ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7,471)
  • Latest Papers from Table of Contents or Articles in Press  (7,471)
  • Springer  (7,471)
  • 2020-2020
  • 2010-2014  (6,660)
  • 1970-1974  (781)
  • 1945-1949  (30)
  • Plant and Soil  (1,484)
  • Climate Dynamics  (1,376)
  • 2089
  • 862
Collection
  • Articles  (7,471)
Source
  • Latest Papers from Table of Contents or Articles in Press  (7,471)
Publisher
  • Springer  (7,471)
Years
Year
  • 1
    Publication Date: 2013-09-08
    Description: Aims Afforestation causes important alterations in SOM content and composition that affect the soil functions and C balance. The aim of this study was to identify the mechanisms that determine the changes in SOM composition following afforestation of grasslands. Methods The study included 4 chronosequences and 5 paired plots comprising pastures and land afforested with Pinus radiata . The SOM was characterized by 13 C CP-MAS NMR spectroscopy and differential scanning calorimetry. Results During the first 10–20 year after afforestation, the changes in SOM content varied from slight gains to large losses (〉40 %). The analyses revealed that even SOM compounds considered resistant to decomposition were degraded during this time. The SOM gains, observed 20 year after stand establishment, were favoured by the higher recalcitrance of pine litter and possibly by soil acidification. The concentrations of most SOM compounds, particularly the stable compounds, were higher at the end of the rotation. The low degree of protection, along with the favourable climatic conditions, may also explain the rapid decomposition of SOM, including resistant compounds, in these soils. DSC analysis complemented the information about SOM composition provided by other techniques. Conclusions The accumulation of stable SOM compounds at the end of the rotation suggests a longer soil C turnover in these afforested soils, which may alleviate the gradual loss of SOC in intensively managed forest soils.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-08
    Description: Background and aims Plant nutrient uptake from coarse soil (2–4 mm diameter) has been demonstrated for only a limited number of nutrients, and the nutritional contribution of coarse soil when present with fine soil (material 〈2 mm diameter) in realistic ratios is unknown. We conducted a seedling pot trial to investigate the functional relevance of this soil fraction to plant nutrition. Methods Fine soil was mixed with either coarse soil, or the equivalent volume of inert glass chips, in ratios identical to those occurring naturally in soil sampled from two depths at each of two sites. Seedlings of Nothofagus solandri var. cliffortioides and Weinmannia racemosa were planted in the soil mixtures and harvested after 9 months. Results The content of nitrogen, phosphorous, potassium, magnesium and other elements in the above ground seedling tissue was significantly increased by the presence of coarse soil. The coarse soil fraction also contributed proportionally much more to plant nutrient uptake than fine soil on a mass per mass basis. Conclusions Coarse soil is excluded from conventional soil analysis, so is possible that soil nutrient capital is systematically underestimated. This has implications for land management and studies of plant dynamics in relation to nutrient supply.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-12
    Description: Background and aims Lateral tree-scale variability in plantations should be taken into account when scaling up from point samples, but appropriate methods for sampling and calculation have not been defined. Our aim was to define and evaluate such methods. Methods We evaluated several existing and new methods, using data for throughfall, root biomass and soil respiration in mature oil palm plantations with equilateral triangular spacing. Results Three ways of accounting for spatial variation within the repeating tree unit (a hexagon) were deduced. For visible patch patterns, patches can be delineated and sampled separately. For radial patterns, measurements can be made in radial transects or a triangular portion of the tree unit. For any type of pattern, including unknown patterns, a triangular sampling grid is appropriate. In the case studies examined, throughfall was 79 % of rainfall, with 95 % confidence limits being 62 and 96 % of rainfall. Root biomass and soil respiration, measured on a 35-point grid, varied by an order of magnitude. In zones with steep gradients in parameters, sampling density has a large influence on calculated mean values. Conclusions The methods defined here provide a basis for representative sampling and calculation procedures in studies requiring scaling up from point sampling, but more efficient methods are needed.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-14
    Description: By using the monthly ERA-40 reanalysis data and observed rainfall data, we investigated the effect of the Indian summer monsoon (ISM) on the South Asian High (SAH) at 200 hPa, and the role played by the SAH in summer rainfall variation over China. It is found that in the interannual timescale the east–west shift is a prominent feature of the SAH, with its center either over the Iranian Plateau or over the Tibetan Plateau. When the ISM is stronger (weaker) than normal, the SAH shifts westward (eastward) to the Iranian Plateau (Tibetan Plateau). The east–west position of SAH has close relation to the summer rainfall over China. A westward (eastward) location of SAH corresponds to less (more) rainfall in the Yangtze-Huai River Valley and more (less) rainfall in North China and South China. A possible physical process that the ISM affects the summer rainfall over China via the SAH is proposed. A stronger (weaker) ISM associated with more (less) rainfall over India corresponds to more (less) condensation heat release and anomalous heating (cooling) in the upper troposphere over the northern Indian peninsula. The anomalous heating (cooling) stimulates positive (negative) height anomalies to its northwest and negative (positive) height anomalies to its northeast in the upper troposphere, causing a westward (eastward) shift of the SAH with its center over the Iranian Plateau (Tibetan Plateau). As a result, an anomalous cyclone (anticyclone) is formed over the eastern Tibetan Plateau and eastern China in the upper troposphere. The anomalous vertical motions in association with the circulation anomalies are responsible for the rainfall anomalies over China. Our present study reveals that the SAH may play an important role in the effect of ISM on the East Asian summer monsoon.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-17
    Description: National Centers for Environmental Prediction recently upgraded its operational seasonal forecast system to the fully coupled climate modeling system referred to as CFSv2. CFSv2 has been used to make seasonal climate forecast retrospectively between 1982 and 2009 before it became operational. In this study, we evaluate the model’s ability to predict the summer temperature and precipitation over China using the 120 9-month reforecast runs initialized between January 1 and May 26 during each year of the reforecast period. These 120 reforecast runs are evaluated as an ensemble forecast using both deterministic and probabilistic metrics. The overall forecast skill for summer temperature is high while that for summer precipitation is much lower. The ensemble mean reforecasts have reduced spatial variability of the climatology. For temperature, the reforecast bias is lead time-dependent, i.e., reforecast JJA temperature become warmer when lead time is shorter. The lead time dependent bias suggests that the initial condition of temperature is somehow biased towards a warmer condition. CFSv2 is able to predict the summer temperature anomaly in China, although there is an obvious upward trend in both the observation and the reforecast. Forecasts of summer precipitation with dynamical models like CFSv2 at the seasonal time scale and a catchment scale still remain challenge, so it is necessary to improve the model physics and parameterizations for better prediction of Asian monsoon rainfall. The probabilistic skills of temperature and precipitation are quite limited. Only the spatially averaged quantities such as averaged summer temperature over the Northeast China of CFSv2 show higher forecast skill, of which is able to discriminate between event and non-event for three categorical forecasts. The potential forecast skill shows that the above and below normal events can be better forecasted than normal events. Although the shorter the forecast lead time is, the higher deterministic prediction skill appears, the probabilistic prediction skill does not increase with decreased lead time. The ensemble size does not play a significant role in affecting the overall probabilistic forecast skill although adding more members improves the probabilistic forecast skill slightly.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-21
    Description: The south peninsular part of India gets maximum amount of rainfall during the northeast monsoon (NEM) season [October to November (OND)] which is the primary source of water for the agricultural activities in this region. A nonlinear method viz., Extreme learning machine (ELM) has been employed on general circulation model (GCM) products to make the multi-model ensemble (MME) based estimation of NEM rainfall (NEMR). The ELM is basically is an improved learning algorithm for the single feed-forward neural network (SLFN) architecture. The 27 year (1982–2008) lead-1 (using initial conditions of September for forecasting the mean rainfall of OND) hindcast runs (1982–2008) from seven GCM has been used to make MME. The improvement of the proposed method with respect to other regular MME (simple arithmetic mean of GCMs (EM) and singular value decomposition based multiple linear regressions based MME) has been assessed through several skill metrics like Spread distribution, multiplicative bias, prediction errors, the yield of prediction, Pearson’s and Kendal’s correlation coefficient and Wilmort’s index of agreement. The efficiency of ELM estimated rainfall is established by all the stated skill scores. The performance of ELM in extreme NEMR years, out of which 4 years are characterized by deficit rainfall and 5 years are identified as excess, is also examined. It is found that the ELM could expeditiously capture these extremes reasonably well as compared to the other MME approaches.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-09-21
    Description: Background Plants must acquire at least 14 mineral nutrients from the soil to complete their life cycles. Insufficient availability or extreme high levels of the nutrients significantly affect plant growth and development. Plants have evolved a series of mechanisms to adapt to unsuitable growth conditions where nutrient levels are too low or too high. microRNAs (miRNAs), a class of small RNAs, are known to mediate post-transcriptional regulation by transcript cleavage or translational inhibition. Besides regulating plant growth and development, miRNAs are well documented to regulate plant adaptation to adverse environmental conditions including nutrient stresses. Scope In this review, we focus on recent progress in our understanding of how miRNAs are involved in plant response to stresses resulting from deficiency in nutrients, such as nitrogen, phosphorus, sulfur, copper and iron, as well as toxicities from heavy metal ions. Conclusions Accumulated evidence indicates that miRNAs play critical roles in sensing the abundance of nutrients, controlling nutrient uptake and phloem-mediated long-distance transport, and nutrient homeostasis. miRNAs act as systemic signals to coordinate these physiological activities helping plants respond to and survive nutrient stresses and toxicities. Knowledge about how miRNAs are involved in plant responses to nutrient stresses promise to provide novel strategies to develop crops with improved nutrient use efficiency which could be grown in soils with either excessive or insufficient availability of nutrients.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-22
    Description: The sea surface temperature anomaly pattern differs between the central Pacific (CP) and eastern Pacific (EP) El Niños during boreal summer. It is expected that the respective atmospheric response will be different. In order to identify differences in the responses to these two phenomena, we examine the Community Atmosphere Model Version 4 simulations forced with observed monthly sea surface temperature during 1979–2010 and compare with the corresponding observations. For CP El Niño, a triple precipitation anomaly pattern appears over East Asia. During EP El Niño, the triple pattern is not as significant as and shifts eastward and southward compared to CP El Niño. We also examine the influence of CP La Niña and EP La Niña on East Asia. In general, the impact of CP (EP) La Niña on tropics and East Asia seems to be opposite to that of CP (EP) El Niño. However, the impacts between the two types of La Niña are less independent compared to the two types of warm events. Both types of El Niño (La Niña) correspond to a stronger (weaker) western North Pacific summer monsoon. The sensitivity experiments support this result. But the CP El Niño (La Niña) may have more significant influence on East Asia summer climate than EP El Niño (La Niña), as the associated low-level anomalous wind pattern is more distinct and closer to the Asian continent compared to EP El Niño (La Niña).
