay revealed that this strain could tolerate 15–20 g/L of butenoic acid.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-12-04
    Description: Bacillus amyloliquefaciens strains FZBREP and FZBSPA were derived from the wild-type FZB42 by replacement of the native bacilysin operon promoter with constitutive promoters P repB and P spac from plasmids pMK3 and pLOSS, respectively. These strains contained two antibiotic resistance genes, and markerless strains were constructed by deleting the chloramphenicol resistance cassette and promoter region bordered by two lox sites ( lox 71 and lox 66) using Cre recombinase expressed from the temperature-sensitive vector pLOSS-cre. The vector-encoded spectinomycin resistance gene was removed by high temperature (50 °C) treatment. RT-PCR and qRT-PCR results indicated that P repB and especially P spac significantly increased expression of the bac operon, and FZBREP and FZBSPA strains produced up to 170.4 and 315.6 % more bacilysin than wild type, respectively. Bacilysin overproduction was accompanied by enhancement of the antagonistic activities against Staphylococcus aureus (an indicator of bacilysin) and Clavibacter michiganense subsp. sepedonicum (the causative agent of potato ring rot). Both the size and degree of ring rot-associated necrotic tubers were decreased compared with the wild-type strain, which confirmed the protective effects and biocontrol potential of these genetically engineered strains.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-12-04
    Description: Highly specific and fast multiplex detection methods are essential to conduct reasonable DNA-based diagnostics and are especially important to characterise infectious diseases. More than 1000 genetic targets such as antibiotic resistance genes, virulence factors and phylogenetic markers have to be identified as fast as possible to facilitate the correct treatment of a patient. In the present work, we developed a novel ligation-based DNA probe concept that was combined with the microarray technology and used it for the detection of bacterial pathogens. The novel linear chain (LNC) probes identified all tested species correctly within 1 h based on their 16S rRNA gene in a 25-multiplex reaction. Genomic DNA was used directly as template in the ligation reaction identifying as little as 10 7 cells without any pre-amplification. The high specificity was further demonstrated characterising a single nucleotide polymorphism leading to no false positive fluorescence signals of the untargeted single nucleotide polymorphism (SNP) variants. In comparison to conventional microarray probes, the sensitivity of the novel LNC3 probes was higher by a factor of 10 or more. In summary, we present a fast, simple, highly specific and sensitive multiplex detection method adaptable for a wide range of applications.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-12-04
    Description: Bacterial cellulose (BC) is used in different fields as a biological material due to its unique properties. Despite there being many BC applications, there still remain many problems associated with bioprocess technology, such as increasing productivity and decreasing production cost. New technologies that use waste from the food industry as raw materials for culture media promote economic advantages because they reduce environmental pollution and stimulate new research for science sustainability. For this reason, BC production requires optimized conditions to increase its application. The main objective of this study was to evaluate BC production by Gluconacetobacter xylinus using industry waste, namely, rotten fruits and milk whey, as culture media. Furthermore, the structure of BC produced at different conditions was also determined. The culture media employed in this study were composed of rotten fruit collected from the disposal of free markets, milk whey from a local industrial disposal, and their combination, and Hestrin and Schramm media was used as standard culture media. Although all culture media studied produced BC, the highest BC yield—60 mg/mL—was achieved with the rotten fruit culture. Thus, the results showed that rotten fruit can be used for BC production. This culture media can be considered as a profitable alternative to generate high-value products. In addition, it combines environmental concern with sustainable processes that can promote also the reduction of production cost.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-12-04
    Description: A biogas production plant operating with main and secondary digesters (MD, SD) was analysed for the diversity of bacteria from Clostridium cluster I and its pathogenic members. The plant was run in two parallel lines, both receiving silages, and one, in addition, cattle manure (CM). Quantitative PCR of 16S rRNA genes from directly extracted DNA indicated that cluster I represented 0.2 to 5.6 % of the total bacterial communities. Its prevalence was particularly low in CM and also in SD compared to MD, indicating its decline during fermentation. In contrast, another highly abundant clostridial group, i.e. the “faecal” cluster XIVa, remained quantitatively unaffected during fermentation. A total of 85.1 % of 581,934 rRNA gene sequences gathered by group-specific PCR from the silages, CM and digesters could be assigned to cluster I. All remaining sequences fell into other clostridial groups. The three most dominant operational taxonomic units (OTUs) introduced with CM were from cluster I, and they declined during fermentation. Fermentation with CM significantly increased OTUs of clostridia outside of cluster I but not within. The only OTUs related to pathogens were detected for Clostridium botulinum with 0.18 % of all cluster I sequences in maize silage and less than 0.01 % in the other substrates and digester materials. These OTUs could be assigned to all four established C. botulinum groups, thus, potentially covering all seven neurotoxins. Mouse lethality tests of samples with suspected presence of C. botulinum , however, indicated no toxigenic potential and, thus, no risk associated with the rare occurrence of these OTUs.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-12-05
    Description: The phenomenon of the cell density effect is not readily explained by an obvious nutrient limitation, and a recent study has suggested that for recombinant Autographa californica multiple nucleopolyhedrovirus (rAcMNPV)-infected Sf9 cells, a drop in messenger RNA (mRNA) levels may be sufficient to explain the cell density effect for this system. The current study aims to investigate the response in cell-specific yields (viral DNA (vDNA), LacZ mRNA and β-galactosidase (β-Gal) protein) with increasing infection cell density (ICD) for rAcMNPV-infected Hi5 cells, where the rAcMNPV expresses the β-Gal gene under control of the polyhedral promoter. Hi5 cells in suspension culture of Express Five® medium were synchronously infected with a rAcMNPV at multiple ICDs between 0.5 and 6 × 10 6 cells/mL and a multiplicity of infection of 10 plaque-forming units (PFU)/cell either in the original or fresh medium conditions. There were negative correlations between the three key virus infection indicators (vDNA, mRNA and β-Gal) and the peak cell density (PCD). However, unlike infected Sf9 cells, the yield decline started at the lowest PCD investigated (0.6 × 10 6 cells/mL). Generally, the yield decline with increasing PCD was most pronounced for β-Gal followed by mRNA and was more moderate for vDNA. The decline was significantly reduced but not totally arrested when fresh medium replacement was used. The results suggest that the reduction in recombinant protein-specific yields at high PCDs is associated with limitations during the up-stream processes of replication and transcription rather than entirely caused by limitations during translation. In addition, low production rates at late infection stages of moderate to high ICDs are a probable cause of the cell density effect.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-01-12
    Description: Canine parvovirus disease is an acute infectious disease caused by canine parvovirus (CPV). Current commercial vaccines are mainly attenuated and inactivated; as such, problems concerning safety may occur. To resolve this problem, researchers developed virus-like particles (VLPs) as biological nanoparticles resembling natural virions and showing high bio-safety. This property allows the use of VLPs for vaccine development and mechanism studies of viral infections. Tissue-specific drug delivery also employs VLPs as biological nanomaterials. Therefore, VLPs derived from CPV have a great potential in medicine and diagnostics. In this study, small ubiquitin-like modifier (SUMO) fusion motif was utilized to express a whole, naturalVP2 protein of CPV in Escherichia coli . After the cleavage of the fusion motif, the CPV VP2 protein has self-assembled into VLPs. The VLPs had a size and shape that resembled the authentic virus capsid. However, the self-assembly efficiency of VLPs can be affected by different pH levels and ionic strengths. The mice vaccinated subcutaneously with CPV VLPs and CPV-specific immune responses were compared with those immunized with the natural virus. This result showed that VLPs can effectively induce anti-CPV specific antibody and lymphocyte proliferation as a whole virus. This result further suggested that the antigen epitope of CPV was correctly present on VLPs, thereby showing the potential application of a VLP-based CPV vaccine.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-01-14
    Description: REOLYSIN® (pelareorep) is a proprietary isolate of the reovirus T3D (Type 3 Dearing) strain which is currently being tested in clinical trials as an anticancer therapeutic agent. Reovirus genomes are composed of ten segments of double-stranded ribonucleic acid (RNA) characterized by genome size: large (L1, L2, and L3), medium (M1, M2, and M3), and small (S1, S2, S3, and S4). The objective of this work was to evaluate the homogeneity and genetic stability of REOLYSIN®. Sanger sequencing (SS) performed on test articles derived from the Master Virus Bank (MVB) and Working Virus Bank (WVB) identified many modifications when compared to GenBank reference sequences. Massively parallel sequencing (MPS) using Roche-454 sequencing was performed on REOLYSIN® (100 L scale) and resulted in 69,821,115 bases and an average of 335 bases per read. Twenty-nine high confidence differences relative to the GenBank reference sequence were identified in REOLYSIN® by MPS. Of those, 27 were previously identified by SS in the virus bank-derived test articles. Of the remaining two nucleotide differences, one was predicted to be silent at the amino acid level (L3 genome-T3163C, codon 1054, 86 % of the population was “T” and 13 % of the population were reported as “C”). The other modification was in the noncoding region (M1 genome-A2284A to A2284G), and A2284G was present in 97 % of the population. The results obtained from MPS were comparable to those from SS; both demonstrate a high level of homogeneity at the amino acid level and genetic stability of REOLYSIN®. Finally, phylogenetic analysis of the REOLYSIN® L1 genome segment showed close evolutionary relationship with its human homologs, serotypes Lang and Dearing.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-01-14
    Description: The ethylmalonyl–coenzyme A pathway (EMCP) is a recently discovered pathway present in diverse α-proteobacteria such as the well studied methylotroph Methylobacterium extorquens AM1. Its glyoxylate regeneration function is obligatory during growth on C1 carbon sources like methanol. The EMCP contains special CoA esters, of which dicarboxylic acid derivatives are of high interest as building blocks for chemical industry. The possible production of dicarboxylic acids out of the alternative, non-food competing C-source methanol could lead to sustainable and economic processes. In this work we present a testing of functional thioesterases being active towards the EMCP CoA esters including in vitro enzymatic assays and in vivo acid production. Five thioesterases including TesB from Escherichia coli and M. extorquens , YciA from E. coli , Bch from Bacillus subtilis and Acot4 from Mus musculus showed activity towards EMCP CoA esters in vitro at which YciA was most active. Expressing yciA in M. extorquens AM1 led to release of 70 mg/l mesaconic and 60 mg/l methylsuccinic acid into culture supernatant during exponential growth phase. Our data demonstrates the biotechnological applicability of the thioesterase YciA and the possibility of EMCP dicarboxylic acid production from methanol using M. extorquens AM1.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-01-22
    Description: Rapid detection of drug-resistant Mycobacterium tuberculosis is critical to the effective early treatment and prevention of the transmission of tuberculosis. However, conventional drug susceptibility tests for M. tuberculosis require up to several weeks. In the present study, the One Label Extension genotyping method was adapted for rapid detection of drug resistance-associated sequence variations in six genes of M. tuberculosis , viz. rpoB , rpsL , rrs , embB , katG , or inhA . The method utilizes polymerase chain reaction amplified fragments of the drug resistant genes as reaction templates, and proceeds with template-directed primer extension incorporating a fluorescence-labeled nucleotide, which is then measured by fluorescence polarization. A total of 121 M. tuberculosis isolates from clinical sputum specimens were examined by this genotyping method and verified by direct sequencing of polymerase chain reaction amplicons harboring previously reported mutational sites associated with M. tuberculosis drug resistance. Based on phenotyping results obtained from microbiology-based drug susceptibility tests, the sensitivity, specificity, and test efficiency estimated for One Label Extension assays were respectively 83.9 %, 95.5 %, and 92.4 % with ropB in rifampin resistance, 67.3 %, 97.1 %, and 84.3 % with rpsL and rrs in streptomycin resistance, 60.0 %, 96.0 %, and 91.4 % with embB in ethambutol resistance, 68.4 %, 94.9 %, and 86.3 % with inhA and katG in isoniazid resistance, and 74.1 %, 98.9 %, and 93.2 % in multiple drug resistance defined as resistance to at least both isoniazid and rifampin. In conclusion, examination of clinical sputum specimens by One Label Extension based genotyping provides a valid method for the rapid molecular detection of drug-resistant M. tuberculosis .
