ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (19,842)
  • Latest Papers from Table of Contents or Articles in Press  (19,842)
  • Oxford University Press  (19,842)
  • Journal of Biochemistry  (533)
  • 740
  • 11
    Publication Date: 2015-08-30
    Description: The scaffolding protein Salvador (Sav) plays a key role in the Hippo (Hpo) signalling pathway, which controls tissue growth by inhibiting cell proliferation and promoting apoptosis. Dysregulation of the Hippo pathway contributes to cancer development. Since the identification of the first Sav gene in 2002, very little is known regarding the molecular basis of Sav-SARAH mediating interactions due to its insolubility. In this study, refolding of the first Sav (known as WW45)-SARAH provided insight into the biochemical and biophysical properties, indicating that WW45-SARAH exhibits properties of a disordered protein, when the domain was refolded at a neutral pH. Interestingly, WW45-SARAH shows folded and rigid conformations relative to the decrease in pH. Further, diffracting crystals were obtained from protein refolded under acidic pH, suggesting that the refolded WW45 protein at low pH has a homogeneous and stable conformation. A comparative analysis of molecular properties found that the acidic-stable fold of WW45-SARAH enhances a heterotypic interaction with Mst2-SARAH. In addition, using an Mst2 mutation that disrupts homotypic dimerization, we showed that the monomeric Mst2-SARAH domain could form a stable complex of 1:1 stoichiometric ratio with WW45 refolded under acidic pH.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-08-30
    Description: Hypercholesterolemia is one of the factors contributing to cardiovascular problems. Erythrocytes are known to contribute its cholesterol to atherosclerotic plaque. Our earlier study showed that erythrocytes overexpress chondroitin sulphate/dermatan sulphate (CS/DS), a linear co-polymer, during diabetes which resulted in increased cytoadherence to extracellular matrix (ECM) components. This study was carried out to determine whether diet-induced hypercholesterolemia had any effect on erythrocyte CS/DS and impacted cytoadherence to ECM components. Unlike in diabetes, diet-induced hypercholesterolemia did not show quantitative changes in erythrocyte CS/DS but showed difference in proportion of un-sulphated and 4- O -sulphated disaccharides. Erythrocytes from hypercholesterolemic rats showed increased adhesion to ECM components which was abrogated to various extents when subjected to chondroitinase ABC digestion. However, isolated CS/DS chains showed a different pattern of binding to ECM components indicating that orientation of CS/DS chains could be playing a role in binding.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-08-30
    Description: The antigen-binding domain of camelid dimeric heavy chain antibodies, known as VHH or Nanobody, has much potential in pharmaceutical and industrial applications. To establish the isolation process of antigen-specific VHH, a VHH phage library was constructed with a diversity of 8.4 x 10 7 from cDNA of peripheral blood mononuclear cells of an alpaca ( Lama pacos ) immunized with a fragment of IZUMO1 (IZUMO1 PFF ) as a model antigen. By conventional biopanning, 13 antigen-specific VHHs were isolated. The amino acid sequences of these VHHs, designated as N-group VHHs, were very similar to each other (〉93% identity). To find more diverse antibodies, we performed high-throughput sequencing (HTS) of VHH genes. By comparing the frequencies of each sequence between before and after biopanning, we found the sequences whose frequencies were increased by biopanning. The top 100 sequences of them were supplied for phylogenic tree analysis. In total 75% of them belonged to N-group VHHs, but the other were phylogenically apart from N-group VHHs (Non N-group). Two of three VHHs selected from non N-group VHHs showed sufficient antigen binding ability. These results suggested that biopanning followed by HTS provided a useful method for finding minor and diverse antigen-specific clones that could not be identified by conventional biopanning.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-08-30