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-22
    Description: Since the Mediterranean Sea is halfway between subtropical and middle latitudes, and it represents a marginal oceanic region, research has tended to focus on how large-scale modes of atmospheric variability modulate its surface temperature. Conversely, the present study examines the potential influence of the Mediterranean Sea surface temperature (SST) anomalies on the Northern Hemisphere atmospheric circulation. In particular, this work explores the large-scale changes in the global circulation forced/influenced by the eastern Mediterranean summer-autumn SST pattern. To isolate the atmospheric response, AGCM sensitivity experiments with prescribed SST over the Mediterranean Sea and climatology elsewhere are analysed. Observational diagnostics upon the period used to define the boundary conditions (1979–2002) are also interpreted. Our results support the hypothesis of an atmospheric pattern initiated in the Mediterranean basin, pointing out both a local baroclinic response and a barotropic circumglobal anomaly. This atmospheric teleconnection pattern projects onto a hemispheric wave-like structure, reflecting the waveguide effect of the westerly jets. Results suggest, thereby, that the recurrent summer-autumn circumglobal teleconnection pattern can be excited locally by changes in the atmosphere over the Mediterranean region. A linear behaviour is found upon a regional impact over northeastern Africa. The remote impacts present however a nonlinear signature: anomalous warm conditions influencing on northern Europe and Euro–Asia, whereas anomalous cold conditions impacting more on the North Pacific basin. Limitations in our model setup are also discussed.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-22
    Description: Background and aims (i) compare the concentrations of total polyphenols (TP) and condensed tannins (CT), and CT profiles in different organs of mature trees and seedlings of eight true mangrove species in Hong Kong; (ii) examine the antioxidant activities of CT and (iii) relate the non-enzymatic antioxidative defence system with the vertical zonation pattern of mangrove species. Methods Mature trees and seedlings of eight species were collected from a Hong Kong mangrove swamp to determine TP and CT concentrations and the antioxidant activities of CT. Results According to TP concentrations, the true mangrove species could be broadly classified into three groups, (i) Lumnitzera racemosa and Aegiceras corniculatum 〉 (ii) Heritiera littoralis , Excoecaria agallocha , Bruguiera gymnorrhiza and Kandelia obovata 〉 (iii) Acanthus ilicifolius and Avicennia marina . The last two are pioneer species in the most foreshore location. They also had significantly lower antioxidant activities, CT concentrations and different CT profiles than the other six species in mid- and low-tides. Conclusions Classification of the eight true mangrove species into three groups based on polyphenols was similar to their vertical zonation from land to sea. The relationships between these antioxidants and zonation should be further verified by transplantation studies.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-09-22
    Description: Background and aims Soil phosphorus (P) indices that have been originally developed and applied to agricultural soils for predicting P uptake by plants were examined in a pot experiment to determine the most suitable index for P availability in bauxite-processing residue sand (BRS). Methods Pot trials with ryegrass were established using BRS that had been amended with various organic (greenwaste compost, biochar and biosolids) and inorganic (zeolite) materials and different levels of di-ammonium phosphate fertiliser. Soil P availability indices tested included anion-exchange membrane (AEM-P), 0.01 M calcium chloride (CaCl 2 -P), Colwell-P, and Mehlich 3-P. Results AEM-P was found to most closely reflect the available P status in BRS across all treatments, and had the strongest associations with plant P uptake compared to Colwell-P, Mehlich 3-P and CaCl 2 -P. AEM-P was more closely correlated with P uptake by ryegrass than other P indices, while Colwell-P was closely related to leaf dry matter. Interestingly, a strong inverse relationship between plant indices and pH in BRS growth media was observed, and an adequate level of plant P uptake was found only in 15 year-old rehabilitated BRS with pH 〈 8.0. Conclusions AEM-P was found to be the most suitable index for evaluating P availability in highly alkaline BRS and pH was an important parameter affecting uptake of P by ryegrass. Importantly, time is required (〉 5 years) before improved uptake of P by plants can be observed in rehabilitated residue sand embankments.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-09-22
    Description: Background & aims Herbivore-driven changes to soil properties can influence the decomposition rate of organic material and therefore soil carbon cycling within grassland ecosystems. We investigated how aboveground foraging mammalian and invertebrate herbivores affect mineral soil decomposition rates and associated soil properties in two subalpine vegetation types (short-grass and tall-grass) with different grazing histories. Methods Using exclosures with differing mesh sizes, we progressively excluded large, medium and small mammals and invertebrates from the two vegetation types in the Swiss National Park (SNP). Mineral soil decomposition rates were assessed using the cotton cloth (standard substrate) method between May and September 2010. Results Decomposition displayed strong spatio-temporal variability, best explained by soil temperature. Exclusion of large mammals increased decomposition rates, but further exclusion reduced decomposition rates again in the lightly grazed (tall-grass) vegetation. No difference among treatments was found in the heavily grazed (short-grass) vegetation. Heavily grazed areas had higher decomposition rates than the lightly grazed areas because of higher soil temperatures. Microbial biomass carbon and soil C:N ratio were also linked to spatio-temporal decomposition patterns, but not to grazing history. Conclusions Despite altering some of the environmental controls of decomposition, cellulose decomposition rates in the SNP’s subalpine grasslands appear to be mostly resistant to short-term herbivore exclusion.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-27
    Description: Atlantic Multidecadal Variability (AMV) is investigated in a millennial control simulation with the Kiel Climate Model (KCM), a coupled atmosphere–ocean–sea ice model. An oscillatory mode with approximately 60 years period and characteristics similar to observations is identified with the aid of three-dimensional temperature and salinity joint empirical orthogonal function analysis. The mode explains 30 % of variability on centennial and shorter timescales in the upper 2,000 m of the North Atlantic. It is associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) of ±1–2 Sv and Atlantic Sea Surface Temperature (SST) of ±0.2 °C. AMV in KCM results from an out-of-phase interaction between horizontal and vertical ocean circulation, coupled through Irminger Sea convection. Wintertime convection in this region is mainly controlled by salinity anomalies transported by the Subpolar Gyre (SPG). Increased (decreased) dense water formation in this region leads to a stronger (weaker) AMOC after 15 years, and this in turn leads to a weaker (stronger) SPG after another 15 years. The key role of salinity variations in the subpolar North Atlantic for AMV is confirmed in a 1,000 year long simulation with salinity restored to model climatology: No low frequency variations in convection are simulated, and the 60 year mode of variability is absent.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-27
    Description: Based on a generated time series for the central pressure of the Siberian High, and on defining a robust Siberian High Index (SHI), the behavior of this atmospheric center of action is examined from 1949 to 2010 with regard to inter-annual variations, persistence, trends, abrupt changes, spectral analysis and interactions. The interannual variability in the central pressure of the Siberian High is considerable. The mean downward linear and non-linear trend over the entire period (1949–2010) is estimated and is found to be statistically significant at the 95 % confidence level. Low frequency variation and linearity within the SHI time series are found from the persistence analysis. Using spectral analysis, the center of action of the Siberian High is characterized by non-periodic behavior; the peaks occur only at the lowest frequency and may be related to the Sea Surface Temperature (SST) over the El Niño region. The Siberian High is affected by the Hadley circulation cell; there is no detectable connection between the Walker circulation cell and the Siberian High. SSTs over the El Niño region may affect the Siberian High. Interactions between the Siberian High and the SSTs over the tropical Atlantic Ocean are absent. The SHI is positively correlated to surface air temperatures over Saudi Arabia, and this is statistically significant in the western and north-western regions.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-27
    Description: This study investigates the spatial and temporal characteristics of cold surges that propagates northward along the eastern flank of the Andes from subtropical to tropical South America analysing wintertime in situ daily minimum temperature observations from Argentina, Bolivia and Peru and ERA-40 reanalysis over the 1975–2001 period. Cold surges usually last 2 or 3 days but are generally less persistent in the southern La Plata basin compared to tropical regions. On average, three to four cold surges are reported each year. Our analysis reveals that 52 % of cold episodes registered in the south of La Plata basin propagate northward to the northern Peruvian Amazon at a speed of around 20 m s −1 . In comparison to cold surges that do not reach the tropical region, we demonstrate that these cold surges are characterized, before they reach the tropical region, by a higher occurrence of a specific circulation pattern associated to southern low-level winds progression toward low latitudes combined with subsidence and dry condition in the middle and low troposphere that reinforce the cold episode through a radiative effect. Finally, the relationship between cold surges and atmosphere dynamics is illustrated for the two most severe cold intrusions that reached the Peruvian and Bolivian Amazon in the last 20 years.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-27
    Description: The Greenland ice sheet is projected to be strongly affected by global warming. These projections are either issued from downscaling methods (such as Regional Climate Models) or they come directly from General Circulation Models (GCMs). In this context, it is necessary to evaluate the accuracy of the daily atmospheric circulation simulated by the GCMs, since it is used as forcing for downscaling methods. Thus, we use an automatic circulation type classification based on two indices (Euclidean distance and Spearman rank correlation using the daily 500 hPa geopotential height) to evaluate the ability of the GCMs from both CMIP3 and CMIP5 databases to simulate the main circulation types over Greenland during summer. For each circulation type, the GCMs are compared to three reanalysis datasets on the basis of their frequency and persistence differences. For the current climate (1961–1990), we show that most of the GCMs do not reproduce the expected frequency and the persistence of the circulation types and that they simulate poorly the observed daily variability of the general circulation. Only a few GCMs can be used as reliable forcings for downscaling methods over Greenland. Finally, when applying the same approach to the future projections of the GCMs, no significant change in the atmospheric circulation over Greenland is detected, besides a generalised increase of the geopotential height due to a uniform warming of the atmosphere.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-27
    Description: The East Asian summer monsoon (EASM) features strong humid low-level southerly flows and abundant rainfall over the subtropical East Asia. This study identified how condensational heating generated by the EASM rainfall can affect the EASM circulation by contrasting two 10-member ensembles of atmospheric General Circulation Model experiments with Community Climate Model version 3/National Center for Atmospheric Research respectively with and without feedback of condensational heating over the East Asian domain. Major results inferred from the experiments are as follows. Condensational heating is found to absolutely dominate diabatic heating over East Asia. Exclusion of the feedback of condensational heating leads to a significant weakening of summertime tropospheric warming over land and thus a large reduction of the land-sea thermal contrast between entire Asian continent and surrounding oceans. Associated with this, the lower-level EASM flows are weakened, South Asian High at 200 hPa migrates southward with reduced intensity and breaks over East Asia with southerly flows prevailing in the upper troposphere, in contrast to northerly flows in reality. Consequently, local EASM meridional cell disappears and the baroclinic structure featured by the EASM circulation that is dynamically determined by convective condensational heating over East Asia is altered to a barotropic structure. Therefore, it is concluded that the feedback of condensational heating acts to largely enhance lower-level flows of the EASM and essentially determine its baroclinic structure and meridional cell, once the solar radiation and inhomogeneity of the Earth’s surface form low-level monsoon flows in East Asia by enhancing land-sea thermal contrast.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-09-27
    Description: Based on experiments using a coupled general circulation model which resolves tropical ocean–atmosphere coupled phenomena such as El Niño/Southern Oscillation (ENSO) and the Indian Ocean Dipole, forcing mechanisms of the Indian Ocean subtropical dipole (IOSD) are investigated. In the control experiment, as in the observation, several types of the IOSD are generated by the variations in the Mascarene High during austral summer and characterized by a dipole pattern of sea surface temperature (SST) anomalies in the northeastern and southwestern parts of the southern Indian Ocean. In another experiment, where the SST outside the southern Indian Ocean is nudged toward the monthly climatology of the simulated SST, one type of the IOSD occurs, but it is less frequent and associated with the zonal wavenumber four pattern of equivalently barotropic geopotential height anomalies in high latitudes, suggesting an interesting link with the Antarctic Circumpolar Wave. This indicates that, even without the atmospheric teleconnection from tropical coupled climate modes, the IOSD may develop in association with the atmospheric variability in high latitudes of the Southern Hemisphere. In the other experiment, where only the southern Indian Ocean and the tropical Pacific are freely interactive with the atmosphere, two types of both positive and negative IOSD occur. Since the occurrence frequency of the IOSD significantly increases as compared to the second experiment, this result confirms that the atmospheric teleconnection from ocean-atmosphere coupled modes in the tropical Pacific such as ENSO may also induce the variations in the Mascarene High that generate the IOSD. The present research, even within the realm of model studies, shows clearly that the predictability of the IOSD in mid-latitudes is related to both low and high-latitudes climate variations.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-09-27
    Description: Background Our recent publication (Warren et al., Plant Soil 366:683–693, 2013 ) described how pulses of deuterium oxide (D 2 O) or H 2 O combined with neutron radiography can be used to indicate root water uptake and hydraulic redistribution in maize. This technique depends on the large inherent differences in neutron cross-section between D and H atoms resulting in strong image contrast. Scope and Conclusions However, as illustrated by Carminati and Zarebanadkouki ( 2013 ) there can be a change in total water content without a change in contrast simply by a change in the relative proportions of D 2 O and H 2 O. We agree with their premise and detailed calculations (Zarebanadkouki at al. 2012 , 2013 ), and present further evidence that mixing of D 2 O and H 2 O did not confound evidence of hydraulic redistribution in our study.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-09-27
    Description: Background and aims The growth of green plants depends not only on photosynthesis, but also on the successful remobilization and translocation of seed phosphorus (P) reserves to the vegetative parts of the developing seedling during early growth. Remobilization and photosynthesis are therefore two parallel and co-coinciding processes involved in better seedling establishment and early growth. Methods A study was conducted to evaluate the priority of developing maize seedlings to translocate the remobilized seed P reserves and external P uptake to seedling root and shoot sinks during 4 weeks of early growth. Two fluxes of P in growing seedlings, one from seed remobilized P reserves and one from external P uptake, were distinguished by labelling external nutrient solution P with 32 P. Results The seedling phytomass was equally distributed between seedling roots and shoots for 530 cumulated degree days after sowing. Seedlings partitioned up to 71 % of P from seed reserves and up to 68 % of P acquired from the nutrient solution, to the shoots, depending on the seed P content and P concentration in the nutrient solution. It appears that accumulation of P slows down in seedling roots corresponds to the translocative functions of root P towards shoots for start of photosynthesis. Conclusions Our results suggest that the major part of seed P reserves and external P uptake were used in early development of the seedling and the preferred sink was seedling shoots.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-09-27