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-01-22
    Description: In the course of more than 60-year history, penicillin G acylase (PGA) gained a unique position among enzymes used by pharmaceutical industry for production of β-lactam antibiotics. Kinetically controlled enzymatic syntheses of cephalosporins of novel generations in which PGA catalyzes coupling of activated acyl donor with nucleophile belong among the latest large-scale applications. Contrary to rather specific roles of other enzymes involved in β-lactam biocatalyses, the PGA seems to have the greatest potential. On the laboratory scale, other applications with industrial potential were described, e.g., directed evolution of the enzyme to meet specific demands of industrial processes or its modification into the enzyme catalyzing reactions with novel substrates. The fact that β-lactams represent the most important group of antibiotics comprising 65 % of the world antibiotic market explains such a tremendous and continuous interest in this enzyme. Indeed, the annual consumption of PGA has recently been estimated to range from 10 to 30 million tons. The application potential of the enzyme goes beyond the β-lactam biocatalysis due to its enantioselectivity and promiscuity: the PGA can be used for the production of achiral and chiral compounds convenient for the preparation of synthons and active pharmaceutical ingrediences, respectively. These biocatalyses, however, still wait for large-scale application.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-01-22
    Description: In this study, a recently sequenced 9.8-kb plasmid, pLAtc1, from Acidithiobacillus caldus strain SM-1 was characterized and developed into an expression vector. The pLAtc1 backbone carried an oriV , three rep genes, five mob genes, a Nic site, and an addiction system. Multilocus sequence analysis indicated that pLAtc1 was phylogenetically more related to the IncQ-like broad host range plasmids than to other IncQ plasmids. pLAtc1 was able to replicate and reside in Gram-negative Escherichia coli , Comamonas testosteroni , but not in Gram-positive Corynebacterium glutamicum . pLAtc1 was mobilized via conjugation into E. coli BL21 and A. caldus SM-1 from E. coli S17-1. Quantitative PCR revealed seven and four copies of plasmid in A. caldus and E. coli cells, respectively. The expression vector pLAtcE was constructed from pLAtc1 by introducing a regulatable promoter (P tetH ), a transcriptional terminator, a multiple cloning site, a kanamycin resistance gene, and a streptomycin resistance gene. The functionality of pLAtcE was demonstrated by expressing a gene encoding enhanced green fluorescence protein in E. coli and in A. caldus . pLAtcE was used to express α-ketoglutarate dehydrogenase ( sucAB ) and succinate dehydrogenase ( sdhA ) genes in A. caldus . The newly engineered strain that harbored sucAB and sdhA on a plasmid pLAtcE- suc A- sucB - sdhA grew better than the parent strain SM-1/pLAtcE in tetrathionate and glucose-supplemented medium and produced more acidity and resulted in a more oxidative environment. This study created a useful molecular tool for genetic manipulation of the thermoacidophilic and autotrophic A. caldus .
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-01-22
    Description: To improve the production of phycocyanin holo-α-subunit (CpcA) from Spirulina maxima , five genes and their spacer region sequences involved in its biosynthesis were subject to the directed evolution by error-prone PCR using the plasmid pETDuet-6 as the template. Mutants were screened by determining the CpcA yield in 96-well plates directly. A mutant strain CPCA 713 with the highest CpcA yield of 17.36 mg/l in 96-well plates was obtained, and this yield was 29.7 % higher than that from the control strain ZJGSU09 containing pETDuet-6 (13.38 mg/l). Sequence alignments indicated that 10 nucleotides and 5 amino acids were mutated. Glycerol and beef extract were found to be the best carbon and nitrogen sources for accumulating CpcA in the screened CPCA 713 strain, respectively. The concentrations of the key factors that affected the CpcA yield were optimized by response surface methodology with a Box–Behnken design and were as follows: glycerol, 16.0 g/l; yeast extract, 18.2 g/l; and beef extract, 4.8 g/l. Under the optimal conditions, the CpcA yield was up to 71.21 mg/l in the shake flask. Time-course of the CpcA production before and after optimization were performed and compared. After being purified by a Hi-Trap metal chelating affinity column loaded with 100 mM nickel sulfate, CpcA presented a single protein band with an estimated molecular weight of 29 kDa in the sodium dodecyl sulfate polyacrylamide gel electrophoresis gel. The purified CpcA had the maximal absorptive and fluorescent emission wavelengths at 623 and 650.8 nm, respectively, and was stable at temperatures of 40 °C below and pHs of 5.5–8.0, and in the dark or in the dim light. It had also a strong scavenging ability to three free radicals ·OH, ·O 2 – , and di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH). The IC 50 values of ·OH, ·O 2 − , and DPPH free radicals by purified CpcA were 0.08, 0.46, and 0.48 mg/ml, respectively. This study lays a good foundation for the industrial production of CpcA by engineered Escherichia coli in future.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-01-24
    Description: The ability to modulate gene expression is an important genetic tool in systems biology and biotechnology. Here, we demonstrate that a previously published easy and fast PCR-based method for modulating gene expression in lactic acid bacteria is also applicable to Corynebacterium glutamicum . We constructed constitutive promoter libraries based on various combinations of a previously reported C. glutamicum -10 consensus sequence (gngnTA(c/t)aaTgg) and the Escherichia coli -35 consensus, either with or without an AT-rich region upstream. A promoter library based on consensus sequences frequently found in low-GC Gram-positive microorganisms was also included. The strongest promoters were found in the library with a -35 region and a C. glutamicum -10 consensus, and this library also represents the largest activity span. Using the alternative -10 consensus TATAAT, which can be found in many other prokaryotes, resulted in a weaker but still useful promoter library. The upstream AT-rich region did not appear to affect promoter strength in C. glutamicum . In addition to the constitutive promoters, a synthetic inducible promoter library, based on the E. coli lac -promoter, was constructed by randomizing the 17-bp spacer between -35 and -10 consensus sequences and the sequences surrounding these. The inducible promoter library was shown to result in β-galactosidase activities ranging from 284 to 1,665 Miller units when induced by IPTG, and the induction fold ranged from 7–59. We find that the synthetic promoter library (SPL) technology is convenient for modulating gene expression in C. glutamicum and should have many future applications, within basic research as well as for optimizing industrial production organisms.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-01-12
    Description: The gene (1,542 bp) encoding thermostable Ca 2+ -independent and raw starch hydrolyzing α-amylase of the extremely thermophilic bacterium Geobacillus thermoleovorans encodes for a protein of 50 kDa (Gt-amyII) with 488 amino acids. The enzyme is optimally active at pH 7.0 and 60 °C with a t 1/2 of 19.4 h at 60 and 4 h at 70 °C. Gt-amyII hydrolyses corn and tapioca raw starches efficiently and therefore finds application in starch saccharification at industrial sub-gelatinisation temperatures. The starch hydrolysis is facilitated following adsorption of the enzyme to starch at the C-terminal domain, as confirmed by the truncation analysis. The adsorption rate constant of Gt-amyII to raw corn starch is 37.6-fold greater than that for the C-terminus truncated enzyme (Gt-amyII-T). Langmuir–Hinshelwood kinetic analysis in terms of equilibrium parameter ( K R ) suggested that the adsorption of Gt-amyII to corn starch is more favourable than that of Gt-amyII-T. Thermodynamics of temperature inactivation indicated a decrease in thermostabilisation of Gt-amyII upon truncation of its C-terminus. The addition of raw corn starch increased t 1 /2 of Gt-amyII, but it has no such effect on Gt-amyII-T. It can, therefore, be stated that Gt-amyII binds to raw corn starch via C-terminal region that contributes to its thermostability. Phylogenetic analysis confirmed that starch binding region of Gt-amyII is, in fact, the non-catalytic domain C, and not the typical SBD of CBM families. The role of domain C in raw starch binding throws light on the evolutionary path of the known SBDs.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-01-12
    Description: A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-01-12
    Description: Terpenoids are an extensive and diverse group of plant secondary metabolites. To date, they have been applied in many fields including industry, medicine and health. The wide variety of terpenoid compounds cannot arise solely from simple cyclisations of a precursor molecule or from a single-step reaction; their structural diversity depends on the modification of many specific chemical groups, rearrangements of their skeletal structures and on the post-modification reactions. Most of the post-modification enzymes that catalyse these reactions are cytochrome P450 monooxygenases. Therefore, the discovery and identification of plant P450 genes plays a vital role in the exploration of terpenoid biosynthesis pathways. This review summarises recent research progress relating to the function of plant cytochrome P450 enzymes, describes P450 genes that have been cloned from full-length cDNA and identifies the function of P450 enzymes in the terpenoid biosynthesis pathways of several medicinal plants.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-01-12
    Description: Lactobacillus fermentum isolated from sourdough was able to produce riboflavin. Spontaneous roseoflavin-resistant mutants were obtained by exposing the wild strain (named L. fermentum PBCC11) to increasing concentrations of roseoflavin. Fifteen spontaneous roseoflavin-resistant mutants were isolated, and the level of vitamin B 2 was quantified by HPLC. Seven mutant strains produced concentrations of vitamin B 2 higher than 1 mg L −1 . Interestingly, three mutants were unable to overproduce riboflavin even though they were able to withstand the selective pressure of roseoflavin. Alignment of the rib leader region of PBCC11 and its derivatives showed only point mutations at two neighboring locations of the RFN element. In particular, the highest riboflavin-producing isolates possess an A to G mutation at position 240, while the lowest riboflavin producer carries a T to A substitution at position 236. No mutations were detected in the derivative strains that did not have an overproducing phenotype. The best riboflavin overproducing strain, named L. fermentum PBCC11.5, and its parental strain were used to fortify bread. The effect of two different periods of fermentation on the riboflavin level was compared. Bread produced using the coinoculum yeast and L. fermentum PBCC11.5 led to an approximately twofold increase of final vitamin B 2 content.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-01-12
    Description: Streptomyces venezuelae has an inherent advantage as a heterologous host for polyketide production due to its fast rate of growth that cannot be endowed easily through metabolic engineering. However, the utility of S. venezuelae as a host has been limited thus far due to its inadequate intracellular reserves of the (2 S )-ethylmalonyl-CoA building block needed to support the biosynthesis of polyketides preventing the efficient production of the desired metabolite, such as tylactone. Here, via precursor supply engineering, we demonstrated that S. venezuelae can be developed into a more efficient general heterologous host for the quick production of polyketides. We first identified and functionally characterized the ethylmalonyl-CoA pathway which plays a major role in supplying the (2 S )-ethylmalonyl-CoA extender unit in S. venezuelae . Next, S. venezuelae was successfully engineered to increase the intracellular ethylmalonyl-CoA concentration by the deletion of the meaA gene encoding coenzyme B 12 -dependent ethylmalonyl-CoA mutase in combination with ethylmalonate supplementation and was engineered to upregulate the expression of the heterologous tylosin PKS by overexpression of the pathway specific regulatory gene pikD . Thus, a dramatic increase (∼10-fold) in tylactone production was achieved. In addition, the detailed insights into the role of the ethylmalonyl-CoA pathway, which is present in most streptomycetes, provides a general strategy to increase the ethylmalonyl-CoA supply for polyketide biosynthesis in the most prolific family of polyketide-producing bacteria.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-01-12