    Description: The autophosphorylation of specific tyrosine residues occurs in the cytoplasmic region of the insulin receptor (IR) upon insulin binding, and this in turn initiates signal transduction. The R3 subfamily (Ptprb, Ptprh, Ptprj and Ptpro) of receptor-like protein tyrosine phosphatases (RPTPs) is characterized by an extracellular region with 6–17 fibronectin type III-like repeats and a cytoplasmic region with a single phosphatase domain. We herein identified the IR as a substrate for R3 RPTPs by using the substrate-trapping mutants of R3 RPTPs. The co-expression of R3 RPTPs with the IR in HEK293T cells suppressed insulin-induced tyrosine phosphorylation of the IR. In vitro assays using synthetic phosphopeptides revealed that R3 RPTPs preferentially dephosphorylated a particular phosphorylation site of the IR: Y960 in the juxtamembrane region and Y1146 in the activation loop. Among four R3 members, only Ptprj was co-expressed with the IR in major insulin target tissues, such as the skeletal muscle, liver and adipose tissue. Importantly, the activation of IR and Akt by insulin was enhanced, and glucose and insulin tolerance was improved in Ptprj -deficient mice. These results demonstrated Ptprj as a physiological enzyme that attenuates insulin signalling in vivo , and indicate that an inhibitor of Ptprj may be an insulin-sensitizing agent.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-30
    Description: The diazotrophic cyanobacterium Anabaena sp. strain PCC 7120 (A.7120) differentiates into specialized heterocyst cells that fix nitrogen under nitrogen starvation conditions. Although reducing equivalents are essential for nitrogen fixation, little is known about redox systems in heterocyst cells. In this study, we investigated thioredoxin (Trx) networks in Anabaena using TrxM, and identified 16 and 38 candidate target proteins in heterocysts and vegetative cells, respectively, by Trx affinity chromatography (Motohashi et al. (Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA , 2001; 98 , 11224–11229)). Among these, the Fe–S cluster scaffold protein NifU that facilitates functional expression of nitrogenase in heterocysts was found to be a potential TrxM target. Subsequently, we observed that the scaffold activity of N-terminal catalytic domain of NifU is enhanced in the presence of Trx-system, suggesting that TrxM is involved in the Fe–S cluster biogenesis.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-05-28
    Description: In this study, we examined the role of aminopeptidases with reference to endoplasmic reticulum aminopeptidase 1 (ERAP1) in nitric oxide (NO) synthesis employing murine macrophage cell line RAW264.7 cells activated by lipopolysaccharide (LPS) and interferon (IFN)- and LPS-activated peritoneal macrophages derived from ERAP1 knockout mouse. When NO synthesis was measured in the presence of peptides having N-terminal Arg, comparative NO synthesis was seen with that measured in the presence of Arg. In the presence of an aminopeptidase inhibitor amastatin, NO synthesis in activated RAW264.7 cells was significantly decreased. These results suggest that aminopeptidases are involved in the NO synthesis in activated RAW264.7 cells. Subsequently, significant reduction of NO synthesis was observed in ERAP1 knockdown cells compared with wild-type cells. This reduction was rescued by exogenously added ERAP1. Furthermore, when peritoneal macrophages prepared from ERAP1 knockout mouse were employed, reduction of NO synthesis in knockout mouse macrophages was also attributable to ERAP1. In the presence of amastatin, further reduction was observed in knockout mouse-derived macrophages. Taken together, these results suggest that several aminopeptidases play important roles in the maximum synthesis of NO in activated macrophages in a substrate peptide-dependent manner and ERAP1 is one of the aminopeptidases involved in the NO synthesis.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-05-28
    Description: Glycogen phosphorylase (GP) is biologically active as a dimer of identical subunits. Each subunit has two distinct maltooligosaccharide binding sites: a storage site and a catalytic site. Our characterization of the properties of these sites suggested that GP activity consists of two activities: (i) binding to the glycogen molecule and (ii) phosphorolysis of the non-reducing-end glucose residues. Activity (i) is mainly due to the activities of the two storage sites, which depended on the ionic strength of the medium and were directly inhibited by cyclodextrins (CDs). Activity (i) is of benefit to GP because a high concentration of non-reducing-end glucose residues is localized on the surface of the glycogen molecule. Activity (ii), the total activity of the two catalytic sites, exhibited relatively little ionic strength dependence. Because the combined activity of (i) and (ii) is deduced using glycogen as an assay substrate, the sole activity of (ii) must be measured using small maltooligosyl-substrates. By using a very low concentration of pyridylaminated maltohexaose, we demonstrated that the GP catalytic sites are active even in the presence of CDs, and that the actions of the catalytic site and the storage site are independent of each other.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-05-28