    Description: Background and aims Nickel (Ni) has become a major heavy metal contaminant. The form of nitrogen nutrition remarkably affects IRT1 expression in roots. IRT1 has an activity of transporting Ni 2+ into root cells. Therefore, nitrogen-form may affect Ni accumulation and toxicity in plants. The assumption was investigated in this study. Methods The Arabidopsis plants were treated in Ni-contained growth solutions with either nitrate (NO 3 − ) or ammonium (NH 4 + ) as the sole N source. After 7-day treatments, Ni concentration, IRT1 expression, Ni-induced toxic symptoms and oxidative stress in plants were analyzed. Results The NO 3 − -fed plants contained a higher Ni concentration, had a greater IRT1 expression in roots, and developed more severe toxic symptoms in the youngest fully expanded leaves, compared with the NH 4 + -fed plants. The Ni-induced growth inhibition was also more significant in NO 3 − -fed plants. Interestingly, Ni exposure resulted in greater hydrogen peroxide (H 2 O 2 ) and superoxide radical (O 2 . − ) accumulations, more severe lipid peroxidation and more cell death in NO 3 − -fed plants, whereas the opposite was true for NH 4 + -fed plants. Furthermore, the Ni-enhanced peroxidase (POD) and superoxide dismutase (SOD) activities were greater in NO 3 − -fed plants Conclusion NO 3 − nutrition promotes Ni uptake, and enhances Ni-induced growth inhibition and oxidative stress in plants compared with NH 4 + nutrition.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-09-27
    Description: Background and aims Brassica napus has high boron (B) demand, but significant genotype differences exist with respect to B deficiency. The aim of this research was to elucidate the relationship between the different sensitivities of Brassica napus cultivars to low B stress and the characteristics of B uptake and transport to characterise the regulation of B efficiency in Brassica napus . Methods B-efficient and B-inefficient Brassica napus cultivars were used to compare the uptake and transport of B using the stable isotope 10 B tracer and grafting experiments, as well as expression of B transporters by RT-PCR. Results B-efficient cultivars have significant advantages with regard to B limitation. The B-efficient cultivar HZ showed less severe B deficiency symptoms and higher dry biomass than the B-inefficient cultivars LW and LB. Both the amount of total B and the 10 B concentration and accumulation in the shoots and roots of B-efficient HZ were higher than those of B-inefficient cultivars. In B-inefficient LW, the amount of total B and the 10 B that was transported into shoots was less than in the other three cultivars and the content and accumulation of total B and 10 B in the roots of B-inefficient LB were the lowest among all of the cultivars. When the roots of B-efficient HZ were used as stocks, the grafted plants showed B-efficient characteristics, such as mild B deficiency symptoms, and higher dry biomass and B accumulation, regardless of whether they originated from B-efficient or B-inefficient cultivars. In contrast, the grafted plants with B-inefficient LW used as stocks were B-inefficient. The expressions of BnBOR1;1c , BnBOR1;2a and BnNIP5;1 were up-regulated in roots under low B stress compared with the normal B condition. However, there was no obvious difference in the expressions of the three genes or of four other BnBOR1s between B-efficient and B-inefficient cultivars in low or normal B environments. Conclusions These results indicate that the B efficiency of Brassica napus is controlled primarily by roots, which allow more uptake and accumulation of B in B-efficient cultivars than B-inefficient cultivars in a low B environment. However the molecular mechanism regulating B efficiency in Brassica napus remains to be determined.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-09-27
    Description: Aims Application of carbon (C) and nitrogen (N) isotopes is an essential tool to study C and N flows in plant-soil-microorganisms systems. When targeting single plants in a community the tracers need to be added via e.g., leaf-labeling or stem-feeding approaches. In this study we: (i) investigated if bicarbonate can be used to introduce 14 C (or 13 C) into white clover and ryegrass, and (ii) compared the patterns of 14 C and 15 N allocation in white clover and ryegrass to evaluate the homogeneity of tracer distribution after two alternative labeling approaches. Methods Perennial ryegrass and white clover were pulse labeled with 15 N urea via leaf-labeling and 14 C either via a 14 CO 2 atm or with 14 C bicarbonate through leaf-labeling. Plants were sampled 4 days after labeling and prepared for bulk isotope analysis and for 14 C imaging to identify plant parts with high and low 14 C activity. Subsequently, plant parts with high and low 14 C activity were separated and analyzed for 15 N enrichment. Results Bicarbonate applied by leaf-labeling efficiently introduced 14 C into both white clover and ryegrass, although the 14 C activity in particular for white clover was found predominantly in the labeled leaf. Using 14 C imaging for identification of areas with high (hotspots) and low 14 C activity showed that 14 C was incorporated very heterogeneously both when using bicarbonate and CO 2 as expected when using pulse labeling. Subsequent analysis of 15 N enrichment in plant parts with high and low 14 C activity showed that 15 N also had a heterogeneous distribution (up to two orders of magnitude). Conclusion Bicarbonate can efficiently be used to introduce 14 C or 13 C into plant via the leaf-labeling method. Both 14 C and 15 N showed heterogeneous distribution in the plant, although the distribution of 15 N was more even than that of 14 C.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-09-27
    Description: Background and aim In numerous areas, rice cultivated under flooded conditions is exposed simultaneously to iron excess and arsenic contamination. The impact of these combined stresses on yield-related parameters and As distribution and speciation in various plant parts remains poorly documented. Methods Rice (cv I Kong Pao) was exposed to iron excess (125 mg L −1 Fe 2 SO 4 ), arsenic (50 and 100 μM Na 2 HAsO 4 .7H 2 O) or a combination of those stressing agents in hydroponic culture until harvest. Plant growth, yield-related parameters, non protein thiols concentration and mineral nutrition were studied in roots and shoots. Arsenic speciation was determined by high-performance liquid chromatography-hydride generation-atomic fluorescence spectrometry. Key Results Iron excess increased As retention by the roots in relation to the development of the root iron plaque but decreased As accumulation in the shoot. Arsenic concentration was lower in the grains than in the shoots. Iron stress reduced As accumulation in the husk but not in the dehusked grains. Iron excess decreased the proportion of extractable As(III) and As(V) in the grain while it increased the proportion of extractable As(III) in the shoot. Combined stresses (Fe+As) affected plant nutrition and significantly reduced the plant yield by limiting the number of grains per plant and the grain filling. Conclusions Fe excess had an antagonist impact on shoot As concentration but an additive negative impact on several yield-related parameters. Iron stress influences both As distribution and As speciation in rice.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-09-27
    Description: Background and aims Intermittently frozen ground in winter is expected to disappear over large areas in the temperate zone due to ongoing climate warming. The lack of soil frost influences plant soil interactions and needs to be studied in more detail. Methods Winter soil frost was avoided by belowground heating wires in a field experiment over two subsequent winters in a temperate grassland. Soil respiration, soil nitrogen availability and plant performance (aboveground biomass, root length at two depth levels, greenness, nutrient content) were compared between “no-frost” and reference plots which underwent repeated freeze-thaw cycles in both winters. Results Soil respiration increased in the “no-frost” treatment during the warming phase (+291 %). N-availability in the upper 10 cm of the soil profile was not affected, possibly due to increased plant N accumulation during winter (+163 %), increased plant N concentration (+18 %) and increased biomass production (+31.5 %) in the growing season. Translocation of roots into deeper soil layers without changes in total root length in response to the “no-frost” treatment, however, may be a sign of nutrient leaching. Conclusions The cumulative effect on carbon cycling due to warmer soils therefore depends on the balance between increased winter carbon loss due to higher soil biotic activity and enhanced plant productivity with higher nutrient accumulation in the growing season.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-09-27
    Description: Aims The aims of this work were to investigate the aluminum (Al) and phosphate (P) interactions in the regulation of root system architecture of Arabidopsis thaliana seedlings and the contribution of auxin signaling in primary and lateral root growth in response to Al toxicity. Methods Detailed analyses of root system architecture and cell division were performed in Arabidopsis WT seedlings and in low phosphorus insensitive mutants lpi1 - 3 and lpr1 - 1 lpr2 - 1 in response to Al. Expression studies of P-deficiency regulated phosphate transporter AtPT2 were also conducted. The role of auxin as a mediator of root morphogenetic changes by Al was evaluated by using the auxin-signaling mutants tir1 , tir1 afb2 afb3 , and arf7 arf19 . Results Al inhibited primary root growth by affecting cell cycle progression and causing differentiation of cells in the root meristem. These effects were reduced in low phosphorus insensitive lpi1 - 3 and low phosphate resistant lpr1 - 1 lpr2 - 1 Arabidopsis mutants. Al also activated the expression of the low phosphate-induced P transporter AtPT2 in roots. Lateral root formation by Al decreased in tir1 afb2 afb3 while arf7 arf19 mutants were highly resistant to Al in both primary root inhibition and lateral root induction. Conclusions Our results suggest that lateral root formation in response to Al toxicity and P deficiency may involve common signaling mechanisms, while a pathway involving ARF7 and ARF19 is important for primary root growth inhibition by Al.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-09-27
    Description: Aims Litter decomposition and subsequent nutrient release play a major role in forest carbon and nutrient cycling. To elucidate how soluble or bulk nutrient ratios affect the decomposition process of beech ( Fagus sylvatica L.) litter, we conducted a microcosm experiment over an 8 week period. Specifically, we investigated leaf-litter from four Austrian forested sites, which varied in elemental composition (C:N:P ratio). Our aim was to gain a mechanistic understanding of early decomposition processes and to determine microbial community changes. Methods We measured initial litter chemistry, microbial activity in terms of respiration (CO 2 ), litter mass loss, microbial biomass C and N (C mic and N mic ), non purgeable organic carbon (NPOC), total dissolved nitrogen (TDN), NH 4 + , NO 3 - and microbial community composition (phospholipid fatty acids – PLFAs). Results At the beginning of the experiment microbial biomass increased and pools of inorganic nitrogen (N) decreased, followed by an increase in fungal PLFAs. Sites higher in NPOC:TDN (C:N of non purgeable organic C and total dissolved N), K and Mn showed higher respiration. Conclusions The C:N ratio of the dissolved pool, rather than the quantity of N, was the major driver of decomposition rates. We saw dynamic changes in the microbial community from the beginning through the termination of the experiment.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-09-27
    Description: Background and aims Grazing may influence nutrient cycling in several ways. In productive mountain grasslands of central Argentina cattle grazing maintain a mosaic of different vegetation patches: lawns, grazed intensively and dominated by high quality palatable plants, and open and closed tussock grasslands dominated by less palatable species. We investigated if differences in the resources deposited on soil (litter and faeces) were associated with litter decomposition rates and soil nitrogen (N) availability across these vegetation patches. Methods We compared the three vegetation patches in terms of litter and faeces quality and decomposability, annual litterfall and faeces deposition rate. We determined decomposition rates of litter and faces in situ and decomposability of the same substrates in a common garden using “litter bags”. We determined soil N availability (with resin bags) in the vegetation patches. Also, we performed a common plant substrates decomposition experiment to assess the effect of soil environment on decomposition process. This technique provides important insights about the soil environmental controls of decomposition (i.e. the sum of soil physicochemical and biological properties, and microclimate), excluding the substrate quality. Results The litter quality and faeces deposition rate were higher in grazing lawns, but the total amounts of carbon (C) and nitrogen (N) deposited on soil were higher in tussock grasslands, due to higher litterfall in these patches. The in situ decomposition rates of litter and faeces, and of the two common plant substrates were not clearly related to either grazing pressure, litterfall or litter quality (C, N, P, lignin, cellulose or hemicellulose content). In situ litter decomposition rate and soil ammonium availability were correlated with the decomposition rates of both common plant substrates. This may suggest that difference in local soil environment among patch types is a stronger driver of decomposition rate than quality or quantity of the resource that enter the soil. Conclusions Our results show that, although high grazing pressure improves litter quality and increases faeces input, the reduction in biomass caused by herbivores greatly reduces C and N input for the litter decomposition pathway. We did not find an accelerated decomposition rate in grazing lawns as proposed by general models. Our results point to soil environment as a potential important control that could mask the effect of litter quality on field decomposition rates at local scale.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-09-27
    Description: Background and aims Cd uptake has been shown to increase during conditions of Fe deficiency. This study tested the hypothesis that Fe-deficiency-responsive genes, particularly OsNRAMP1, play a role in the increased Cd uptake that occurs when rice is grown in aerobic soil conditions. Methods Plants were grown in aerobic or flooded soil conditions. Uptake of Cd was compared to levels of expression of candidate metal transporters and to metal ion availability in soil. Results Plants grown with intermittent soil flooding experienced a predominantly aerobic root environment and had the highest plant Cd uptake. Stronger upregulation of OsNRAMP1 was detected in plants grown in unflooded soil than in flooded soil. However, these transcriptional responses were not linked to an increase in Cd uptake. Overexpression of OsNRAMP1 was not found to increase the uptake of Cd in rice in soil or solution culture. In contrast, there were large differences in availability of Cd, Fe and Mn between flooded and aerobic soils, which were linked to changes in Cd uptake. Conclusions Aerobic soil conditions favour Cd uptake through increased Cd availability and decreased competition between Cd and Fe rather than through the increased expression of the Fe transporters themselves.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-09-27
    Description: Background and aims Intensive land use has led to degradation and abandonment of Portuguese oak woodlands, and subsequent shrub encroachment may have altered the spatial heterogeneity of soil C and N pools. The aim of this study was to evaluate the effects of shrub invasion on soil C and N dynamics in an oak woodland in Southern Portugal. Methods Soil was sampled beneath and outside scattered Quercus suber L. canopies, considering non-encroached areas and areas encroached by shrubs ( Cistus ladanifer L. or Cistus salviifolius L.). Results The spatial heterogeneity of soil C and N contents was mainly associated with tree presence. Outside tree canopies, the labile C pools were larger (mainly beneath C . ladanifer ) and C cycling was faster in encroached areas than in non-encroached areas. Net and gross N mineralization and urease and protease activities were also higher in encroached than in non-encroached areas; however, the metabolic quotient and the Cmicrobial/Corganic ratio were not significantly affected. Beneath the tree canopy, significant effects of encroachment included a small increase in soil labile C and the enzymatic activity beneath C . ladanifer . Conclusions The results indicate the potential capacity of shrub encroachment to accumulate soil organic C in the long term. The rate of soil C and N turnover promoted by shrub encroachment may depend on the Cistus species present.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-09-27
    Description: Aims Decreased expression of TaNAM genes by RNAi results in delayed senescence and decreased grain protein, iron, and zinc concentrations. Here, we determined whether NAM expression level alters onset of senescence under stress conditions, whether delayed senescence in the TaNAM -RNAi line resulted in improved tolerance to post-anthesis abiotic stress, and determined the effects of post-anthesis abiotic stress on N and mineral remobilization and partitioning to grain. Methods Greenhouse-grown WT and TaNAM -RNAi wheat were characterized in two studies:three levels of N fertility or water limitation during grain fill. Studies were conducted under both optimal and heat stress temperatures. Senescence onset was determined by monitoring flag leaf chlorophyll. Results Under optimal tempertures, TaNAM -RNAi plants had a yield advantage at lower N. TaNAM -RNAi plants had delayed senescence relative to the WT and lower grain protein and mineral concentrations, N remobilization efficiency, and partitioning of N and most minerals to grain. Conclusions Nutritional quality of TaNAM -RNAi grain was consistently lower than WT. Delayed senescence of TaNAM -RNAi plants provided a yield advantage under optimal temperatures but not under water or heat stress. Discovery of specific NAM protein targets may allow separation of the delayed senescence and nutrient partitioning traits, which could be used for improvement of wheat.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-09-27