    Description: The development of methods for the rapid identification of pathogenic bacteria is a major step towards accelerated clinical diagnosis of infectious diseases and efficient food and water safety control. Methods for identification of bacterial colonies on gelified nutrient broth have the potential to bring an attractive solution, combining simple optical instrumentation, no need for sample preparation or labelling, in a non-destructive process. Here, we studied the possibility of discriminating different bacterial species at a very early stage of growth (6 h of incubation at 37 °C), on thin layers of agar media (1 mm of Tryptic Soy Agar), using light forward-scattering and learning algorithms (Bayes Network, Continuous Naive Bayes, Sequential Minimal Optimisation). A first database of more than 1,000 scatterograms acquired on 7 gram-negative strains yielded a recognition rate of nearly 80 %, after only 6 h of incubation. We investigated also the prospect of identifying different strains from a same species through forward scattering. We discriminated, thus, four strains of Escherichia coli with a recognition rate reaching 82 %. Finally, we show the discrimination of two species of coagulase-negative Staphylococci ( S. haemolyticus and S. cohnii ), on a commercial selective pre-poured medium used in clinical diagnosis (ChromID MRSA, bioMérieux), without opening lids during the scatterogram acquisition. This shows the potential of this method—non-invasive, preventing cross-contaminations and requiring minimal dish handling—to provide early clinically-relevant information in the context of fully automated microbiology labs.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-01-12
    Description: Chlorella vulgaris accumulates lipid under nitrogen limitation, but at the expense of biomass productivity. Due to this tradeoff, improved lipid productivity may be compromised, despite higher lipid content. To determine the optimal degree of nitrogen limitation for lipid productivity, batch cultures of C. vulgaris were grown at different nitrate concentrations. The growth rate, lipid content, lipid productivity and biochemical and elemental composition of the cultures were monitored for 20 days. A starting nitrate concentration of 170 mg L −1 provided the optimal tradeoff between biomass and lipid production under the experimental conditions. Volumetric lipid yield (in milligram lipid per liter algal culture) was more than double that under nitrogen-replete conditions. Interpolation of the data indicated that the highest volumetric lipid concentration and lipid productivity would occur at nitrate concentrations of 305 and 241 mg L −1 , respectively. There was a strong correlation between the nitrogen content of the cells and the pigment, protein and lipid content, as well as biomass and lipid productivity. Knowledge of the relationships between cell nitrogen content, growth, and cell composition assists in the prediction of the nitrogen regime required for optimal productivity in batch or continuous culture. In addition to enhancing lipid productivity, nitrogen limitation improves the lipid profile for biodiesel production and reduces the requirement for nitrogen fertilizers, resulting in cost and energy savings and a reduction in the environmental burden of the process.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-01-19
    Description: Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses’ life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-01-24
    Description: During the systematic screening of active compounds from marine-derived fungi, the extract of a strain of Aspergillus versicolor MF359 isolated from a marine sponge of Hymeniacidon perleve was identified for detailed chemical investigation. Three new secondary metabolites, named hemiacetal sterigmatocystin ( 1 ), acyl-hemiacetal sterigmatocystin ( 2 ), and 5-methoxydihydrosterigmatocystin ( 3 ), together with a known compound, aversin ( 4 ), were characterized. 1 represents a first structure of sterigmatocystin hemiacetal from nature. The antibacterial activities of these identified compounds were evaluated against Staphylococcus aureus , methicillin-resistant Staphylococcus aureus , Bacillus subtilis , and Pseudomonas aeruginosa . Compound 3 showed activity against S. aureus and B. subtilis with MIC values of 12.5 and 3.125 μg/mL, respectively.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-01-14
    Description: Xylitol is industrially synthesized by chemical reduction of d -xylose, which is more expensive than glucose. Thus, there is a growing interest in the production of xylitol from a readily available and much cheaper substrate, such as glucose. The commonly used yeast Pichia pastoris strain GS115 was shown to produce d -arabitol from glucose, and the derivative strain GS225 was obtained to produce twice amount of d -arabitol than GS115 by adaptive evolution during repetitive growth in hyperosmotic medium. We cloned the d -xylulose-forming d -arabitol dehydrogenase ( DalD ) gene from Klebsiella pneumoniae and the xylitol dehydrogenase ( XDH ) gene from Gluconobacter oxydans . Recombinant P. pastoris GS225 strains with the DalD gene only or with both DalD and XDH genes could produce xylitol from glucose in a single-fermentation process. Three-liter jar fermentation results showed that recombinant P. pastoris cells with both DalD and XDH converted glucose to xylitol with the highest yield of 0.078 g xylitol/g glucose and productivity of 0.29 g xylitol/L h. This was the first report to convert xylitol from glucose by the pathway of glucose– d -arabitol– d -xylulose–xylitol in a single process. The recombinant yeast could be used as a yeast cell factory and has the potential to produce xylitol from glucose.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-01-14
    Description: Kimchi, a traditional Korean food made by the fermentation of vegetables, has become popular globally because of its organoleptic, beneficial, and nutritional properties. Spontaneous kimchi fermentation in unsterilized raw materials leads to the growth of various lactic acid bacteria (LAB), which results in variations in the taste and sensory qualities of kimchi products and difficulties in the standardized industrial production of kimchi. Raw materials, kimchi varieties, ingredients, and fermentation conditions have significant effects on the microbial communities and fermentative characteristics of kimchi during fermentation. Heterofermentative LAB belonging to the genera Leuconostoc , Lactobacillus , and Weissella are likely to be key players in kimchi fermentation and have been subjected to genomic and functional studies to gain a better understanding of the fermentation process and beneficial effects of kimchi. The use of starter cultures has been considered for the industrial production of high quality, standardized kimchi. Here, we review the composition and biochemistry of kimchi microflora communities, functional and genomic studies of kimchi LAB, and perspectives for industrial kimchi production.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-01-14
    Description: Rhamnogalacturonan I lyases (RGI lyases) (EC 4.2.2.-) catalyze cleavage of α-1,4 bonds between rhamnose and galacturonic acid in the backbone of pectins by β-elimination. In the present study, targeted improvement of the thermostability of a PL family 11 RGI lyase from Bacillus licheniformis (DSM 13/ATCC14580) was examined by using a combinatorial protein engineering approach exploring additive effects of single amino acid substitutions. These were selected by using a consensus approach together with assessing protein stability changes (PoPMuSiC) and B-factor iterative test (B-FIT). The second-generation mutants involved combinations of two to seven individually favorable single mutations. Thermal stability was examined as half-life at 60 °C and by recording of thermal transitions by circular dichroism. Surprisingly, the biggest increment in thermal stability was achieved by producing the wild-type RGI lyase in Bacillus subtilis as opposed to in Pichia pastoris ; this effect is suggested to be a negative result of glycosylation of the P. pastoris expressed enzyme. A ~ twofold improvement in thermal stability at 60 °C, accompanied by less significant increases in T m of the enzyme mutants, were obtained due to additive stabilizing effects of single amino acid mutations (E434L, G55V, and G326E) compared to the wild type. The crystal structure of the B. licheniformis wild-type RGI lyase was also determined; the structural analysis corroborated that especially mutation of charged amino acids to hydrophobic ones in surface-exposed loops produced favorable thermal stability effects.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-01-16
    Description: In an era of economic globalization, the competition among wine businesses is likely to get tougher. Biotechnological innovation permeates the entire world and intensifies the severity of the competition of the wine industry. Moreover, modern consumers preferred individualized, tailored, and healthy and top quality wine products. Consequently, these two facts induce large gaps between wine production and wine consumption. Market-orientated yeast strains are presently being selected or developed for enhancing the core competitiveness of wine enterprises. Reasonable biological acidity is critical to warrant a high-quality wine. Many wild-type acidity adjustment yeast strains have been selected all over the world. Moreover, mutation breeding, metabolic engineering, genetic engineering, and protoplast fusion methods are used to construct new acidity adjustment yeast strains to meet the demands of the market. In this paper, strategies and concepts for strain selection or improvement methods were discussed, and many examples based upon selected studies involving acidity adjustment yeast strains were reviewed. Furthermore, the development of acidity adjustment yeast strains with minimized resource inputs, improved fermentation, and enological capabilities for an environmentally friendly production of healthy, top quality wine is presented.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-01-16
    Description: The goal of this study was to investigate the effect of the environmental conditions such as the temperature change, incubation time and surface type on the resistance of Staphylococcus aureus biofilms to disinfectants. The antibiofilm assays were performed against biofilms grown at 20 °C, 30 °C and 37 °C, on the stainless steel and polycarbonate, during 24 and 48 h. The involvement of the biofilm matrix and the bacterial membrane fluidity in the resistance of sessile cells were investigated. Our results show that the efficiency of disinfectants was dependent on the growth temperature, the surface type and the disinfectant product. The increase of growth temperature from 20 °C to 37 °C, with an incubation time of 24 h, increased the resistance of biofilms to cationic antimicrobials. This change of growth temperature did not affect the major content of the biofilm matrix, but it decreased the membrane fluidity of sessile cells through the increase of the anteiso-C19 relative amount. The increase of the biofilm resistance to disinfectants, with the rise of the incubation time, was dependent on both growth temperature and disinfectant product. The increase of the biofilm age also promoted increases in the matrix production and the membrane fluidity of sessile cells. The resistance of S. aureus biofilm seems to depend on the environment of the biofilm formation and involves both extracellular matrix and membrane fluidity of sessile cells. Our study represents the first report describing the impact of environmental conditions on the matrix production, sessile cells membrane fluidity and resistance of S. aureus biofilms to disinfectants.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-01-16