    Description: O -GlcNAcylation is a ubiquitous, dynamic and reversible post-translational protein modification in metazoans, and it is catalysed and removed by O -GlcNAc transferase (OGT) and O -GlcNAcase, respectively. Prokaryotes lack endogenous OGT activity. It has been reported that coexpression of mammalian OGT with its target substrates in Escherichia coli produce O -GlcNAcylated recombinant proteins, but the plasmids used were not compatible, and the expression of both OGT and its target protein were induced by the same inducer. Here, we describe a compatible dual plasmid system for coexpression of OGT and its target substrate for O -GlcNAcylated protein production in E. coli . The approach was validated using the CKII and p53 protein as control. This compatible dual plasmid system contains an arabinose-inducible OGT expression vector with a pUC origin and an isopropyl β - d -thiogalactopyranoside-inducible OGT target substrate expression vector bearing a p15A origin. The dual plasmid system produces recombinant proteins with varying O -GlcNAcylation levels by altering the inducer concentration. More importantly, the O -GlcNAcylation efficiency was much higher than the previously reported system. Altogether, we established an adjustable compatible dual plasmid system that can effectively yield O -GlcNAcylated proteins in E. coli .
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-05-28
    Description: Active equi-paritioning of the F plasmid is achieved by its sopABC gene. SopA binds to the sopAB promoter region and SopB binds to sopC . SopA also polymerizes in the presence of ATP and Mg(II), which is stimulated by SopB. Non-specific DNA is known to inhibit SopA polymerization and disassemble SopA polymer. This study followed kinetics of polymerization and de-polymerization of SopA by turbidity measurement and found new effects by DNA and SopB. Plasmid DNA, at low concentrations, shortened the lag (nucleation) phase of SopA polymerization and also caused an initial ‘burst’ of turbidity. Results with two non-specific 20-bp DNAs indicated sequence/length dependence of these effects. sopAB operator DNA only showed inhibition of SopA polymerization. Results of turbidity decrease of pre-formed SopA polymer in the presence of ethylenediaminetetraacetic acid showed that SopB also accelerates disassembly of the SopA polymer. The steady-state level of turbidity in the presence of SopB and plasmid DNA indicated synergy between SopB and DNA in the disassembly. SopB protein showed no effect on SopA polymerization, when SopB was specifically bound to DNA. This result and others with truncation mutants of SopB suggested that a proper configuration of the domains of SopB is important for SopA-SopB interactions.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-05-28
    Description: Influenza A virus (IAV) has been raising public health and safety concerns worldwide. Cyanovirin-N (CVN) is a prominent anti-IAV candidate, but both cytotoxicity and immunogenicity have hindered the development of this protein as a viable therapy. In this article, linker-CVN (LCVN) with a flexible and hydrophilic polypeptide at the N-terminus was efficiently produced from the cytoplasm of Escherichia coli at a 〉15-l scale. PEGylation at the N-terminal α-amine of LCVN was also reformed as 20 kDa PEGylated linkered Cyanovirin-N (PEG 20k –LCVN). The 50% effective concentrations of PEG 20k –LCVN were 0.43 ± 0.11 µM for influenza A/HK/8/68 (H3N2) and 0.04 ± 0.02 µM for A/Swan/Hokkaido/51/96 (H5N3), dramatically lower than that of the positive control, Ribavirin (2.88 ± 0.66 x 10 3 µM and 1.79 ± 0.62 x 10 3 µM, respectively). A total of 12.5 µM PEG 20k –LCVN effectively inactivate the propagation of H3N2 in chicken embryos. About 2.0 mg/kg/day PEG 20k –LCVN increased double the survival rate (66.67%, P = 0.0378) of H3N2 infected mice, prolonged the median survival period, downregulated the mRNA level of viral nuclear protein and decreased (attenuated) the pathology lesion in mice lung. A novel PEGylated CVN derivative, PEG 20k –LCVN, exhibited potent and strain-dependent anti-IAV activity in nanomolar concentrations in vitro, as well as in micromolar concentration in vivo .
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...