    Description: Aims Nitrification inhibitors (NI) formulated on granulated ammonium sulphate nitrate (ASN) are an option to minimize nitrate leaching into ground waters and emissions of the greenhouse gas N 2 O. This paper focuses (a) on the development of an analytic enabling to extract and quantify the NI 3,4-dimethylpyrazolephosphate (DMPP), marketed since 1999. The efficiency of DMPP has been studied in laboratory and field soils. Here the DMPP analytic and the behaviour of a nitrifying bacterial consortium enriched from a field soil and exposed to zero, field applied and a 10 fold higher DMPP concentration than the recommended one for field application are in the focus. Methods For extracting DMPP quantitatively from soils a method connected to a HPLC analytic has been developed by us and was standardized in laboratory experiment with a silt clay field soil (allochtone Vega). The method is detailed described here. Its reliability has been tested in a 3 years field trial under varying cropping systems and climatic conditions asides the influence of DMPP on CO 2 −, CH 4 − and N 2 O- emissions, measured by the closed chamber method. Parallel a nitrifying bacterial consortium of the silty clay field soil was enriched and subjected to 0, the recommended DMPP concentration for field applications and a 10 times higher one. In incubation experiments the conversion of ammonium to nitrite and nitrate in presence and absence of DMPP was spectrophotometer determined and pH-shifts with a scaled litmus paper. In sacrificed flasks at the end of incubation morphological changes of the bacteria involved were studied by transmission electron microscope (TEM). Results The ammonium, nitrite and nitrate determinations and the TEM pictures show that in presence of the field applied DMPP concentration the nitrifying activity returned around 30 days later than in the control and the cells were slightly enlarged. In presence of a 10 times higher DMPP concentration a recovery was prevented. DMPP prolongs, compared with dicyandiamide (DCD), the period of nitrifiers’ inhibition and reduced N 2 O− and CO 2 − the emissions (Weiske et al., Biol Fertil Soils 34:109–117, 2001a , Nutr Cycl Agroecosys 60:57–64, b ). Conclusions With the method developed by us the stability of DMPP in agricultural soils can be satisfyingly and reproducible studied down to a detection limit of 0.01 μg DMPP g −1 dry soil. The morphological changes in the nitrifying consortium due to DMPP concentrations are in agreement with the recovery rate found by nitrite and nitrate formation.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-10-01
    Description: Background and aims Adequate zinc (Zn) in maize ( Zea mays L.) is required for obtaining Zn-enriched grain and optimum yield. This study investigated the impact of varying Zn fertilizer placements on Zn accumulation in maize plant. Methods Two pot experiments with same design were conducted to investigate the effect of soil Zn heterogeneity by mixing ZnSO 4 ·7H 2 O (10 mg Zn kg −1 soil on an average) in 10–15, 0–15, 25–30, 0–30, 30–60 and 0–60 cm soil layers on maize root growth and shoot Zn content at flowering stage in experiment-1, and assessing effects on grain Zn accumulation at mature stage in experiment-2. Results In experiment-1, Zn placements created a large variation in soil DTPA-Zn concentration (0.3–29.0 mg kg −1 ), which induced a systemic and positive response of root growth within soil layers of 0–30 cm; and shoot Zn content was increased by 102 %–305 % depending on Zn placements. Supply capacity of Zn in soil, defined as sum of product of soil DTPA-Zn concentration and root surface area at different soil layers, was most related to shoot Zn content ( r  = 0.82, P  〈 0.001) via direct and indirect effects according to path analysis. In experiment-2, Zn placements increased grain Zn concentration by up to 51 %, but significantly reduced the grain Zn harvest index from 50 % by control to about 30 % in average. Conclusion Matching the distribution of soil applied Zn with root by Zn placement was helpful to maximize shoot Zn content and grain Zn concentration in maize.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-10-02
    Description: Background and Aims Wetting-drying cycles are important environmental processes known to enhance aggregation. However, very little attention has been given to drying as a process that transports mucilage to inter-particle contacts where it is deposited and serves as binding glue. The objective of this study was to formulate and test conceptual and mathematical models that describe the role of drying in soil aggregation through transportation and deposition of binding agents. Methods We used an ESEM to visualize aggregate formation of pair of glass beads. To test our model, we subjected three different sizes of sand to multiple wetting-drying cycles of PGA solution as a mimic of root exudates to form artificial aggregates. Water stable aggregate was determined using wet sieving apparatus. Results A model to predict aggregate stability in presence of organic matter was developed, where aggregate stability depends on soil texture as well as the strength, density and mass fraction of organic matter, which was confirmed experimentally. The ESEM images emphasize the role of wetting-drying cycles on soil aggregate formation. Conclusions Our experimental results confirmed the mathematical model predictions as well as the ESEM images on the role of drying in soil aggregation as an agent for transport and deposition of binding agents.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-10-02
    Description: Background and aims Many plant growth-promoting endophytes (PGPE) possessing 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity can reduce the level of stress ethylene and assist their host plants cope with various biotic and abiotic stresses. However, information about the endophytic bacteria colonizing in the coastal halophytes is still very scarce. This study aims at isolating efficient ACC deaminase-producing plant growth-promoting (PGP) bacterial strains from the inner tissues of a traditional Chinese folk medicine Limonium sinense (Girard) Kuntze, a halophyte which has high economic and medicinal values grown in the coastal saline soils. Their PGP activity and effects on host seed germination and seedling growth under salinity stress were also evaluated. Methods A total of 126 isolates were obtained from the surface sterilized roots, stems and leaves of L. sinense (Girard) Kuntze. They were initially selected for their ability to produce ACC deaminase as well as other PGP properties such as production of indole-3-acetic acid (IAA), N 2 -fixation, and phosphate-solubilizing activities and subsequently identified by the 16S rRNA gene sequencing. For selected strains, seed germination, seedling growth, and flavonoids production in axenically growth L. sinense (Girard) Kuntze seedlings at different NaCl concentrations (0–500 mM) were quantified. Results Thirteen isolates possessing ACC deaminase activity were obtained. The 16S rRNA gene sequencing analysis showed them to belong to eight genera: Bacillus , Pseudomonas , Klebsiella , Serratia , Arthrobacter , Streptomyces , Isoptericola , and Microbacterium . Inoculation with four of the selected ACC deaminase-producing strains not only stimulated the growth of the host plant but also influenced the flavonoids accumulation. All four strains could colonize and can be re-isolated from the host plant interior tissues. Conclusions These results demonstrate that ACC deaminase-producing habitat-adapted symbiotic bacteria isolated from halophyte could enhance plant growth under saline stress conditions and the PGPE strains could be appropriate as bioinoculants to enhance soil fertility and protect the plants against salt stress.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-10-03
    Description: Previous studies have linked the rapid sea level rise (SLR) in the western tropical Pacific (WTP) since the early 1990s to the Pacific decadal climate modes, notably the Pacific Decadal Oscillation in the north Pacific or Interdecadal Pacific Oscillation (IPO) considering its basin wide signature. Here, the authors investigate the changing patterns of decadal (10–20 years) and multidecadal (〉20 years) sea level variability (global mean SLR removed) in the Pacific associated with the IPO, by analyzing satellite and in situ observations, together with reconstructed and reanalysis products, and performing ocean and atmosphere model experiments. Robust intensification is detected for both decadal and multidecadal sea level variability in the WTP since the early 1990s. The IPO intensity, however, did not increase and thus cannot explain the faster SLR. The observed, accelerated WTP SLR results from the combined effects of Indian Ocean and WTP warming and central-eastern tropical Pacific cooling associated with the IPO cold transition. The warm Indian Ocean acts in concert with the warm WTP and cold central-eastern tropical Pacific to drive intensified easterlies and negative Ekman pumping velocity in western-central tropical Pacific, thereby enhancing the western tropical Pacific SLR. On decadal timescales, the intensified sea level variability since the late 1980s or early 1990s results from the “out of phase” relationship of sea surface temperature anomalies between the Indian and central-eastern tropical Pacific since 1985, which produces “in phase” effects on the WTP sea level variability.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-10-04
    Description: Aims The objective of this study was to investigate the effects of future warming and drought on (1) the biochemical composition of above-ground biomass of forage plants ( Festuca arundinacea and Dactylis glomerata ), (2) the potential mineralization of this material in soil, and (3) its priming effect on native soil organic matter. Methods We sampled above-ground plant material from spring regrowth and summer regrowth of a climate change experiment. While in spring, the plants were well watered, the summer regrowth was exposed to drought and elevated temperature (+3 °C) by infrared heating of the canopy during 3 weeks. We assessed the elemental and isotopic composition, lignin and non-cellulosic carbohydrate content and composition of plant material grown under all three conditions. Its mineralization potential in soil and priming effects were evaluated during laboratory incubation. Results Warming had no significant effect on elemental and stable isotope composition of both plant materials. In contrast, it resulted in reduction of lignin content for both plant species and decrease of the lignin-to-N ratio for F. arundinacea and increased non-cellulosic carbohydrate content for D. glomerata . Summer regrowth was characterised by increase of δ 13 C values, which is consistent with variations in stomatal conductance due to water shortage. Moreover, summer drought induced an increase in N content leading to decrease of the C/N ratio and increase of lignin-to-N ratio of summer regrowth compared to spring regrowth. Differences in decomposition were small, while priming effects were more strongly altered by the different exposure to enviromental. Conclusion Our results provide direct experimental evidence that extreme climatic events (high temperature and precipitation deficit) have an influence on soil carbon storage particularly through their effect on priming of native soil organic matter induced by altered plant litter. These effects seem to be governed by alterations of stoichiometry and to a smaller extent by alterations of plant chemical composition.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-09-09
    Description: The goal of this study is to develop a high-resolution atmospheric hindcast over the Mediterranean area using the WRF-ARW model, focusing on offshore surface wind fields. In order to choose the most adequate model configuration, the study provides details on the calibration of the experimental saet-up through a sensitivity test considering the October–December 2001 period (the 2001 super-storm event in the West Mediterranean). A daily forecast outperforms the spectral technique of previous products and the boundary data from ERA-Interim reanalysis produces the most accurate estimates in terms of wind variability and hour-to-hour correspondence. According to the sensitivity test, two data sets of wind hindcast are produced: the SeaWind I (30-km horizontal resolution for a period of 60 years) and the SeaWind II (15-km horizontal resolution for 20 years). The validation of the resulting surface winds is undertaken considering two offshore observational datasets. On the one hand, hourly surface buoy stations are used to validate wind time series at specific locations; on the other hand, wind altimeter satellite observations are considered for spatial validation in the whole Mediterranean Sea. The results obtained from this validation process show a very good agreement with observations for the southern Europe region. Finally, SeaWind I and II are used to characterize offshore wind fields in the Mediterranean Sea. The statistical structure of sea surface wind is analyzed and the agreement with Weibull probability distribution is discussed. In addition, wind persistence and extreme wind speed (50 year return period) are characterized and relevant areas of wind power generation are described by estimating wind energy quantities.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-09-11
    Description: Proxy-data suggest that the Last Interglacial (LIG; ~130–116 ka BP) climate was characterized by higher temperatures, a partially melted Greenland Ice Sheet (GIS) and a changed Atlantic meridional overturning circulation (AMOC). Notwithstanding the uncertainties in LIG palaeoclimatic reconstructions, this setting potentially provides an opportunity to evaluate the relation between GIS melt and the AMOC as simulated by climate models. However, first we need to assess the extent to which a causal relation between early LIG GIS melt and the weakened AMOC is plausible. With a series of transient LIG climate simulations with the LOVECLIM earth system model, we quantify the importance of the major known uncertainties involved in early LIG GIS melt scenarios. Based on this we construct a specific scenario that is within the parameter space of uncertainties and show that it is physically consistent that early LIG GIS melting kept the AMOC weakened. Notwithstanding, this scenario is at the extreme end of the parameter space. Assuming that proxy-based reconstructions of early LIG AMOC weakening offer a realistic representation of its past state, this indicates that either (1) the AMOC weakening was caused by other forcings than early LIG GIS melt or (2) the early LIG AMOC was less stable than indicated by our simulations and a small amount of GIS melt was sufficient to keep the AMOC in the weak state of a bi-stable regime. We argue that more intensive research is required because of the high potential of the early LIG to evaluate model performance in relation to the AMOC response to GIS melt.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-09-11
    Description: Background and aim Saccharothrix algeriensis NRRL B-24137, isolated from a Saharan soil, has been described as a potential biocontrol agent against Botrytis cinerea and other phytopathogens. However, the plant protection mechanisms involved still need to be described. The aim of this study was to determine this protection phenomenon as well as parts of the mechanisms involved, using Arabidopsis thaliana seedlings and B. cinerea . Methods The bacterial colonization process was evaluated on A. thaliana seedlings using fluorescence in situ hybridization. Protection of A. thaliana seedlings inoculated with NRRL B-24137 against B. cinerea was then evaluated. Parts of the mechanisms involved in the systemic protection against B. cinerea were evaluated using known mutants of genes involved in jasmonate (JA)/ethylene (ET)/salicylic acid (SA) signaling. Other Arabidopsis mutants, AtrhbohD-3 , AtrhbohF-3 , and ups1-1 were also screened to determine other parts of the mechanisms involved. Results The results showed that the strain NRRL B-24137 colonized, epi- and endophytically, the roots of Arabidopsis seedlings but the strain was not a systemic colonizer during the time of the experiment. The strain NRRL B-24137 also reduced B. cinerea symptoms and the protection was linked to known mechanisms of induced systemic resistance (ISR; JA/ET signaling), as well as to functionality of AtrbohF oxidase and of UPS1. Crosstalk between ET/JA and SA signaling could also be involved. Conclusions The isolate NRRL B-24137, after colonizing the root systems of A. thaliana , induces an ISR against B. cinerea , which is JA/ET dependent, but could also require SA crosstalk and protection could also require NAPDH oxidases and UPS1 functionalities.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-09-13
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-09-14