    Description: Converting lignocellulosics into biofuels remains a promising route for biofuel production. To facilitate strain development for specificity and productivity of cellulosic biofuel production, a user friendly Escherichia coli host was engineered to produce isobutanol, a drop-in biofuel candidate, from cellobiose. A beta-glucosidase was expressed extracellularly by either excretion into the media, or anchoring to the cell membrane. The excretion system allowed for E. coli to grow with cellobiose as a sole carbon source at rates comparable to those with glucose. The system was then combined with isobutanol production genes in three different configurations to determine whether gene arrangement affected isobutanol production. The most productive strain converted cellobiose to isobutanol in titers of 7.64 ± 0.19 g/L with a productivity of 0.16 g/L/h. These results demonstrate that efficient cellobiose degradation and isobutanol production can be achieved by a single organism, and provide insight for optimization of strains for future use in a consolidated bioprocessing system for renewable production of isobutanol.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-01-24
    Description: Chlamydia trachomatis is the leading cause of sexually transmitted infections worldwide. There is currently no commercially available vaccine against C. trachomatis . Major outer membrane protein (MOMP) of C. trachomatis is considered to be an ideal candidate for prophylactic vaccine. We designed a MOMP multi-epitope containing T- and B-cell epitope-rich peptides and developed hepatitis B surface antigen (HBsAg) as antigen delivery vehicle. In order to study the immunogenicity and efficacy of the candidate vaccine in a murine model of chlamydial genital infection, we engineered a recombinant plasmid expressing HBsAg and MOMP multi-epitope genes. Results of reverse transcription polymerase chain reaction and immunofluorescence assay revealed successful expression of the recombinant HBsAg/MOMP multi-epitope gene at both the transcription and translation levels. Intramuscular administration in mice was able to elicit not only antibodies against Chlamydia and HBsAg but also cytotoxic T lymphocyte activity against Chlamydia . In addition, mice inoculated with the rHBsAg were highly resistant to C. trachomatis genital infection. The rHBsAg DNA with MOMP multi-epitope appended at the C terminus of the HBsAg stimulated a stronger immune response and protective response than that appended at the N terminus. Together, our results suggested that use of a recombinant HBsAg encoding the MOMP multi-epitope could be a powerful approach to developing a safe and immunogenic C. trachomatis vaccine.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-01-24
    Description: A novel diesel-degrading bacterial strain, A2 T , was isolated from soil that was heavily contaminated with oil. Based on phenotypic, phylogenetic, and DNA analyses, strain A2 T was identified as a novel species of the genus Gordonia and named Gordonia ajoucoccus A2 T (KCTC 11900BP and CECT8382). G. ajoucoccus A2 T is able to synthesize carotenoids and produces mainly γ-carotene and keto-γ-carotene. G. ajoucoccus A2 T is also capable of assimilating n- alkanes with a broad range of chain lengths (C6, C8–C25). Batch culture of G. ajoucoccus A2 T in a bioreactor containing 1 % ( v / v ) hexadecane or 1 % ( v / v ) commercial diesel yielded 25 mg L −1 and 2.6 mg L −1 of carotenoids, respectively. Gas chromatography/mass spectrometry (GC-MS) analysis of hexadecane and hexane degradation metabolites suggested that G. ajoucoccus A2 T may possess a terminal oxidation pathway that allows it to utilize n- alkanes and hexane as carbon and energy sources. G. ajoucoccus A2 T could therefore serve as a good model system for understanding microbial n- alkane degradation pathways. Additionally, the metabolic capabilities of G. ajoucoccus A2 T suggest potential biotechnological applications, such as the bioproduction of carotenoids from industrial discharge or other sources of n- alkanes.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-03-12
    Description: Both ammonia-oxidizing bacteria (AOB) and archaea (AOA) might be the key microorganisms in ammonia conversion in ecosystems. However, the depth-related change of AOA and AOB in sediment ecosystem is still not clear. The relative contribution of AOA and AOB to nitrification in wetland sediment remains also unclear. Moreover, information about ammonia-oxidizing microorganisms in high-altitude freshwater wetland is still lacking. The present study investigated the relative abundances and community structures of AOA and AOB in sediments of a high-altitude freshwater wetland in Yunnan Province (China). Variations of the relative abundances and community structures of AOA and AOB were found in the wetland sediments, dependent on both sampling site and sediment depth. The relative abundances of AOA and AOB (0.04–3.84 and 0.01–0.52 %) and the AOA/AOB ratio (0.12–4.65) showed different depth-related change patterns. AOB community size was usually larger than AOA community size. AOB diversity was usually higher than AOA diversity. AOA diversity decreased with the increase of sediment depth, while AOB diversity showed no obvious link with the sediment depth. Pearson’s correlation analysis showed that AOA diversity had a positive significant correlation with available phosphorus. Nitrosospira -like sequences, with different compositions, predominated in the wetland sediment AOB communities. This work could provide some new insights toward nitrification in freshwater sediment ecosystems.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-03-14
    Description: Lactic acid bacteria are extensively used in food technology and for the production of various compounds, but they are fastidious in nutrient requirements. In order to elucidate the role of each component precisely, defined multicomponent media are required. This study focuses on determining nutrient auxotrophies and minimizing media components (amino acids, vitamins, metal ions, buffers and additional compounds) for the cultivation of Lactococcus lactis subsp. lactis IL1403, using microtitre plates and test tubes. It was shown that glutamine and asparagine were the most important media components for achieving higher biomass yields while the branched-chain amino acids were necessary to increase specific growth rate. The amino acid and glucose ratio was reduced to achieve minimal residual concentration of amino acids in the medium after the growth of cells, whereas the specific growth rate and biomass yield of cells were not considerably affected. As the percentage of each consumed amino acid compared to initial amount is larger than measurement error, these optimized media are important for achieving more precise data about amino acid utilization and metabolism.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-03-15
    Description: Ssk1-type response regulator proteins are the core elements of histidine-to-aspartate systems that mediate fungal stress tolerance, a determinant to the biocontrol potential of fungal entomopathogens. We characterized the functions of Beauveria bassiana Ssk1 (Bbssk1) by analyzing multi-phenotypic changes in Δ Bbssk1 and differentially expressed genes in the digital gene expression (DGE) libraries of Δ Bbssk1 and wild-type constructed under osmotic stress. The Bbssk1 disruption caused 25 % reductions in conidial yield and virulence to Spodoptera litura larvae and significant defects in tolerances to two osmotic salts (81–84 %), H 2 O 2 oxidation (23 %), two fungicides (21–58 %), three cell wall biosynthesis inhibitors (25–36 %), and three metal ions (~8 %) during colony growth, respectively, but little changes in cell sensitivity to menadione oxidation and in conidial thermotolerance and UV-B resistance. RNA-seq analysis with the DGE libraries revealed differential expressions of 1,003 genes in the Δ Bbssk1 genome. Of those, many associated with conidiation, stress response, xenobiotic transport, cell wall integrity, and protein/carbohydrate metabolism were remarkably down-regulated, including the genes involved in mitogen-activated protein kinase (MAPK) signal pathway that downstream of Bbssk1. Our results indicate that Bbssk1 regulates positively the expressions of the MAPK cascade in the pathway of B. bassiana and many more downstream genes associated with conidiation, multi-stress tolerance, and virulence.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-03-15
    Description: Elimination of acetate overflow in aerobic cultivation of Escherichia coli would improve many bioprocesses as acetate accumulation in the growth environment leads to numerous negative effects, e.g. loss of carbon, inhibition of growth, target product synthesis, etc. Despite many years of studies, the mechanism and regulation of acetate overflow are still not completely understood. Therefore, we studied the growth of E. coli K-12 BW25113 and several of its mutant strains affecting acetate-related pathways using the continuous culture method accelerostat (A-stat) at various specific glucose consumption rates with the aim of diminishing acetate overflow. Absolute quantitative exo-metabolome and proteome analyses coupled to metabolic flux analysis enabled us to demonstrate that onset of acetate overflow can be postponed and acetate excretion strongly reduced in E. coli by coordinated activation of phosphotransacetylase-acetyl-CoA synthetase (PTA-ACS) and tricarboxylic acid (TCA) cycles. Fourfold reduction of acetate excretion (2 vs. 8 % from total carbon) at fastest growth compared to wild type was achieved by deleting the genes responsible for inactivation of acetyl-CoA synthetase protein ( pka ) and TCA cycle regulator arcA . The Δ pka Δ arcA strain did not accumulate any other detrimental by-product besides acetate and showed identical μ max and only ~5 % lower biomass yield compared to wild type. We conclude that a fine-tuned coordination between increasing the recycling capabilities of acetate in the PTA-ACS node through a higher concentration of active acetate scavenging Acs protein and downstream metabolism throughput in the TCA cycle is necessary for diminishing overflow metabolism of acetate in E. coli and achieving higher target product production in bioprocesses.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-03-15
    Description: A β-fructofuranosidase from Microbacterium saccharophilum K-1 (formerly known as Arthrobacter sp. K-1) is useful for producing the sweetener lactosucrose (4 G -β- d -galactosylsucrose). Thermostability of the β-fructofuranosidase was enhanced by random mutagenesis and saturation mutagenesis. Clones with enhanced thermostability included mutations at residues Thr47, Ser200, Phe447, Phe470, and Pro500. In the highest stability mutant, T47S/S200T/F447P/F470Y/P500S, the half-life at 60 °C was 182 min, 16.5-fold longer than the wild-type enzyme. A comparison of the crystal structures of the full-length wild-type enzyme and three mutants showed that various mechanisms appear to be involved in thermostability enhancement. In particular, the replacement of Phe447 with Val or Pro induced a conformational change in an adjacent residue His477, which results in the formation of a new hydrogen bond in the enzyme. Although the thermostabilization mechanisms of the five residue mutations were explicable on the basis of the crystal structures, it appears to be difficult to predict which amino acid residues should be modified to obtain thermostabilized enzymes.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-05-06