    Description: Background and aims The effect of forest cover distribution and plant litter input on soil organic carbon were analyzed to better understand the dynamics of carbon cycling across ecosystems on the “Natural Oriented Reserve Bosco delle Pianelle”. Fluorescence spectroscopy represents a very useful tool to characterize soil organic matter properties, since it allows to directly monitor the molecular status of a fluorophore depending on its chemical environment, as well as on its structure, substituents of the aromatic moieties, and molecular weight. Here, fluorescence analysis was performed on humic acids isolated from four litters (HALs) and their underlying soils (HAs) at three depths. Methods All samples were collected from a protected forest area, Southern Italy, under different plant covering: Quercus ilex L. (Q), mixed Carpinus betulus L. and Carpinus orientalis Mill. (CC), Pinus halepensis L. (P), and mixed Quercus trojana Webb. and Quercus ilex L. (QQ). Results Data obtained showed a fast decomposition process for P and QQ litters, with HAs in the underlying soils characterized by the presence of simple, highly fluorescent structural components also in the deepest layers. On the contrary, a slow decomposition process was observed for Q and CC litters, whose underlying soil HAs were characterized by an increasing aromatic polycondensation and humification degree from the surface to the deepest layers, as supported by low values of fluorescence intensity and high wavelength maxima. Conclusions Results obtained indicate that P and QQ species promote C accumulation and stock in the underlying soils, thanks to a greater decomposition of their litter, and fluorescence spectroscopy is a very simple and suitable method to evaluate the influence of three species distribution on soil organic carbon pools.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-09-17
    Description: We measured the annual variation in the stable isotopes of oxygen (δ 18 O) and hydrogen (δD) in tree rings of Abies georgei on the Batang–Litang Plateau of western China. Although correlations between tree-ring δ 18 O and δD are relatively weak in semi-arid regions, we found a strong correlation between the δ 18 O and δD time series from 1755 to 2009 under the wetter environment. Tree-ring δ 18 O and δD time series are both significantly and negatively correlated with moisture conditions from June to August, including relative humidity and total precipitation, respectively, from 1960 to 2009. Considering the difference in low-frequency domain between the two isotopes, the relative humidity histories from June to August, reconstructed separately from the tree-ring δ 18 O and δD data with instrumental climate data, reveal a persistent drying trend since 1850s, especially since the early 1970s. There is an obvious offset of reconstructed relative humidity from tree-ring δ 18 O and δD in the period 1755–1820, despite the strong similarity in their 21-year moving averages. The decreased relative humidity since the 1850s may be associated with the thermal contrast between the sea surface temperature of the Indian Ocean and the Qinghai-Tibetan Plateau, which determines the strength of moisture transfer via the Indian summer monsoon.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-09-19
    Description: Observations show a multidecadal signal in the North Atlantic ocean, but the underlying mechanism and cause of its timescale remain unknown. Previous studies have suggested that it may be driven by the North Atlantic Oscillation (NAO), which is the dominant pattern of winter atmospheric variability. To further address this issue, the global ocean general circulation model, Nucleus for European Modelling of the Ocean (NEMO), is driven using a 2,000 years long white noise forcing associated with the NAO. Focusing on key ocean circulation patterns, we show that the Atlantic Meridional Overturning Circulation (AMOC) and Sub-polar gyre (SPG) strength both have enhanced power at low frequencies but no dominant timescale, and thus provide no evidence for a oscillatory ocean-only mode of variability. Instead, both indices respond linearly to the NAO forcing, but with different response times. The variability of the AMOC at 30°N is strongly enhanced on timescales longer than 90 years, while that of the SPG strength starts increasing at 15 years. The different response characteristics are confirmed by constructing simple statistical models that show AMOC and SPG variability can be related to the NAO variability of the previous 53 and 10 winters, respectively. Alternatively, the AMOC and the SPG strength can be reconstructed with Auto-regressive (AR) models of order seven and five, respectively. Both statistical models reconstruct interannual and multidecadal AMOC variability well, while on the other hand, the AR(5) reconstruction of the SPG strength only captures multidecadal variability. Using these methods to reconstruct ocean variables can be useful for prediction and model intercomparision.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-09-22
    Description: Driving data and physical parametrizations can significantly impact the performance of regional dynamical atmospheric models in reproducing hydrometeorologically relevant variables. Our study addresses the water budget sensitivity of the Weather Research and Forecasting Model System WRF (WRF-ARW) with respect to two cumulus parametrizations (Kain–Fritsch, Betts–Miller–Janjić), two global driving reanalyses (ECMWF ERA-INTERIM and NCAR/NCEP NNRP), time variant and invariant sea surface temperature and optional gridded nudging. The skill of global and downscaled models is evaluated against different gridded observations for precipitation, 2 m-temperature, evapotranspiration, and against measured discharge time-series on a monthly basis. Multi-year spatial deviation patterns and basin aggregated time series are examined for four globally distributed regions with different climatic characteristics: Siberia, Northern and Western Africa, the Central Australian Plane, and the Amazonian tropics. The simulations cover the period from 2003 to 2006 with a horizontal mesh of 30 km. The results suggest a high sensitivity of the physical parametrizations and the driving data on the water budgets of the regional atmospheric simulations. While the global reanalyses tend to underestimate 2 m-temperature by 0.2–2 K, the regional simulations are typically 0.5–3 K warmer than observed. Many configurations show difficulties in reproducing the water budget terms, e.g. with long-term mean precipitation biases of 150 mm month −1 and higher. Nevertheless, with the water budget analysis viable setups can be deduced for all four study regions.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-09-25
    Description: El Niño/Southern Oscillation (ENSO) is the predominant interannual variability of the global climate system. How might ENSO change in a warmer world? The dominant two Combined Empirical Orthogonal Functions (CEOF) of the equatorial ocean temperature and zonal and vertical motion identify two modes that shown a transition in the eastern Pacific from a warming eastward/downward motion to a cooling westward/upward flow. These results also suggest consistent changes to the west and at depths down to 300 m. These dominate CEOFs provide a compact tool for assessing Coupled Model Intercomparison Project Phase 5 ocean model output for both the recent historical period and for the latter part of the twenty first century. Most of the analyzed models replicate well the spatial patterns of the dominant observational CEOF modes, but nearly always underestimate the magnitudes. Comparing model output for the twentieth and twenty first centuries there is very little change between the spatial patterns of the ENSO modes of the two periods. This lack of response to climate change is shown to be partly related to competing influences of climatic changes in the mean ocean circulation.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-09-25
    Description: In this work, authors examine the variabilities of precipitation and surface air temperature (T2m) in Northeast China during 1948–2012, and their global connection, as well as the predictability. It is noted that both the precipitation and T2m variations in Northeast China are dominated by interannual and higher frequency variations. However, on interdecadal time scales, T2m is shifted significantly from below normal to above normal around 1987/1988. Statistically, the seasonal mean precipitation and T2m are largely driven by local internal atmospheric variability rather than remote forcing. For the precipitation variation, circulation anomalies in the low latitudes play a more important role in spring and summer than in autumn and winter. For T2m variations, the associated sea surface pressure (SLP) and 850-hPa wind (uv850) anomalies are similar for all seasons in high latitudes with significantly negative correlations for SLP and westerly wind anomaly for uv850, suggesting that a strong zonal circulation in the high latitudes favors warming in Northeast China. The predictability of precipitation and T2m in Northeast China is assessed by using the Atmospheric Model Inter-comparison Project type experiments which are forced by observed sea surface temperature (SST) and time-evolving greenhouse gas (GHG) concentrations. Results suggest that T2m has slightly higher predictability than precipitation in Northeast China. To some extent, the model simulates the interdecadal shift of T2m around 1987/1988, implying a possible connection between SST (and/or GHG forcing) and surface air temperature variation in Northeast China on interdecadal time scales. Nevertheless, the precipitation and T2m variations are mainly determined by the unpredictable components which are caused by the atmospheric internal dynamic processes, suggesting low predictability for the climate variation in Northeast China.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-09-25
    Description: Aims The objective of our study was to confirm if hydraulic lift (HL) promotes nutrient uptake in field-grown plants in the same way as demonstrated previously in pot-grown plants. Methods We conducted a field experiment in an agroforestry system, over an entire growing season that included a dry period and a wet period. We used a shallow-root crop plant, mung bean ( Vigna radiata L.), intercropped with walnut ( Juglans regia L.) and jujube ( Zizyphus jujube Mill.), as an indicator for the presence of HL and its effects on nutrient uptake. To monitor HL, we artificially applied deuterium isotope to the deep roots of trees. Results We demonstrated the presence of a natural nitrogen, phosphorus, and potassium gradient along the soil depth, and the occurrence of HL, evidenced by deuterium signature in the shallow soil layers and V. radiata stem, only during the dry season. J. regia and Z. jujube both had deep root systems, but the former species exhibited stronger HL to the shallow soil than the latter. Meanwhile, the upper soil layers of J. regia had significantly higher moisture content, and the intercropped V. radiata had higher nutrient content. Conclusion HL can facilitate water uptake by V. radiata from the upper soil layers in the field condition during the dry season, which relates to nutrient acquisition by the crop.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-09-27
    Description: A land–sea surface warming ratio (or φ ) that exceeds unity is a robust feature of both observed and modelled climate change. Interestingly, though climate models have differing values for φ , it remains almost time-invariant for a wide range of twenty-first century climate transient warming scenarios, while varying in simulations of the twentieth century. Here, we present an explanation for time-invariant land–sea warming ratio that applies if three conditions on radiative forcing are met: first, spatial variations in the climate forcing must be sufficiently small that the lower free troposphere warms evenly over land and ocean; second, the temperature response must not be large enough to change the global circulation to zeroth order; third, the temperature response must not be large enough to modify the boundary layer amplification mechanisms that contribute to making φ exceed unity. Projected temperature changes over this century are too small to breach the latter two conditions. Hence, the mechanism appears to show why both twenty-first century and time-invariant CO 2 forcing lead to similar values of φ in climate models despite the presence of transient ocean heat uptake, whereas twentieth century forcing—which has a significant spatially confined anthropogenic tropospheric aerosol component that breaches the first condition—leads to modelled values of φ that vary widely amongst models and in time. Our results suggest an explanation for the behaviour of φ when climate is forced by other regionally confined forcing scenarios such as geo-engineered changes to oceanic clouds. Our results show how land–sea contrasts in surface and boundary layer characteristics act in tandem to produce the land–sea surface warming contrast.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-09-27
    Description: We present a validation analysis of a regional climate model coupled to a distributed one dimensional (1D) lake model for the Caspian Sea Basin. Two model grid spacings are tested, 50 and 20 km, the simulation period is 1989–2008 and the lateral boundary conditions are from the ERA-Interim reanalysis of observations. The model is validated against atmospheric as well as lake variables. The model performance in reproducing precipitation and temperature mean seasonal climatology, seasonal cycles and interannual variability is generally good, with the model results being mostly within the observational uncertainty range. The model appears to overestimate cloudiness and underestimate surface radiation, although a large observational uncertainty is found in these variables. The 1D distributed lake model (run at each grid point of the lake area) reproduces the observed lake-average sea surface temperature (SST), although differences compared to observations are found in the spatial structure of the SST, most likely as a result of the absence of 3 dimensional lake water circulations. The evolution of lake ice cover and near surface wind over the lake area is also reproduced by the model reasonably well. Improvements resulting from the increase of resolution from 50 to 20 km are most significant in the lake model. Overall the performance of the coupled regional climate—1D lake model system appears to be of sufficient quality for application to climate change scenario simulations over the Caspian Sea Basin.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-09-27
    Description: Climate changes over China from the present (1990–1999) to future (2046–2055) under the A1FI (fossil fuel intensive) and A1B (balanced) emission scenarios are projected using the Regional Climate Model version 3 (RegCM3) nests with the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM). For the present climate, RegCM3 downscaling corrects several major deficiencies in the driving CCSM, especially the wet and cold biases over the Sichuan Basin. As compared with CCSM, RegCM3 produces systematic higher spatial pattern correlation coefficients with observations for precipitation and surface air temperature except during winter. The projected future precipitation changes differ largely between CCSM and RegCM3, with strong regional and seasonal dependence. The RegCM3 downscaling produces larger regional precipitation trends (both decreases and increases) than the driving CCSM. Contrast to substantial trend differences projected by CCSM, RegCM3 produces similar precipitation spatial patterns under different scenarios except autumn. Surface air temperature is projected to consistently increase by both CCSM and RegCM3, with greater warming under A1FI than A1B. The result demonstrates that different scenarios can induce large uncertainties even with the same RCM-GCM nesting system. Largest temperature increases are projected in the Tibetan Plateau during winter and high-latitude areas in the northern China during summer under both scenarios. This indicates that high elevation and northern regions are more vulnerable to climate change. Notable discrepancies for precipitation and surface air temperature simulated by RegCM3 with the driving conditions of CCSM versus the model for interdisciplinary research on climate under the same A1B scenario further complicated the uncertainty issue. The geographic distributions for precipitation difference among various simulations are very similar between the present and future climate with very high spatial pattern correlation coefficients. The result suggests that the model present climate biases are systematically propagate into the future climate projections. The impacts of the model present biases on projected future trends are, however, highly nonlinear and regional specific, and thus cannot be simply removed by a linear method. A model with more realistic present climate simulations is anticipated to yield future climate projections with higher credibility.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-09-27
    Description: Teleconnections associated with warm El Niño/southern oscillation (ENSO) events in 20 climate model intercomparison project 5 (CMIP5) models have been compared with reanalysis observations. Focus has been placed on compact time and space indices, which can be assigned a specific statistical confidence. Nearly all of the models have surface temperature, precipitation and 250 hPa geopotential height departures in the Tropics that are in good agreement with the observations. Most of the models also have realistic anomalies of Northern Hemisphere near-surface temperature, precipitation and 500 hPa geopotential height. Model skill for these variables is significantly related to the ability of a model to accurately simulate Tropical 250 hPa height departures. Additionally, most models have realistic temperature and precipitation anomalies over North America, which are linked to a model’s ability to simulate Tropical 250 hPa and Northern Hemisphere 500 hPa height departures. The skills of temperature and precipitation departures over the Northern Hemisphere and North America are associated with the ability to realistically simulate realistic ENSO frequency and length. Neither horizontal nor vertical resolution differences for either the model atmosphere or ocean are significantly related at the 95 % level to variations in El Niño simulation quality. Overall, recent versions of earlier models have improved in their ability to simulate El Niño teleconnections. For instance, the average model skills of temperature and precipitation for the Tropics, Northern Hemisphere and North America for 11 CMIP5 models are all larger than those for prior versions.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-09-27
    Description: In the eastern Mediterranean in general and in Turkey in particular, temperature reconstructions based on tree rings have not been achieved so far. Furthermore, centennial-long chronologies of stable isotopes are generally also missing. Recent studies have identified the tree species Juniperus excelsa as one of the most promising tree species in Turkey for developing long climate sensitive stable carbon isotope chronologies because this species is long-living and thus has the ability to capture low-frequency climate signals. We were able to develop a statistically robust, precisely dated and annually resolved chronology back to AD 1125. We proved that variability of δ 13 C in tree rings of J. excelsa is mainly dependent on winter-to-spring temperatures (January–May). Low-frequency trends, which were associated with the medieval warm period and the little ice age, were identified in the winter-to-spring temperature reconstruction, however, the twentieth century warming trend found elsewhere could not be identified in our proxy record, nor was it found in the corresponding meteorological data used for our study. Comparisons with other northern-hemispherical proxy data showed that similar low-frequency signals are present until the beginning of the twentieth century when the other proxies derived from further north indicate a significant warming while the winter-to-spring temperature proxy from SW-Turkey does not. Correlation analyses including our temperature reconstruction and seven well-known climate indices suggest that various atmospheric oscillation patterns are capable of influencing the temperature variations in SW-Turkey.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-09-27
    Description: The latest version of the state-of-the-art global land–atmosphere–ocean coupled climate forecast system of NCEP has shown considerable improvement in various aspects of the Indian summer monsoon. However, climatological mean dry bias over the Indian sub-continent is further increased as compared to the previous version. Here we have attempted to link this dry bias with climatological mean bias in the Eurasian winter/spring snow, which is one of the important predictors of the Indian summer monsoon rainfall (ISMR). Simulation of interannual variability of the Eurasian snow and its teleconnection with the ISMR are quite reasonable in the model. Using composite analysis it is shown that a positive snow anomaly, which is comparable to the systematic bias in the model, results into significant decrease in the summer monsoon rainfall over the central India and part of the Equatorial Indian Ocean. Decrease in the summer monsoon rainfall is also found to be linked with weaker northward propagation of intraseasonal oscillation (ISO). A barotropic stationary wave triggered by positive snow anomaly over west Eurasia weakens the upper level monsoon circulation, which in turn reduces the zonal wind shear and hence, weakens the northward propagation of summer monsoon ISOs. A sensitivity experiment by reducing snow fall over Eurasian region causes decrease in winter and spring snow depth, which in turn leads to decrease in Indian summer monsoon rainfall. Results from the sensitivity experiment corroborate with those of composite analysis based on long free run. This study suggests that further improvements in the snow parametrization schemes as well as Arctic sea ice are needed to reduce the Eurasian snow bias during winter/spring, which may reduce the dry bias over Indian sub-continent and hence predictability aspect of the model.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-09-27
    Description: We examine the influence of the South-American land-mass and its mountains on the significant cyclic diurnal and semidiurnal components of the average circulation in the adjacent area of the southeastern tropical Pacific (SEP). Our approach is based on a number of numerical simulations with the regional atmospheric model weather research and forecasting forced by the National Centers for Environmental Prediction’s final analysis operational analysis data. In the control simulation the model domain covers the SEP and a large part of South America. In several sensitivity experiments the domain is reduced to progressively exclude continental areas. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Chilean and Peruvian land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over the SEP (mainly forced by local insolation) are influenced by convection over the Peruvian sector of the Andes cordillera, while the mostly dry mountain-breeze circulations force an additional component that results in semi-diurnal variations near the coast. A series of numerical tests, however, reveal sensitivity of the simulations to the choice of vertical grid, limiting the possibility of solid quantitative statements on the amplitudes and phases of the diurnal and semidiurnal components across the domain.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-10-04
    Description: Aims and background Despite increasing knowledge of the role of allelochemicals in the productivity decline of replanted Chinese fir plantations, relatively little is known about the levels and sources of allelochemicals in relation to autoinhibition. Methods Allelopathic potential of litter, root exudates, and soils in successive rotations of Chinese fir plantations were detected. An allelochemical cyclic dipeptide (6-hydroxy-1,3-dimethyl-8-nonadecyl-[1,4]-diazocane-2,5-dione) from litter, root exudates, and soils in successive rotations was quantified. Results Extracts of leaf litter, fine root, and root exudates significantly inhibited the growth of Chinese fir germinants, and inhibition increased with successive rotations. Similar results were observed in the rhizosphere soil, basal soil, and bulk soil. The largest observed inhibition occurred in the rhizosphere soil. Furthermore, cyclic dipeptide was found in litter, root exudates, and soils, and the concentrations increased with successive rotations. The rhizosphere soil had the highest cyclic dipeptide level, followed by basal soil, while bulk soil contained the lowest concentration. There was a significant positive relationship between the inhibition of radicle growth of Chinese fir germinants and the concentration of cyclic dipeptide. Annual release of cyclic dipeptide through root exudation was 2.08–9.78 mol ha −1 annum, but the annual release of cyclic dipeptide through leaf litter decomposition was lowered to 0.32–1.41 mol ha −1 annum. Conclusions Cyclic dipeptide which caused autoinhibition of Chinese fir may be released into the soil through litter decomposition and root exudation. Root exudates provided more contributions to soil cyclic dipeptide levels than litter in Chinese fir plantations.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-10-04
    Description: Background and aims In the Central Negev hills (Israel) many ancient terraced wadis exist, which captured run-off and caused gradual soil aggradation, which enabled agricultural practices. In these terraces, dark colored soil horizons were observed, containing charcoal, as can be found in Terra Preta soils, suggesting higher fertility compared to natural soils. The aim of our investigation was to investigate these anthropogenic soils and to study the effects of charcoal and ash addition on soil properties and crop growth. Methods We investigated 12 soil profiles, focusing on possible differences between light and dark colored soil horizons. We also investigated the effects of amendment of charcoal and ash on the growth of wheat ( Triticum Aestivum L. ) in a 40-day pot experiment involving two water regimes. Results Results show that charcoal content in light and dark horizons were both low (〈0.2 %), but significantly lower bulk densities were found in dark colored horizons. In the crop experiment, charcoal addition resulted in decreased crop growth, while, in the water deficit regime, ash addition resulted in increased crop growth. Conclusions Considering the observed charcoal and the results from the crop experiment, we hypothesize that, in ancient run-off capturing agricultural systems, ash was purposefully added as fertilizer.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-06-06
    Description: Introduction In a recent paper, Warren et al. ( 2013 ) illustrated the potential of neutron radiography to visualize water dynamics in soil and plants. Methods After injection of deuterated water (D 2 O) in soil, the authors could monitor the changes of D 2 O concentration in roots. Results Based on the radiographs, the authors concluded that D 2 O was transported from roots growing in a wet soil region to roots in a dry region, proving hydraulic redistribution between roots. However, this interpretation depends on the correct estimation of D 2 O concentration in soil. Conclusions The experiments of Warren et al. ( 2013 ) could also be explained by diffusion of D 2 O from soil to roots, without hydraulic redistribution within the root system.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-06-06
    Description: Aims The mechanisms of belowground competition are not well understood. Addressing literature reports on competition-induced changes in tree fine root morphology, we conducted a growth experiment with tree saplings to investigate competition effects on important root morphological and functional traits in a root order-focused analysis. Methods European beech and European ash saplings were grown for 34 months in containers under greenhouse conditions in monoculture (2 conspecific plants), in mixture (1 beech and 1 ash) or as single plants. The root system was fractionated according to root orders and eight morphological and functional properties were determined. Results Root order was the most influential factor affecting the fine root traits (except for root diameter and δ 13 C); a significant species identity effect was found for root diameter, tissue density, N concentration and δ 13 C. Ash fine roots were thicker, but had lower tissue densities, contained more N and had systematically higher δ 13 C values than beech roots. The competition treatments had no significant effect on morphological root traits but altered δ 13 C in the 2nd root order. Conclusion Neither intra- nor interspecific root competition affected fine root morphology significantly suggesting that competition-induced root modification may not be a universal phenomenon in temperate trees.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-06-08
    Description: Background and aims Distinct metal distribution patterns within leaves of metal hyperaccumulating plants are repeatedly observed however, the presumable role of key structural biochemical molecules in determining and regulating their allocation remains largely unknown. We aimed to characterise in a spatially resolved manner the distribution of the main biochemical components in leaves of field-collected Cd/Zn-hyperaccumulating Noccaea praecox in order to relate them to metal distribution patterns at tissue level. Methods The biomolecular composition of the leaves was spatially analysed using synchrotron radiation Fourier Transform Infrared (FTIR) and the distribution of Zn with synchrotron radiation Low-Energy X-Ray Fluorescence (LEXRF) microspectroscopy was determined on the same tissues of interest (epidermis, sub-epidermis, mesophyll). Results In epidermal cells high proportion of free-carboxyl, nitro and phosphate groups standing for pectin, nitroaromatics, phytic and other organic acids were found. Adjacent mesophyll cells had higher proportions of proteins, carbohydrates and cellulosic compounds. Conclusions Pectin compounds were indicated as important components of Zn enriched epidermal cell walls. In addition, intense lignification of epidermal cell walls might limit leakage of the trapped metals back to the metabolically active and thus more sensitive mesophyll. Distribution of metal-binding compounds in particular cell types/tissues may therefore predispose metal distribution patterns and tolerance in leaves.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-06-10
    Description: Aims Tree species affect herb layer species through their effects on soil quality and light regime but their relative importance and interactions are insufficiently known. Methods Pot experiment with soil taken from stands planted with tree species with contrasting effects on soil acidification, two light regimes and six forest perennials. Results The survival or growth of Mercurialis perennis, Lamium galeobdolon , Anemone nemorosa and Primula elatior was lower in the acid Alnus soils than in the less acid Fraxinus soils. By contrast, the acid tolerant Convallaria majalis and Dryopteris dilatata were barely affected by tree species. Light conditions had less impact than soil chemistry and did not compensate for unfavourable soil conditions. Ca and P concentrations increased in plants grown in Fraxinus soils. The Mg and Al shoot/root ratios of respectively one and two of the acid tolerant species was elevated in the most acid soil. Conclusions Tree species effects on forest perennials are mainly explained by increased Al concentrations under acidifying species. Changed plant concentrations and allocation are likely associated to Al antagonism. We found no light compensation for the soil effect on the studied species. However, light alters the plant nutrient concentrations and allocation which may suggest an indirect effect.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-06-07
    Description: The seasonal melt-freeze transitions are fundamental features of the Arctic climate system. The representation of the pan-Arctic melt and freeze onset (north of 60°N) is assessed in two reanalyses and eleven CMIP5 global circulation models (GCMs). The seasonal melt-freeze transitions are retrieved from surface air temperature (SAT) across the land and sea-ice domains and evaluated against surface observations. While monthly averages of SAT are reasonably well represented in models, large model-observation and model–model disparities of timing of melt and freeze onset are evident. The evaluation against surface observations reveals that the ERA-Interim reanalysis performs the best, closely followed by some of the climate models. GCMs and reanalyses capture the seasonal melt-freeze transitions better in the central Arctic than in the marginal seas and across the land areas. The GCMs project that during the 21st century, the summer length—the period between melt and freeze onset—will increase over land by about 1 month at all latitudes, and over sea ice by 1 and 3 months at low and high latitudes, respectively. This larger summer-length increase over sea ice at progressively higher latitudes is related to a retreat of summer sea ice during the 21st century, since open water freezes roughly 40 days later than ice-covered ocean. As a consequence, by the year 2100, the freeze onset is projected to be initiated within roughly 10 days across the whole Arctic Ocean, whereas this transition varies by about 80 days today.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-06-08
    Description: Aims The aim of this study was to determine whether goat grazing in the understory of a pine forest at Doñana Natural Park could accelerate the decomposition of the pine needles accumulated on the soil surface and, if so, through which mechanisms. Specifically, the roles of trampling (mechanical fragmentation) and nutrient enrichment through defecation (fertilization) were evaluated in terms of their effect on pine needle decomposition rates. Methods An experiment was conducted featuring the following 4 treatments: 1) intact needles (control), 2) trampled needles, 3) intact needles fertilized with liquid manure, and 4) trampled needles fertilized with liquid manure. Litter decomposition was determined as a function of mass loss over time, using the litter-bag method. Bags were recovered 4, 8, 16, 24 and 36 months after burial in soil, dried and weighed. Needle length, leaf mass per area and C and N concentration were also measured in the buried litter-bags. Results Four months after burial, mass loss was greater in the trampled (23–27 %) than non-trampled (14–16 %) treatments. However, from 8 months onwards, decomposition rates in the fertilized treatments were significantly higher than those in the non-fertilized treatments (between 5 % and 15 % less mass loss). Meanwhile, fertilized treatments presented higher N content (2.1 %) than the non-fertilized ones (1.2 %), with a significantly lower C:N ratio also found in the in the fertilized treatment. Conclusions Trampling and fertilization during grazing accelerates litter decomposition and thus promotes the incorporation of N into the system. Acceleration of decomposition reduces the accumulation of pine needles on the soil surface, reducing the risk of fire.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-06-07
    Description: The dynamics of a low-order coupled wind-driven ocean–atmosphere system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus in J Atmos Sci 37:1157–1176, 1980 ) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini in J Phys Oceanogr 41:1585–1604, 2011 ). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear, while for periodic atmospheric solutions the double gyres emerge. In the present model domain setting context, this feature is related to the level of truncation of the atmospheric fields, as indicated by a preliminary analysis of the impact of higher wavenumber (“synoptic” scale) modes on the development of oceanic gyres. In the latter case, double gyres appear in the presence of a chaotic atmosphere. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov–Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on its attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial ( at 2  +  bt 3  +  ct 4 ) up to exponential-like evolutions. These features are explained and analyzed in the light of the recent findings on error growth (Nicolis et al. in J Atmos Sci 66:766–778, 2009 ).