    Description: The removal of styrene was studied using two biofilters packed with peat and coconut fibre (BF1-P and BF2-C, respectively) and one biotrickling filter (BTF) packed with plastic rings. Two inoculation procedures were applied: an enriched culture with strain Pseudomonas putida CECT 324 for BFs and activated sludge from a municipal wastewater treatment plant for the BTF. Inlet loads (ILs) between 10 and 45 g m −3  h −1 and empty bed residence times (EBRTs) from 30 to 120 s were applied. At inlet concentrations ranging between 200 and 400 mg Nm −3 , removal efficiencies between 70 % and 95 % were obtained in the three bioreactors. Maximum elimination capacities (ECs) of 81 and 39 g m −3  h −1 were obtained for the BF1-P and BF2-C, respectively (IL of 173 g m −3  h −1 and EBRT of 60 s in BF1-P; IL of 89 g m −3  h −1 and EBRT of 90 s in BF2-C). A maximum EC of 52 g m −3  h −1 was obtained for the BTF (IL of 116 g m −3  h −1 , EBRT of 45 s). Problems regarding high pressure drop appeared in the peat BF, whereas drying episodes occurred in the coconut fibre BF. DGGE revealed that the pure culture used for BF inoculation was not detected by day 105. Although two different inoculation procedures were applied, similar styrene removal at the end of the experiments was observed. The use as inoculum of activated sludge from municipal wastewater treatment plant appears a more feasible option.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-05-07
    Description: Chemoenzymatic cellulose degradation is one of the key steps for the production of biomass-based fuels under mild conditions. An effective cellulose degradation process requires diverse physico-chemical dissolution of the biomass prior to enzymatic degradation. In recent years, “green” solvents, such as ionic liquids and, more recently, deep eutectic liquids, have been proposed as suitable alternatives for biomass dissolution by homogenous catalysis. In this manuscript, a directed evolution campaign of an ionic liquid tolerant β-1,4-endoglucanase (CelA2) was performed in order to increase its performance in the presence of choline chloride/glycerol (ChCl:Gly) or 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), as a first step to identify residues which govern ionic strength resistance and obtaining insights for employing cellulases on the long run in homogenous catalysis of lignocellulose degradation. After mutant library screening, variant M4 (His288Phe, Ser300Arg) was identified, showing a dramatically reduced activity in potassium phosphate buffer and an increased activity in the presence of ChCl:Gly or [BMIM]Cl. Further characterization showed that the CelA2 variant M4 is activated in the presence of these solvents, representing a first report of an engineered enzyme with an ionic strength activity switch. Structural analysis revealed that Arg300 could be a key residue for the ionic strength activation through a salt bridge with the neighboring Asp287. Experimental and computational results suggest that the salt bridge Asp287-Arg300 generates a nearly inactive CelA2 variant and activity is regained when ChCl:Gly or [BMIM]Cl are supplemented (~5-fold increase from 0.64 to 3.37 μM 4-MU/h with the addition ChCl:Gly and ~23-fold increase from 3.84 to 89.21 μM 4-pNP/h with the addition of [BMIM]Cl). Molecular dynamic simulations further suggest that the salt bridge between Asp287 and Arg300 in variant M4 (His288Phe, Ser300Arg) modulates the observed salt activation.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-03-20
    Description: Virus-like particles (VLP), which are similar to natural virus particles but do not contain viral genes, have brought about significant breakthroughs in many research fields because of their unique advantages. The ordered repeating epitopes of VLP can induce immunity responses similar to those prompted by natural viral infection; thus, VLP vaccines are regarded as candidate alternatives to whole-virus vaccines. As picornavirus has serious impacts on human and animal health, the development of efficient and safe vaccines is a key endeavor in preventing virus infections. The characteristics of picornavirus capsid proteins allow the development of VLP vaccines. This paper investigates research scenarios and progress on picornavirus VLP vaccines with the aim of providing a reference for researchers focusing on virology and vaccinology.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-03-20
    Description: The overall behavior of cell cultures is determined by the actions and regulations of all cells and their interaction in a mixed population. However, the dynamics caused by diversity and heterogeneity within cultures is often neglected in the study of cell culture processes. Usually, a bulk behavior is assumed, although heterogeneity prevails in most cases. It is, however, not valid to conclude from the bulk behavior to the single cell behavior. Instead, it is necessary to include the behavior and kinetics of subpopulations and their interactions into models in order to elucidate the dynamic effects occurring in typical cell cultures. Heterogeneity in cell cultures is largely caused by the progress of the cell cycle. Cell cycle-dependent dynamics resulting for example in variable transfection efficiencies or expression bistability have recently attracted attention. In order to elucidate cell cycle-dependent regulations in cell cultures, it is desirable to synchronize a culture with minimal perturbation, which is possible with different yield and quality using physical methods, but not possible for frequently used chemical, or whole-culture methods. Then, the culture is cultivated again under physiological conditions and subpopulation-resolved analysis and modeling approaches are applied. This should allow to account for the variable contributions of subpopulations to the whole behavior and also for obtaining hereto unaccessible dynamic information of cellular regulation. In this short review, we summarize techniques and key issues to be considered for successful synchronization, cultivation, and modeling in order to achieve the goal of better understanding cell culture at a population level.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-03-21
    Description: Cytophaga hutchinsonii is a Gram-negative gliding bacterium which can efficiently degrade crystalline cellulose by an unknown strategy. Genomic analysis suggests the C. hutchinsonii genome lacks homologs to an obvious exoglucanase that previously seemed essential for cellulose degradation. One of the putative endoglucanases, CHU_2103, was successfully expressed in Escherichia coli JM109 and identified as a processive endoglucanase with transglycosylation activity. It could hydrolyze carboxymethyl cellulose (CMC) into cellodextrins and rapidly decrease the viscosity of CMC. When regenerated amorphous cellulose (RAC) was degraded by CHU_2103, the ratio of the soluble to insoluble reducing sugars was 3.72 after 3 h with cellobiose and cellotriose as the main products, indicating that CHU_2103 was a processive endoglucanase. CHU_2103 could degrade cellodextrins of degree of polymerization ≥3. It hydrolyzed p -nitrophenyl β- d -cellodextrins by cutting glucose or cellobiose from the non-reducing end. Meanwhile, some larger-molecular-weight cellodextrins could be detected, indicating it also had transglycosylation activity. Without carbohydrate-binding module (CBM), CHU_2103 could bind to crystalline cellulose and acted processively on it. Site-directed mutation of CHU_2103 demonstrated that the conserved aromatic amino acid W197 in the catalytic domain was essential not only for its processive activity, but also its cellulose binding ability.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-03-21
    Description: The lysin motif (LysM) was first identified by Garvey et al. in 1986 and, in subsequent studies, has been shown to bind noncovalently to peptidoglycan and chitin by interacting with N- acetylglucosamine moieties. The LysM sequence is present singly or repeatedly in a large number of proteins of prokaryotes and eukaryotes. Since the mid-1990s, domains containing one or more of these LysM sequences originating from different LysM-containing proteins have been examined for purely scientific reasons as well as for their possible use in various medical and industrial applications. These studies range from detecting localized binding of LysM-containing proteins onto bacteria to actual bacterial cell surface analysis. On a more applied level, the possibilities of employing the LysM domains for cell immobilization, for the display of peptides, proteins, or enzymes on (bacterial) surfaces as well as their utility in the development of novel vaccines have been scrutinized. To serve these purposes, the chimeric proteins containing one or more of the LysM sequences have been produced and isolated from various prokaryotic and eukaryotic expression hosts. This review gives a succinct overview of the characteristics of the LysM domain and of current developments in its application potential.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-03-21
    Description: Aspergillus flavus is one of the major moulds that colonize peanut in the field and during storage. The impact to human and animal health, and to the economy in agriculture and commerce, is significant since this mold produces the most potent known natural toxins, aflatoxins, which are carcinogenic, mutagenic, immunosuppressive, and teratogenic. A strain of marine Bacillus megaterium isolated from the Yellow Sea of East China was evaluated for its effect in inhibiting aflatoxin formation in A. flavus through down-regulating aflatoxin pathway gene expression as demonstrated by gene chip analysis. Aflatoxin accumulation in potato dextrose broth liquid medium and liquid minimal medium was almost totally (more than 98 %) inhibited by co-cultivation with B. megaterium . Growth was also reduced. Using expression studies, we identified the fungal genes down-regulated by co-cultivation with B. megaterium across the entire fungal genome and specifically within the aflatoxin pathway gene cluster ( aflF , aflT , aflS , aflJ , aflL , aflX ). Modulating the expression of these genes could be used for controlling aflatoxin contamination in crops such as corn, cotton, and peanut. Importantly, the expression of the regulatory gene aflS was significantly down-regulated during co-cultivation. We present a model showing a hypothesis of the regulatory mechanism of aflatoxin production suppression by AflS and AflR through B. megaterium co-cultivation.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-04-30
    Description: In this study, a gfp -based novel markerless allelic exchange integration system was developed. By employing gfp gene and sacB gene as counter-selectable markers, an ortho -nitrophenol degradation operon ( onpABC gene cluster) was successfully inserted into the chromosome of meta -nitrophenol utilizer Cupriavidus necator JMP134. Through two rounds of recombination, the engineered strain (strain JMP134-ONP) was directly selected from the plate by fluorescence screening and has the ability to degrade both ortho -nitrophenol and meta -nitrophenol, simultaneously. This relatively simple and efficient method can be used as an alternative strategy of allelic exchange insertion for the application of metabolic engineering in various bacterial strains, complementary to existing gene knock-in procedures.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-03-05
    Description: Diagnosis of many infectious, autoimmune diseases and cancers depends on the detection of specific antibodies against peptide epitope by enzyme-linked immunosorbent assay (ELISA). However, small peptides are difficult to be coated on the plate surfaces. In this study, we selected GnRH as a model hapten to evaluate whether VEGF 121 would be suitable as an irrelevant hapten-carrier to develop a universal platform for specific antibodies detection. Firstly, GnRH was fused to the C terminus of VEGF 121 and the resultant fusion protein VEGF–GnRH expressed effectively as inclusion bodies in Escherichia coli. Thereafter, VEGF–GnRH was easily purified to near homogeneity with a yield of about 235 mg from 2.1 L induced culture. At last, VEGF–GnRH was used to perform ELISA and western blot, and our results suggested that VEGF–GnRH was capable of detecting anti-GnRH antibodies in sera both qualitatively and quantitatively. Indeed, previous studies of our laboratory had demonstrated that other fusion proteins such as VEGF–Aβ10, VEGF–GRP, VEGF–CETPC, and VEGF–βhCGCTP37 were able to detect their corresponding antibodies specifically. Therefore, VEGF 121 may be a suitable irrelevant fusion partner of important diagnostic peptide markers. Our works would shed some light on the development of a universal platform for detection of specific antibodies.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-03-05