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-06-07
    Description: The ocean heat transport into the Arctic and the heat budget of the Barents Sea are analyzed in an ensemble of historical and future climate simulations performed with the global coupled climate model EC-Earth. The zonally integrated northward heat flux in the ocean at 70°N is strongly enhanced and compensates for a reduction of its atmospheric counterpart in the twenty first century. Although an increase in the northward heat transport occurs through all of Fram Strait, Canadian Archipelago, Bering Strait and Barents Sea Opening, it is the latter which dominates the increase in ocean heat transport into the Arctic. Increased temperature of the northward transported Atlantic water masses are the main reason for the enhancement of the ocean heat transport. The natural variability in the heat transport into the Barents Sea is caused to the same extent by variations in temperature and volume transport. Large ocean heat transports lead to reduced ice and higher atmospheric temperature in the Barents Sea area and are related to the positive phase of the North Atlantic Oscillation. The net ocean heat transport into the Barents Sea grows until about year 2050. Thereafter, both heat and volume fluxes out of the Barents Sea through the section between Franz Josef Land and Novaya Zemlya are strongly enhanced and compensate for all further increase in the inflow through the Barents Sea Opening. Most of the heat transported by the ocean into the Barents Sea is passed to the atmosphere and contributes to warming of the atmosphere and Arctic temperature amplification. Latent and sensible heat fluxes are enhanced. Net surface long-wave and solar radiation are enhanced upward and downward, respectively and are almost compensating each other. We find that the changes in the surface heat fluxes are mainly caused by the vanishing sea ice in the twenty first century. The increasing ocean heat transport leads to enhanced bottom ice melt and to an extension of the area with bottom ice melt further northward. However, no indication for a substantial impact of the increased heat transport on ice melt in the Central Arctic is found. Most of the heat that is not passed to the atmosphere in the Barents Sea is stored in the Arctic intermediate layer of Atlantic water, which is increasingly pronounced in the twenty first century.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-06-10
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-04-10
    Description: Background and aims Cadmium (Cd) could activate activity of mitogen-activated protein kinase MPK6 in plants. In this study, we investigated the role of MPK6 in mediating Cd toxicity in plants. Methods The wild type Arabidopsis plants (WT) and the mpk6 - 2 mutants were subjected either 0 (Control) or 10 μM Cd treatment. Kinase activity of MPK6, nitric oxide (NO) level, Cd concentration, and oxidative stress were measured. Results In WT plants, Cd exposure rapidly stimulated kinase activity of MPK6. However, upon Cd exposure, mpk6 - 2 showed better growth than the WT. Although Cd-induced production of NO in roots was greater in WT than in mpk6 - 2 , there was no difference in Cd concentration between the two plants. Nevertheless, the Cd-induced hydroperoxide burst, lipid peroxidation and loss of membrane integrity, were all more severe in the WT than in mpk6 - 2 . Foliar applications of antioxidant ascorbic acid, vigorously improved the growth of both the WT and mpk6 - 2 under Cd exposure. Thereby the growth difference between these two plants was minimized. Conclusions Mutation of mpk6 enhances Cd tolerance in plants by alleviating oxidative stress, but did not affect cadmium accumulation in plants.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-04-10
    Description: Background and Aims The role and linkage of endophytic bacteria to resistance of peanut seeds to biotic stress is poorly understood. The aims of the present study were to survey the experimental (axenic) and control (conventional) peanut plants for the predominant endophytic bacteria, and to characterize isolates with activity against selected A. flavus strains. Methods Young axenic plants were grown from presumably bacteria-free embryos in the lab, and then they were grown in a field. Endophytic bacterial species were identified by the analysis of DNA sequences of their 16S-ribosomal RNA gene. DNA extracted from soil was also analyzed for predominant bacteria. Results Mature seeds from the experimental and control plants contained several species of nonpathogenic endophytic bacteria. Among the eight bacterial species isolated from seeds, and DNA sequences detected in soil, Bacillus thuringiensis was dominant. All B. amyloliquefaciens isolates, the second abundant species in seeds demonstrated activity against A. flavus . This effect was not observed with any other bacterial isolates. There was no significant difference in number and relative occurrence of the two major bacterial species between the experimental and conventionally grown control seeds. Conclusion Endophytic bacterial colonization derives from local soil and not from the seed source, and the peanut plant accommodates only selected species of bacteria from diverse soil populations. Some bacterial isolates showed antibiosis against A. flavus.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-04-10
    Description: Background and Aims Climate warming and increased atmospheric nitrogen (N) deposition both have the potential to increase plant productivity over the next century, yet they can also increase decomposition and respiration. Our aim was to examine the extent to which warming and N addition can, on balance, alter net ecosystem CO 2 exchange (NEE) in a grass-dominated system. Methods We measured NEE responses to warming and N addition over two growing seasons in a temperate old field using steady-state flow-through chambers, which allowed for the integrated measurement of respiration and photoassimilation effects on net CO 2 flux over diel periods. We also assessed the relationship between NEE and plant biomass responses to the warming and N treatments. Results In both years, our study system was a net source of carbon (C) during the snow-free season. N addition did not significantly affect diel NEE or dark respiration in either year, despite a doubling in aboveground plant biomass in response to N addition in the second year, and a corresponding increase in peak daily net CO 2 photoassimilation in N addition plots. The warming treatment also had no significant effect on NEE, although the flow-through chambers required warming to be temporarily halted during NEE measurements. Conclusions Overall, our results both highlight the potential divergence of plant and soil responses to N addition and demonstrate the capacity for a grass-dominated system to function as a net source of C in consecutive years.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-04-10
    Description: Background and aim Intuitively, access to water from the soil at key phenological stages is important for adaptation to drought. This study aimed to assess the temporal pattern of water extraction under terminal drought stress. Methods Pearl millet genotypes with varying levels of terminal drought tolerance were grown in a lysimetric system with a soil volume and plant spacing similar to field conditions. Water extraction was monitored until maturity under differing water regimes. Results The yield did not differ among genotypes under well-watered (WW) conditions, and the water extraction profile of WW plants was similar across all genotypes. In contrast, the yield of sensitive genotypes was 30–100 % lower than that of tolerant lines under water stress (WS). The total volumes of water extracted by tolerant and sensitive genotypes were similar under WS; however, tolerant genotypes extracted less water prior to anthesis, and more water after anthesis. Grain yield was positively related to the amount of water extracted during week three after panicle emergence. Increased water extraction after anthesis benefitted the tillers more than the main culm and was correlated with higher staygreen scores. Conclusion Increased water uptake after anthesis, which results from earlier water conservation during pre-anthesis, increases yield under terminal drought in pearl millet.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-04-10
    Description: Background and aims Efficient accumulation of arsenic (As) in rice ( Oryza sativa L.) poses a potential health risk to rice consumers. The aim of this study was to investigate the mechanisms of uptake, transport and distribution of inorganic arsenic (As i ) and dimethylarsinic acid (DMA) in rice plants. Methods Rice was exposed to As i (As(V)) and DMA in hydroponics. High-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and synchrotron X-ray fluorescence (SXRF) microprobe were used to determine As concentration and the in situ As distribution. Results DMA induced abnormal florets before flowering and caused a sharp decline in the seed setting rate after flowering compared to As i . Rice grains accumulated 2-fold higher DMA than As i . The distribution of As i concentration (root 〉 leaf 〉 husk 〉 caryopsis) in As(V) treatments was different from that of the DMA concentration (caryopsis 〉 husk 〉 root ≥ leaf) in DMA treatments. SXRF showed that As i mainly accumulated in the vascular trace of caryopsis with limited distribution to the endosperm, whereas DMA was observed in both tissues. Conclusions DMA tended to accumulate in caryopsis and induced higher toxicity to the reproductive tissues resulting in markedly reduced grain yield, whereas As i mainly remained in the vegetative tissues and had no significant effect on yield. DMA is more toxic than As i to the reproductive tissues when both of them are at similar concentrations in nutrient solution.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-04-10
    Description: Background and aims Variations in responses to soil N between a non-N-fixing shrub, Baccharis halimifolia L., and a N-fixing shrub, Morella cerifera (L.) Small, were tested over 12 weeks to determine whether N availability is the sole cause of persistent dominance of M. cerifera on barrier islands. Methods Plants were supplied increasing levels of soil N up to 200 mg kg −1 . Measurements included gas exchange and chlorophyll fluorescence parameters across treatments, species, and time. Tissues were analyzed for differences in biomass and nutrients. Results Baccharis halimifolia had reduced physiological responses across all treatment levels, but M. cerifera had comparatively few variations. Across all treatments B. halimifolia photosynthesis and stomatal conductance were reduced by 62 and 76 %, respectively,by week 12. Increasing foliar δ 15 N values across treatments for M. cerifera indicated a shift from utilizing fixed N to available soil N. Biomass was highest at 200 mg kg −1  N for both species. Baccharis halimifolia showed indications of stress response and resource limitation based on physiological responses, nutrient contents, and isotope effects. Conclusions Baccharis halimifolia showed signs of co-limitation of both N and P whereas M. cerifera was limited by neither, suggesting that dominance of M. cerifera is only partially explained by actinorhizal symbiosis and N availability.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-04-10
    Description: Background and Aims Soil mineralization, nitrification, and dynamic changes in abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) were studied to validate our hypothesis that soil mineralization and nitrification decreased along the chronosequence of rice cultivation. Methods Paddy soils with a 300, 700 and 2000-year cultivation history (P300, P700 and P2000) were selected to study net mineralization and nitrification processes. Dynamic abundance of AOB and AOA was estimated by quantifying their respective amoA gene copies. Results The net mineralization rate was higher for P300 than P700 and P2000. Potential nitrification ( N p ) and average nitrification rates ( V a ) were similar for P300 and P700 soils, but the simulated potential nitrification rate ( V p ) and nitrification rate (k 1 ) was 72 % and 88 % higher for P300 than P700, respectively. V a was about 70 % lower than for P2000 than P300 and P700. AOB amoA gene copies were higher for P300 than P700 and P2000, whereas AOA abundance did not show significant differences. AOB abundance showed a positive response to NH 4 supply but AOA did not. Conclusions Both N mineralization and nitrification were depressed with increased cultivation time. Archaea responded to mineralization positively rather than nitrification, which suggested that readily mineralized organic matter may play an important role in AOA.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-04-10
    Description: Aims The current study aimed to assess the potential of peanut ( Arachis hypogaea L.) for bioenergy production via phytoextraction in cadmium (Cd) -contaminated soils and screen appropriate cultivars for this approach. Methods A life-cycle pot experiment was conducted to determine the biomass, seed yield, oil content and Cd accumulation of seven peanut cultivars under Cd concentration gradients of 0, 2, and 4 mg kg −1 . Results Peanut exhibits genotypic variations in Cd tolerance, seed production, oil content, and Cd accumulation. Exposure of plants to 2 and 4 mg kg −1 Cd did not inhibit shoot biomass, seed yield, and oil content for most of the cultivars tested. There are large amounts of Cd accumulated in the shoots. Although the seed Cd concentration of peanut was relatively high, the Cd concentration in seed oils was very low (0.04-0.08 mg kg −1 ). Among the cultivars, Qishan 208 showed significant Cd tolerance, high shoot biomass, high pod and seed yield, high seed oil content, considerable shoot Cd concentration, and the largest translocation factor and total Cd in shoots. Conclusions The cultivation of peanut in Cd-contaminated farmland was confirmed to be feasible for bioenergy production via phytoextraction, and Qishan 208 is a good candidate for this approach.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-04-10
    Description: Background and aims Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P losses in common soil types and dominant cropping systems in China. Methods Four long-term experiment sites were selected in China. The critical level of soil Olsen-P for crop yield was determined using the linear-plateau model. The relationships between the soil total P, Olsen-P and CaCl 2 -P were evaluated using two-segment linear model to determine the soil P fertility rate and leaching change-point. Results The critical levels of soil Olsen-P for optimal crop yield ranged from 10.9 mg kg −1 to 21.4 mg kg −1 , above which crop yield response less to the increasing of soil Olsen-P. The P leaching change-points of Olsen-P ranged from 39.9 mg kg −1 to 90.2 mg kg −1 , above which soil CaCl 2 -P greatly increasing with increasing soil Olsen-P. Similar change-point was found between soil total P and Olsen-P. Overall, the change-point ranged from 4.6 mg kg −1 to 71.8 mg kg −1 among all the four sites. These change-points were highly affected by crop specie, soil type, pH and soil organic matter content. Conclusions The three response curves could be used to access the soil Olsen-P status for crop yield, soil P fertility rate and soil P leaching risk for a sustainable soil P management in field.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-04-10