    Description: An upsurge in the bioeconomy drives the need for engineering microorganisms with increasingly complex phenotypes. Gains in productivity of industrial microbes depend on the development of improved strains. Classical strain improvement programmes for the generation, screening and isolation of such mutant strains have existed for several decades. An alternative to traditional strain improvement methods, genome shuffling, allows the directed evolution of whole organisms via recursive recombination at the genome level. This review deals chiefly with the technical aspects of genome shuffling. It first presents the diversity of organisms and phenotypes typically evolved using this technology and then reviews available sources of genetic diversity and recombination methodologies. Analysis of the literature reveals that genome shuffling has so far been restricted to microorganisms, both prokaryotes and eukaryotes, with an overepresentation of antibiotics- and biofuel-producing microbes. Mutagenesis is the main source of genetic diversity, with few studies adopting alternative strategies. Recombination is usually done by protoplast fusion or sexual recombination, again with few exceptions. For both diversity and recombination, prospective methods that have not yet been used are also presented. Finally, the potential of genome shuffling for gaining insight into the genetic basis of complex phenotypes is also discussed.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-03-05
    Description: The unicellular green alga Chlorella zofingiensis has been proposed as a promising producer of natural astaxanthin, a commercially important ketocarotenoid. But the genetic toolbox for this alga is not available. In the present study, an efficient transformation system was established for C. zofingiensis . The transformation system utilized a modified norflurazon-resistant phytoene desaturase ( PDS -L516F, with an leucine-phenylalanine change at position 516) as the selectable marker. Three promoters from endogenous PDS , nitrate reductase ( NIT ), and ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit ( RBCS ) genes were tested, with the RBCS promoter demonstrating the highest transformation efficiency. Inclusion of the first intron of the PDS gene further enhanced the efficiency by 91 %. Both particle bombardment and electroporation methods were examined, and the latter gave a fourfold higher transformation efficiency. The introduction of PDS -L516F, which exhibited a 33 % higher desaturation activity than the unaltered enzyme, enabled C. zofingiensis to produce 32.1 % more total carotenoids (TCs) and 54.1 % more astaxanthin. The enhanced accumulation of astaxanthin in transformants was revealed to be related to the increase in the transcripts of PDS , β-carotenoid ketolase ( BKT ), and hydroxylase ( CHYb ) genes. Our study clearly shows that the modified PDS gene is a dominant selectable marker for the transformation of C. zofingiensis and possibly for the genetic engineering of the carotenoid biosynthetic pathway. In addition, the engineered C. zofingiensis might serve as an improved source of natural astaxanthin.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-03-05
    Description: In this study, biomass samples were obtained from six municipal and nine industrial full-scale anaerobic processes to investigate whether the aceticlastic methanogen population composition is related to acetate utilization capacity and the nature of the wastewater treated, i.e. municipal sludge or industrial wastewater. Batch serum bottle tests were used to determine the specific acetate utilization rate (AUR), and a quantitative real-time polymerase chain reaction protocol was used to enumerate the acetate-utilizing Methanosaeta and Methanosarcina populations in the biomass samples. Methanosaeta was the dominant aceticlastic methanogen in all samples, except for one industrial wastewater-treating anaerobic process. However, Methanosarcina density in industrial biomass samples was higher than the Methanosarcina density in the municipal samples. The average AUR values of municipal and industrial wastewater treatment plant biomass samples were 10.49 and 10.65 mg CH 3 COO − /log(aceticlastic methanogen gene copy).d, respectively. One-way ANOVA test and principle component analysis showed that the acetate utilization capacities and aceticlastic methanogen community composition did not show statistically significant correlation among the municipal digesters and industrial wastewater-treating processes investigated.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-03-05
    Description: The aflatoxin-producer and opportunistic plant pathogenic, filamentous fungus Aspergillus flavus is responsible for the contamination of corn and other important agricultural commodities. In order to obtain nutrients from the host A. flavus produces a variety of extracellular hydrolytic enzymes. Interestingly, A. flavus amylase and protease activity are dependent on the global regulator veA , a gene known to regulate morphogenesis and secondary metabolism in numerous fungi. Analysis of starch degradation by fungal enzymes secreted into broths of starch- or corn kernel-based media showed a notable accumulation of glucose in samples of the A. flavus control strain while the deletion veA sample accumulated high levels of maltose and maltotriose and only a small amount of glucose. Furthermore, SDS-PAGE and proteomics analysis of culture broths from starch- or corn kernel-based media demonstrated differential production of a number of proteins that included a reduction in the amount of a glucoamylase protein in the veA mutant compared to the control strain, while an alpha-amylase was produced in greater quantities in the veA mutant. Quantitative real-time PCR and western blot analyses using anti-glucoamylase or alpha-amylase antisera supported the proteomics results. Additionally, an overall reduction in protease activity was observed in the veA mutant including production of the alkaline protease, oryzin, compared to the control strain. These findings contribute to our knowledge of mechanisms controlling production of hydrolases and other extracellular proteins during growth of A. flavus on natural starch-based substrates.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-03-05
    Description: For starter culture production, fluidized bed drying is an efficient and cost-effective alternative to the most frequently used freeze drying method. However, fluidized bed drying also poses damaging or lethal stress to bacteria. Therefore, investigation of impact of process variables and conditions on viability of starter cultures produced by fluidized bed drying is of major interest. Viability of bacteria is most frequently assessed by plate counting. While reproductive growth of cells can be characterized by the number of colony-forming units, it cannot provide the number of viable-but-nonculturable cells. However, in starter cultures, these cells still contribute to the fermentation during food production. In this study, flow cytometry was applied to assess viability of Lactobacillus plantarum starter cultures by membrane integrity analysis using SYBR®Green I and propidium iodide staining. The enumeration method established allowed for rapid, precise and sensitive determination of viable cell concentration, and was used to investigate effects of fluidized bed drying and storage on viability of L. plantarum . Drying caused substantial membrane damage on cells, most likely due to dehydration and oxidative stress. Nevertheless, high bacterial survival rates were obtained, and granulates contained in the average 2.7 × 10 9 viable cells/g. Furthermore, increased temperatures reduced viability of bacteria during storage. Differences in results of flow cytometry and plate counting suggested an occurrence of viable-but-nonculturable cells during storage. Overall, flow cytometric viability assessment is highly feasible for rapid routine in-process control in production of L. plantarum starter cultures, produced by fluidized bed drying.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-03-20
    Description: There is a need for an endogenous internal control (EIC) for PCRs to monitor the quality and quantity of DNA in test samples. We designed and validated a fluorescence resonance energy transfer (FRET)-PCR targeting the mammalian homolog of the hydroxymethylbilane synthase (HMBS) gene as an EIC for PCRs on mammals. The designed FRET-PCR detected the HMBS gene in whole blood of 13 mammalian species collected from eight countries and in 11 murine organs/tissues. It could also be used to quantify the volumes of mammalian blood meals in mosquitoes and by sequencing the amplicons obtained we could determine the mammalian species (6) from which the meal was obtained. The FRET-PCR proved highly sensitive (one gene copy in 0.05 ng tissue or 0.5 nl whole blood) and specific with no false negative or positive results. The high sensitivity and specificity of the FRET-PCR and its ability to differentiate mammalian species makes it an ideal EIC for PCRs involving mammals and a useful tool for hematophagous insect studies.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-03-21
    Description: Fungi can grow in extreme habitats, such as natural stone and mineral building materials, sometimes causing deterioration. Efflorescence—concentrated salt deposits—results from water movement through building material; it can damage masonry materials and other bricks. Fungal isolate KUR1, capable of growth on, and dissolution of stone chips composing terrazzo-type floor tiles, was isolated from such tiles showing fiber-like crystalline efflorescence. The isolate’s ribosomal DNA sequences were 100 % identical to those of Nigrospora sphaerica . The ability of KUR1 to colonize and degrade the different stone chips composing the tiles was studied in axenic culture experiments. When exposed to each of the different mineral chip types composed of dolomite, calcite, or calcite–apatite mineral in low-nutrition medium, the fungus showed selective nutrient consumption, and different growth and stone mineral dissolution rates. Micromorphological examination of the fungus-colonized chips by electron microscopy showed the production of a fungal biofilm with thin films around the hyphae on the surface of the examined chips and disintegration of the calcite–apatite fraction. More than 70 % dissolution of the introduced powdered (〈1 mm particle size) mineral was obtained within 10 days of incubation for the soft calcite–apatite fraction.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-03-21
    Description: The yeast Saccharomyces cerevisiae is a useful model organism for studying lead (Pb) toxicity. Yeast cells of a laboratory S. cerevisiae strain (WT strain) were incubated with Pb concentrations up to 1,000 μmol/l for 3 h. Cells exposed to Pb lost proliferation capacity without damage to the cell membrane, and they accumulated intracellular superoxide anion (O 2 .− ) and hydrogen peroxide (H 2 O 2 ). The involvement of the mitochondrial electron transport chain (ETC) in the generation of reactive oxygen species (ROS) induced by Pb was evaluated. For this purpose, an isogenic derivative ρ 0 strain, lacking mitochondrial DNA, was used. The ρ 0 strain, without respiratory competence, displayed a lower intracellular ROS accumulation and a higher resistance to Pb compared to the WT strain. The kinetic study of ROS generation in yeast cells exposed to Pb showed that the production of O 2 .− precedes the accumulation of H 2 O 2 , which is compatible with the leakage of electrons from the mitochondrial ETC. Yeast cells exposed to Pb displayed mutations at the mitochondrial DNA level. This is most likely a consequence of oxidative stress. In conclusion, mitochondria are an important source of Pb-induced ROS and, simultaneously, one of the targets of its toxicity.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-03-05
    Description: Resveratrol, a naturally occurring plant phenol, has been reported to exhibit a wide range of valuable biological and pharmacological properties. In the present investigation, we show that transformation of a Vitis amurensis Rupr. cell suspension with the gene VaCPK20 for a calcium-dependent protein kinase (CDPK) under the control of double CaMV 35S promoter increased resveratrol production in five independently transformed cell lines in 9-68 times compared with control cells. The VaCPK20 -transformed calli were capable of producing 0.04-0.42 % dry wt. of resveratrol, while the control calli produced up to 0.008 % dry wt. of resveratrol Also, we characterized expression of stilbene synthase ( STS ) genes in the five VaCPK20- transgenic cell lines of V. amurensis . In all VaCPK20- transgenic cell lines, expression of VaSTS7 increased; while expression of VaSTS1 decreased. We suggest that transformation of V. amurensis calli with the VaCPK20 gene induced resveratrol accumulation via enhancement of expression of the VaSTS7 gene involved in resveratrol biosynthesis. The obtained data first demonstrate that overexpression of a CDPK gene resulted in increased accumulation of a stilbenoid phytoalexine in transgenic plant cells. We propose that the VaCPK20 gene could play an important role in the regulation of resveratrol biosynthesis in grape cells.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-03-21
    Description: Spent coffee grounds (SCG), an important waste product of the coffee industry, contain approximately 15 wt% of coffee oil. The aim of this work was to investigate the utilization of oil extracted from SCG as a substrate for the production of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16. When compared to other waste/inexpensive oils, the utilization of coffee oil resulted in the highest biomass as well as PHB yields. Since the correlation of PHB yields and the acid value of oil indicated a positive effect of the presence of free fatty acids in oil on PHB production (correlation coefficient R 2  = 0.9058), superior properties of coffee oil can be probably attributed to the high content of free fatty acids which can be simply utilized by the bacteria culture. Employing the fed-batch mode of cultivation, the PHB yields, the PHB content in biomass, the volumetric productivity, and the Y P/S yield coefficient reached 49.4 g/l, 89.1 wt%, 1.33 g/(l h), and 0.82 g per g of oil, respectively. SCG are annually produced worldwide in extensive amounts and are disposed as solid waste. Hence, the utilization of coffee oil extracted from SCG is likely to improve significantly the economic aspects of PHB production. Moreover, since oil extraction decreased the calorific value of SCG by only about 9 % (from 19.61 to 17.86 MJ/kg), residual SCG after oil extraction can be used as fuel to at least partially cover heat and energy demands of fermentation, which should even improve the economic feasibility of the process.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-01-26
    Description: Transposons are developing molecular tools commonly used for several applications: one of these is the delivery of genes into microorganisms. These mobile genetic elements are characterised by two repeated insertion sequences that flank a sequence encoding one or more orfs for a specific transposase that moves these sequences to other DNA sites. In the present paper, the IS2 transposon of Escherichia coli K4 was modified in vitro by replacing the sequence coding for the transposase with that of the kfoC gene that codes for chondroitin polymerase. KfoC is responsible for the polymerisation of the bacterial capsular polysaccharide whose structure is analogous to that of chondroitin sulphate, a glycosaminoglycan with established and emerging biomedical applications. The recombinant construct was stably integrated into the genome of E. coli K4 by exploiting the transposase from endogenous copies of IS2 in the E. coli chromosome. A significant improvement of the polysaccharide production was observed, resulting in 80 % higher titres in 2.5-L fed-batch cultivations and up to 3.5 g/L in 22-L fed-batch cultures.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-01-26
    Description: Nitrobenzene dioxygenase (NBDO) is known to add both atoms of molecular oxygen to the aromatic ring of nitrobenzene to form catechol. It is assembled by four subunits of which the alpha subunit is responsible for catalysis. As an oxidizing enzyme, it has a potential use in the detoxification of industrial waste and the synthesis of pharmaceuticals and food ingredients; however, not much work has been done studying its structure-function correlations. We used several protein engineering approaches (neutral drift libraries, random libraries, two types of focused libraries, and family shuffling) to engineer NBDO for the production of the highly potent antioxidant, hydroxytyrosol (HTyr), from the substrate 3-nitrophenethyl alcohol (3NPA). We obtained a triple mutant, F222C/F251L/G253D, which is able to oxidize 3NPA 375-fold better than wild type with a very high regioselectivity. In total, we identified four positions which are important for acquisition of new specificities, of which only one is well-known and studied. Based on homology modeling, it is suggested that these mutations increase activity by vacating extra space within the active site for the larger substrate and also by hydrogen bonding to the substrate. The best variant had acquired a stabilizing mutation which was beneficial only in this mutant. Thus, we have achieved two goals, the first is the enzymatic production of HTyr, and the second is valuable information regarding the structure-function correlations of NBDO.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-01-26
    Description: Three forms of recombinant human keratinocyte growth factor 1 (rhKGF1) with or without the native signal peptide or a 23-amino acid truncation were expressed in Spodoptera frugiperda 9 (Sf9) cells by designing with insect codon usage. Immunoblotting demonstrated that these rhKGF1 proteins were recognized by a human anti-KGF1 antibody. The multiplicity of infection and timing of harvest had a significant effect on protein yield, protein quality, and cytotoxicity. Our results indicated that the native signal peptide directed KGF1 secretion from insect cells, reaching a maximum at 60 h postinfection. Although secretion of rhKGF1 194 was less efficient than that of rhKGF1 163 and rhKGF1 140 , protein secretion is an attractive pathway for simple purification of biologically active rhKGF1 at a high yield. Moreover, the sizes of rhKGF1 194 and rhKGF1 163 were similar (20 kDa), suggesting that the signal peptide may be recognized and removed in Sf9 cells. A 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay was used to analyze the biological function of rhKGF1, indicating that the three forms of rhKGF1 had a similar mitogenic function in BaF3 cells. Furthermore, to elucidate the effect of rhKGF1 on cytoprotection of liver cells, we used KGF1 pretreatment of an acute liver injury model. The results indicated that rhKGF1 prevented necrosis and apoptosis of CCl 4 -treated HL7702 cells in vitro and in vivo. These results suggest that KGF1 may be a candidate therapeutic drug for acute liver injury.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-01-26
    Description: Growth, end-product synthesis, enzyme activities, and transcription of select genes associated with the “malate shunt,” pyruvate catabolism, H 2 synthesis, and ethanol production were studied in the cellulolytic anaerobe, Clostridium thermocellum ATCC 27405, during open-batch fermentation of cellobiose to determine the effect of elevated N 2 and H 2 gas sparging on metabolism using a 14-L fermenter with a 7-L working volume. The metabolic shift from acetate, H 2 , and CO 2 to ethanol and formate in response to high H 2 versus high N 2 sparging (20 mL s −1 ) was accompanied by (a) a 2-fold increase in nicotinamide adenine dinucleotide (NADH)-dependent alcohol dehydrogenase (Adh) activity, (b) a 10-fold increase in adhE transcription, and (c) a 3-fold decrease in adhZ transcription. A similar, but less pronounced, metabolic shift was also observed when the rate of N 2 sparging was decreased from 20 to 2 mL s −1 , during which (a) NADH-dependent ADH and pyruvate: ferredoxin oxidoreductase (PFOR) activities increased by ∼1.5-fold, (b) adhY transcription increased 6-fold, and (c) transcription of selected pfor genes increased 2-fold. Here we demonstrate that transcription of genes involved in ethanol metabolism is tightly regulated in response to gas sparging. We discuss the potential impacts of dissolved H 2 on electron carrier (NADH, NADPH, ferredoxin) oxidation and how these electron carriers can redirect carbon and electron flux and regulate adhE transcription.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-01-26
    Description: Seawater toilet flushing, seawater intrusion in the sewerage, and discharge of sulfate-rich industrial effluents elevates sulfate content in wastewater. The application of sulfate-reducing bacteria (SRB) in wastewater treatment is very beneficial; as for example, it improves the pathogen removal and reduces the volume of waste sludge, energy requirement and costs. This paper evaluates the potential to apply biological sulfate reduction using acetate and propionate to saline sewage treatment in moderate climates. Long-term biological sulfate reduction experiments at 10 and 20 °C were conducted in a sequencing batch reactor with synthetic saline domestic wastewater. Subsequently, acetate and propionate (soluble organic carbon) conversion rate were determined in both reactors, in the presence of either or both fatty acids. Both acetate and propionate consumption rates by SRB were 1.9 times lower at 10 °C than at 20 °C. At 10 °C, propionate was incompletely oxidized to acetate. At 10 °C, complete removal of soluble organic carbon requires a significantly increased hydraulic retention time as compared to 20 °C. The results of the study showed that biological sulfate reduction can be a feasible and promising process for saline wastewater treatment in moderate climate.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-01-26
    Description: Bacillus circulans T-3040 produces cycloisomaltooligosaccharide glucanotransferase (CITase) and cycloisomaltooligosaccharides (cyclodextrans, CIs) when it is grown in media containing dextran as the carbon source. To investigate the effects of carbon sources on CITase activity, B. circulans T-3040 was cultured with glucose; sucrose; a mixture of isomaltose, isomaltotriose, and panose (IMOs); a mixture of maltohexaose and maltoheptaose (G67); dextrin (average degree of polymerization = 36); dextran 40; and soluble starch. In addition to dextran 40, CIs were produced when the T-3040 strain was grown in media containing soluble starch as the sole carbon source. CITase production was induced by dextran 40, IMOs, and soluble starch but not by G67 or dextrin, which suggests that α-1,6 glucosidic linkages are required for CITase induction. Although CITase was induced by IMOs, no CIs were produced in the culture. CI-producing activity in the presence of soluble starch as the substrate (SS-CITase activity) was observed only in cultures containing dextran 40 or soluble starch. The production of CITase was significantly unaffected by glucose addition, but SS-CITase activity almost completely disappeared after glucose addition. A 135-kDa protein was found to contribute to CI formation from starch in the presence of CITase. This protein had a disproportionation activity with maltooligosaccharides, and its induction and inhibition system may be different from those of CITase.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-01-26
    Description: Since the first report on a laccase, there has been a notable development in the interest towards this class of enzymes, highlighted from the number of scientific papers and patents about them. At the same time, interest in exploiting laccases—mainly high redox potential—for various functions has been growing exponentially over the last 10 years. Despite decades of work, the molecular determinants of the redox potential are far to be fully understood. For this reason, interest in tuning laccase redox potential to provide more efficient catalysts has been growing since the last years. The work herein described takes advantage of the filamentous fungus Aspergillus niger as host for the heterologous production of the high redox potential laccase POXA1b from Pleurotus ostreatus and of one of its in vitro selected variants (1H6C). The system herein developed allowed to obtain a production level of 35,000 U/L (583.3 μkat/L) for POXA1b and 60,000 U/L (1,000 μkat/L) for 1H6C, corresponding to 13 and 20 mg/L for POXA1b and 1H6C, respectively. The characterised proteins exhibit very similar characteristics, with some exceptions regarding catalytic behaviour, stability and spectro-electrochemical properties. Remarkably, the 1H6C variant shows a higher redox potential with respect to POXA1b. Furthermore, the spectro-electrochemical results obtained for 1H6C make it tempting to claim that we spectro-electrochemically determined the redox potential of the 1H6C T2 site, which has not been studied in any detail by spectro-electrochemistry yet.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-01-26
    Description: Alteromonas sp. GNUM-1 is known to degrade agar, the main cell wall component of red macroalgae, for their growth. A putative agarase gene ( agaG1 ) was identified from the mini-library of GNUM-1, when extracellular agarase activity was detected in a bacterial transformant. The nucleotide sequence revealed that AgaG1 had significant homology to GH16 agarases. agaG1 encodes a primary translation product (34.7 kDa) of 301 amino acids, including a 19-amino-acid signal peptide. For intracellular expression, a gene fragment encoding only the mature form (282 amino acids) was cloned into pGEX-5X-1 in Escherichia coli , where AgaG1 was expressed as a fusion protein with GST attached to its N-terminal (GST-AgaG1). GST-AgaG1 purified on a glutathione sepharose column had an apparent molecular weight of 59 kDa on SDS-PAGE, and this weight matched with the estimated molecular weight (58.7 kDa). The agarase activity of the purified protein was confirmed by the zymogram assay. GST-AgaG1 could hydrolyze the artificial chromogenic substrate, p -nitrophenyl-β- d -galactopyranoside but not p -nitrophenyl-α- d -galactopyranoside. The optimum pH and temperature for GST-AgaG1 activity were identified as 7.0 and 40 °C, respectively. GST-AgaG1 was stable up to 40 °C (100 %), and it retained more than 70 % of its initial activity at 45 °C after heat treatment for 30 min. The K m and V max for agarose were 3.74 mg/ml and 23.8 U/mg, respectively. GST-AgaG1 did not require metal ions for its activity. Thin layer chromatography analysis, mass spectrometry, and 13 C-nuclear magnetic resonance spectrometry of the GST-AgaG1 hydrolysis products revealed that GST-AgaG1 is an endo-type β-agarase that hydrolyzes agarose and neoagarotetraose into neoagarobiose.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-01-28
    Description: CalB of Pseudozyma aphidis (formerly named Candida antarctica ) is one of the most widely applied enzymes in industrial biocatalysis. Here, we describe a protein with 66 % sequence identity to CalB, designated Ustilago maydis lipase 2 (Uml2), which was identified as the product of gene um01422 of the corn smut fungus U. maydis . Sequence analysis of Uml2 revealed the presence of a typical lipase catalytic triad, Ser-His-Asp with Ser125 located in a Thr-Xaa-Ser-Xaa-Gly pentapeptide. Deletion of the uml2 gene in U. maydis diminished the ability of cells to hydrolyse fatty acids from tributyrin or Tween 20/80 substrates, thus demonstrating that Uml2 functions as a lipase that may contribute to nutrition of this fungal pathogen. Uml2 was heterologously produced in Pichia pastoris and recombinant N -glycosylated Uml2 protein was purified from the culture medium. Purified Uml2 released short- and long-chain fatty acids from p -nitrophenyl esters and Tween 20/80 substrates. Furthermore, phosphatidylcholine substrates containing long-chain saturated or unsaturated fatty acids were effectively hydrolysed. Both esterase and phospholipase A activity of Uml2 depended on the Ser125 catalytic residue. These results indicate that Uml2, in contrast to CalB, exhibits not only esterase and lipase activity but also phospholipase A activity. Thus, by genome mining, we identified a novel CalB-like lipase with different substrate specificities.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-01-30
    Description: In spite of numerous advantages on operating fermentation at elevated temperatures, very few thermophilic bacteria with polyhydroxyalkanoates (PHAs)-accumulating ability have yet been found in contrast to the tremendous mesophiles with the same ability. In this study, a thermophilic poly(3-hydroxybutyrate) (PHB)-accumulating bacteria ( Chelatococcus daeguensis TAD1), isolated from the biofilm of a biotrickling filter used for NOx removal, was extensively investigated and compared to other PHB-accumulating bacteria. The results demonstrate that C. daeguensis TAD1 is a growth-associated PHB-accumulating bacterium without obvious nutrient limitation, which was capable of accumulating PHB up to 83.6 % of cell dry weight (CDW, w / w ) within just 24 h at 45 °C from glucose. Surprisingly, the PHB production of C. daeguensis TAD1 exhibited strong tolerance to high heat stress as well as nitrogen loads compared to that of other PHB-accumulating bacterium, while the optimal PHB amount (3.44 ± 0.3 g l −1 ) occurred at 50 °C and C/N = 30 (molar) with glucose as the sole carbon source. In addition, C. daeguensis TAD1 could effectively utilize various cheap substrates (starch or glycerol) for PHB production without pre-hydrolyzed, particularly the glycerol, exhibiting the highest product yield ( Y P/S , 0.26 g PHB per gram substrate used) as well as PHB content (80.4 % of CDW, w / w ) compared to other carbon sources. Consequently, C. daeguensis TAD1 is a viable candidate for large-scale production of PHB via utilizing starch or glycerol as the raw materials.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-02-01
    Description: The silkworm Bombyx mori represents an established in vivo system for the production of recombinant proteins. Baculoviruses have been extensively investigated and optimised for the expression of high protein levels inside the haemolymph of larvae and pupae of this lepidopteran insect. Current technology includes deletion of genes responsible for the activity of virus-borne proteases, which in wild-type viruses, cause liquefaction of the host insect and enhance horizontal transmission of newly synthesised virus particles. Besides the haemolymph, the silk gland of B. mori provides an additional expression system for recombinant proteins. In this paper, we investigated how silk gland can be efficiently infected by a Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV). We demonstrated that the viral chitinase and the cysteine protease cathepsin are necessary to permit viral entry into the silk gland cells of intrahaemocoelically infected B. mori larvae. Moreover, for the first time, we showed AcMNPV crossing the basal lamina of silk glands in B. mori larvae, and we assessed a new path of infection of silk gland cells that can be exploited for protein production.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-02-05
    Description: To reveal the succession procedure of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) community structure in sequencing biofilm batch reactor (SBBR), the molecular biological techniques of denaturing gradient gel electrophoresis (DGGE), cloning, and real-time PCR were applied. DGGE showed that the structural diversity of the bacterial community increased during the biofilm formation period, and some kinds of populations had been highly preponderant consistently. The results of cloning and sequencing revealed that Nitrosomonas was the dominant species. The real-time PCR analysis indicated that the amount of the AOB increased significantly after the cultivation period, and the NOB gradually decreased. The AOB content on the 25th day was 17 times that of the 6th day. It also showed the biofilm formed successfully with accumulating nitrite and prepared to achieve the achievement of simultaneous nitrification and denitrification in SBBR. Furthermore, the ammonia-oxidizing rate was in correspondence with the NH 4 + -N removal efficiency.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-02-22
    Description: Streptomyces tsukubaensis is a well-established industrial tacrolimus producer strain, but its molecular genetics is very poorly known. This information shortage prevents the development of tailored mutants in the regulatory pathways. A region (named bul ) contains several genes involved in the synthesis and control of the gamma-butyrolactone autoregulator molecules. This region contains ten genes ( bulA , bulZ , bulY , bulR2 , bulS2 , bulR1 , bulW , bluB , bulS1 , bulC ) including two γ-butyrolactone receptor homologues ( bulR1 , bulR2 ), two putative gamma-butyrolactone synthetase homologues ( bulS1 , bulS2 ) and two SARP regulatory genes ( bulY , bulZ ). Analysis of the autoregulatory element (ARE)-like sequences by electrophoretic mobility shift assays and footprinting using the purified BulR1 and BulR2 recombinant proteins revealed six ARE regulatory sequences distributed along the bul cluster. These sequences showed specific binding of both BulR1 (the gamma-butyrolactone receptor) and BulR2, a possible pseudo γ-butyrolactone receptor. The protected region in all cases covered a 28-nt sequence with a palindromic structure. Optimal docking area analysis of BulR1 proved that this protein can be presented as either monomer or dimer but not oligomers and that it binds to the conserved ARE sequence in both strands. The effect on tacrolimus production was analysed by deletion of the bulR1 gene, which resulted in a strong decrease of tacrolimus production. Meanwhile, the Δ bulR2 mutation did not affect the biosynthesis of this immunosuppressant.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-02-22
    Description: Marine microorganisms play key roles in every marine ecological process, hence the growing interest in studying their populations and functions. Microbial communities on algae remain underexplored, however, despite their huge biodiversity and the fact that they differ markedly from those living freely in seawater. The study of this microbiota and of its relationships with algal hosts should provide crucial information for ecological investigations on algae and aquatic ecosystems. Furthermore, because these microorganisms interact with algae in multiple, complex ways, they constitute an interesting source of novel bioactive compounds with biotechnological potential, such as dehalogenases, antimicrobials, and alga-specific polysaccharidases (e.g., agarases, carrageenases, and alginate lyases). Here, to demonstrate the huge potential of alga-associated organisms and their metabolites in developing future biotechnological applications, we first describe the immense diversity and density of these microbial biofilms. We further describe their complex interactions with algae, leading to the production of specific bioactive compounds and hydrolytic enzymes of biotechnological interest. We end with a glance at their potential use in medical and industrial applications.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-02-09
    Description: A previously unidentified oxidoreductase from Escherichia coli catalyzes the regioselective reduction of eukaryotic steroid hormone 11-deoxycorticosterone (11-DOC) to the valuable bioactive product 4-pregnen-20,21-diol-3-one. In nature, a reduction of C-20 carbonyl of C21 steroids is catalyzed by diverse NAD(P)H-dependent oxidoreductases. Enzymes that possess 20-ketosteroid reductase activity, however, have never before been described in E. coli . Our present study aimed to identify and characterize the E. coli enzyme which possesses 20-ketosteroid reductase activity against eukaryotic steroid hormone 11-DOC. We partially purified the enzyme from E. coli DH5α using protein chromatography techniques. Mass spectrometry revealed the presence of three NADH-specific oxidoreductases in the sample. The genes encoding these oxidoreductases were cloned and overexpressed in E. coli UT5600 (DE3). Only the overexpression of 2-dehydro-3-deoxy- d -gluconate 5-dehydrogenase (KduD) encoded by kduD gene enabled the whole-cell biotransformation of 11-DOC. A 6xHis-tagged version of KduD was purified to homogeneity and found to reduce several eukaryotic steroid hormones and catalyze the conversion of novel sugar substrates. KduD from E. coli is therefore a promiscuous enzyme that has a predicted role in sugar conversion in vivo but can be used for the production of valuable bioactive 20-hydroxysteroids.
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...