    Description: Background and aims Gaseous losses of ammonia (NH 3 ) have been observed in citrus orchards when urea is surface-applied to the soils, and this loss might significantly limit the effectiveness of the nitrogen (N) fertilizer. However, a portion of the volatilized NH 3 might be absorbed by the plants through the leaves. To quantify the contribution of the leaf absorption of 15 NH 3 , a study with sweet oranges was conducted in two field areas where trees were grown at standard (480 trees ha −1 ) and high densities (617 trees ha −1 ). Methods Plastic trays were filled with soil, covered with mown grass to simulate field management conditions, fertilized with 15 N labeled urea (12 atom % excess) and placed under each of three trees in the orchards. This experimental procedure prevented the uptake of N from the labeled urea by the roots. Two weeks after 15 N fertilization, the trays were removed from the field, and the soil was homogenized and sampled for chemical analyses. The citrus trees under which the trays were placed were destructively harvested, and the total N concentrations and 15 N/ 14 N ratios were determined. Results After urea application, the NH 3 losses peaked within three days and subsequently decreased to negligible amounts after 10 days. The total NH 3 losses accounted for 55–82 % of the applied N. Although the NH 3 absorption by the citrus leaves was proportional to the tree density in the field, only 3–7 % of the 15 NH 3 volatilized from the soil was recovered by the citrus trees, and the NH 3 absorption was also influenced by the proximity of citrus trees to the site of urea application and the leaf areas of the trees. Conclusions The citrus trees can absorb the NH 3 volatilized from urea, even though, the amount recovered by the trees is small and does not represent a significant proportion of total gaseous N losses, what demonstrates the importance of enhanced N use efficiency practices in field to reduce losses of NH 3 when urea is applied to soil surfaces.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-04-10
    Description: Background Rice can accumulate arsenic (As) to relatively high concentrations due to the general flooding practices in rice cultivation, and organic matter in the soil strongly affected As bioavailability to rice plants. The influence of organic matter input on the As transformation in paddy soil and As uptake into rice plants is an area that is rarely investigated. Methods Biogas slurry (BGS), a commonly used organic fertilizer, was applied to an As contaminated paddy soil, in order to investigate the influence of organic matter on As transformation in the paddy soil and As accumulation in rice plants. Results Application of BGS significantly increased the As accumulation in rice plants, especially for methylated As species. Results showed that the concentrations of dissolved organic carbon (DOC) and dissolved Fe(II) in the soil solution were significantly increased by the BGS addition into the paddy soil, and were significantly correlated to the As concentration in the soil solution ( P  〈 0.01). The increase of soil pH and the decrease of the soil redox potential (Eh) were observed as well. These alteration of soil characteristics elevated the As release from soil particles to the soil solution under the addition of BGS. The increased concentrations of dimethylarsinic acid (DMAs(V)) and monomethylarsonic acid (MMAs(V)) in the soil solution, and the volatilized As of trimethylarsine (TMAs) from the paddy soil, suggested that As methylation and volatilization in the soil were also enhanced by BGS addition. The concentrations of methylated As species in rice husks and grains were increased by 105.8–105.9 % and 99.7–112.2 %, respectively. Conclusion These results suggested that the use of organic fertilizer, such as BGS in As-contaminated paddy soil, can significantly alter the behavior of As in soil-rice system and enhance As accumulation in rice plants and should therefore be avoided.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-04-10
    Description: Background & aims Plants may have dissimilar effects on ecosystem processes because they possess different attributes. Given increasing biodiversity losses, it is important to understand which plant traits are key drivers of ecosystem functions. To address this question, we studied the response of two ecosystem functions that remove nitrogen (N) from wetland soils, the accumulation of N in plant biomass and denitrification potential (DNP), to variation in plant trait composition. Methods Our experiment manipulated plant composition in a riparian wetland. We determined relative importance of plant traits and environmental variables as predictors of each ecosystem function. Results We demonstrate that Water Use Efficiency (WUE) had a strong negative effect on biomass N. Root porosity and belowground biomass were negatively correlated with DNP. Trait ordination indicated that WUE was largely orthogonal to traits that maximized DNP. Conclusions These results indicate that plant species with different trait values are required to maintain multiple ecosystem functions, and provide a more mechanistic, trait-based link between the recent findings that higher biodiversity is necessary for multi-functionality. While we selected plant traits based on ecological theory, several of the plant traits were not good predictors of each ecosystem function suggesting the ecological theory linking traits to function is incomplete and requires strengthening.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-04-10
    Description: The three-dimensional structure and evolution characteristics of tropical depression (TD) and mixed Rossby-gravity wave (MRG) type disturbances in the tropical western North Pacific during El Niño and La Niña summers are investigated based on observational and reanalysis data. A clear MRG-to-TD transition was observed during El Niño summers while such a transition is unclear during La Niña summers. The vertical structure of the TD-MRG waves appears equivalent barotropic during El Niño but becomes tilted eastward with height during La Niña. The diagnosis of barotropic energy conversion shows that both the rotational and divergent components of the background flow change associated with E1 Niño-Southern Oscillation (ENSO) are responsible for energy conversion from the mean flow to the TD-MRG perturbations. A further examination of the pure MRG mode shows that its intensity does not vary between El Niño and La Niña while its phase speed does. A faster (slower) westward propagation speed during La Niña (El Niña) is attributed to enhanced (reduced) mean easterlies in the western equatorial Pacific. The heating associated with the MRG wave appears more anti-symmetric during La Niña than during El Niño. In contrast to the MRG waves, the amplitude of the TD waves depends greatly on the ENSO phase. The enhanced (suppressed) TD disturbances during El Niño (La Niña) is attributed to greater (less) barotropic energy conversion associated with the background flow change. The vertical structure of the TD waves appears quasi-barotropic in the geopotential height field but baroclinic in the divergence field.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-04-10
    Description: Until now, climate model intercomparison has focused primarily on annual and global averages of various quantities or on specific components, not on how well the general dynamics in the models compare to each other. In order to address how well models agree when it comes to the dynamics they generate, we have adopted a new approach based on climate networks. We have considered 28 pre-industrial control runs as well as 70 20th-century forced runs from 23 climate models and have constructed networks for the 500 hPa, surface air temperature (SAT), sea level pressure (SLP), and precipitation fields for each run. We then employed a widely used algorithm to derive the community structure in these networks. Communities separate “nodes” in the network sharing similar dynamics. It has been shown that these communities, or sub-systems, in the climate system are associated with major climate modes and physics of the atmosphere (Tsonis AA, Swanson KL, Wang G, J Clim 21: 2990–3001 in 2008; Tsonis AA, Wang G, Swanson KL, Rodrigues F, da Fontura Costa L, Clim Dyn, 37: 933–940 in 2011; Steinhaeuser K, Ganguly AR, Chawla NV, Clim Dyn 39: 889–895 in 2012). Once the community structure for all runs is derived, we use a pattern matching statistic to obtain a measure of how well any two models agree with each other. We find that, with the possible exception of the 500 hPa field, consistency for the SAT, SLP, and precipitation fields is questionable. More importantly, none of the models comes close to the community structure of the actual observations (reality). This is a significant finding especially for the temperature and precipitation fields, as these are the fields widely used to produce future projections in time and in space.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-04-10
    Description: Observational data show that the dominant mode of the boreal winter rainfall anomalies in the tropical Indo-Western Pacific (IWP) is a west-east dipolar pattern, which is called the Indo-Western Pacific Dipole (IWPD) mode and is related to El Niño-Southern Oscillation. It is found that corresponded to the IWPD mode is a new atmospheric teleconnection pattern—a wave train pattern emitted from the IWP toward Asia and the northwest Pacific in winter. During the positive (negative) phase of the IWPD, the teleconnection pattern features the negative (positive) anomalies of 200-hPa geopotential height (H200) centered at 30°N, 110°E and the positive (negative) anomalies of H200 centered at 45°N, 140°E. The teleconnection pattern represents the dominant mode of the boreal winter H200 anomaly over Asia. A series of simple atmospheric model experiments are performed to confirm that this winter teleconnection pattern is induced by the heating anomalies associated with the IWPD, and the heating anomalies over the equatorial central Pacific are not important to this teleconnection pattern from the IWP toward Asia and the northeast Pacific. The IWPD is strengthened after the climate regime shift of the 1970s, which leads to a stronger teleconnection pattern.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-04-10
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-09-07
    Description: Aims Wild soybean accession PI 468917 [ Glycine soja (Sieb. and Zucc.)] was examined for traits that could potentially be beneficial for development of drought resistant soybean cultivars. Methods Water use was examined in controlled environment chambers at three temperatures (25, 30, and 35 °C). Root morphology of plants grown in hydroponics was analyzed using digital imaging software. Results Wild soybean had lower transpiration efficiency in producing mass than the domesticated soybean cultivar Hutcheson at all temperatures. As soil dried, wild soybean decreased transpiration earlier (at a higher soil water content) than domesticated soybean, but only at 25 °C. Wild soybean had much greater root length than the modern soybean when grown at 25 or 30 °C in hydroponics, with the increase observed in the 0.25 to 0.50 mm diameter class. Wild soybean’s advantages dissipated at higher growth temperatures. Conclusions Wild soybean populations, potentially, can offer useful traits for improving drought resistance of modern soybean. Sensitive transpiration control in response to soil drying would contribute to ‘slow-wilting’ strategies known to be advantageous for drought resistance, and greater root length would enhance water acquisition from the soil profile. Use of the traits in breeding programs will require extending the temperature range for trait expression.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-09-10
    Description: Aims Seed germination and seedling emergence are vulnerable to water stress in arid environments. When precipitation is low and unpredictable during the early growing season, seeds near the sand surface often suffer from hydration/dehydration during germination. We investigated the responses of seedling emergence and survival of a sand dune grass with high sand stabilization value to amount and frequency of precipitation and depth of burial in sand. Methods Effects of amount and frequency of precipitation, burial and hydration/dehydration on seedling emergence of Leymus secalinus , were examined using standard procedures. Results Seedling emergence was affected by amount and frequency of monthly precipitation and depth of burial, and it decreased as precipitation frequency decreased with same amount of precipitation. Highest emergence percentage was obtained with 100 or 150 mm precipitation at 1–4 cm depth. Hydration/dehydration treatments decreased germination and increased dormancy percentage. Young seedlings with root lengths of 0–1 mm desiccated up to 30 days revived after rehydration. Conclusions Seedling emergence of L. secalinus is adapted to 150 mm monthly precipitation with frequency of 10–30 times per month, 1–4 cm burial depth and dehydration interval of 1–2 days. Alteration of amount and/or frequency of precipitation caused by climate change could markedly affect seedling emergence and population regeneration of this species.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-09-11
    Description: Background and aims Limited information is available on comparing the iron plaque formation capabilities and their effect on arsenic (As) uptake by different rice plant genotypes grown in As-contaminated soils. This study investigates the effect of iron plaque on As uptake in different rice genotypes grown in As-contaminated soils from the Guandu Plain of northern Taiwan. Methods Twenty-eight rice genotypes including 14 japonica and 14 indica genotypes were used in this study. Rice seedlings were grown in As-contaminated soils for 38 days. The iron plaque formed on the rice roots were extracted using dithionite–citrate–bicarbonate. The concentrations of As, Fe, and P in soil solutions, iron plaque, and plants were measured. The speciation of As in the root’s iron plaque was determined by As K-edge X-ray absorption near-edge structure spectroscopy (XANES). Results The amounts of iron plaque formation on roots were significantly different among 28 tested rice genotypes, and 75.7–92.8 % of As uptake from soils could be sequestered in iron plaque. However, there were no significant negative correlations between the amounts of Fe or As in the iron plaque and the content of As accumulated in rice plants of tested genotypes. XANES data showed that arsenate was the predominant As species in iron plaque, and there were difference in the distribution of As species among different rice genotypes. Conclusions The iron plaque can sequester most of As uptake from soils no matter what rice genotypes used in this study. However, the iron plaque alone did not control the extent of As accumulation in rice plants from As-contaminated soils among 28 tested rice genotypes. Low As uptake genotypes of rice selected from this study can be recommended to be grown in the As-contaminated soils.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-09-12
    Description: Background and aims Freeze events can strongly influence many ecosystem processes. However, the effects of freeze events on litter production, litter quality, and decomposition are rarely documented. Methods In this study, litter fall was measured monthly for 2 years. Two litter decomposition experiments were also performed using freeze-damaged litter and non-damaged litter in a loblolly pine forest. Results The freeze event in November 2009 caused a pronounced pulse of needle litter fall. The freeze-damaged needle litter was shown to have higher N concentration and lower C/N ratio compared with the normal falling needle litter. This finding indicates that freeze damage significantly increased needle quality because of incomplete nutrient resorption. The decomposition of freeze-damaged needle litter was faster than that of normal falling yellow needle litter and slower than that of hand-picked green needle litter. The decomposition rate constant ( k ) was negatively correlated with the C/N ratio in the needle litter. Our results also showed that the different climatic conditions influence patterns of litter decomposition. Conclusions This study suggests that freeze events significantly alter litter quantity and quality, thus affecting litter decomposition rates in a loblolly pine forest in central China.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-09-12
    Description: Background and aims Serpentine soils impose limits on plant growth and survival and thus provide an ideal model for studying plant adaptation under environmental stress. Despite the increasing amount of data on serpentine ecotypic differentiation, no study has assessed the potential role of polyploidy. We tested for links between polyploidy and the response to serpentine stress in Knautia arvensis , a diploid-tetraploid, edaphically differentiated complex. Methods Variation in growth, biomass yield and tissue Mg and Ni accumulation in response to high Mg and Ni concentrations were experimentally tested using hydroponic cultivation of seedlings from eight populations of different ploidy and edaphic origin. Results Regardless of ploidy level, serpentine populations exhibited higher tolerance to both Mg and Ni stress than their non-serpentine counterparts, suggesting an adaptive character of these traits in K. arvensis . The effect of ploidy was rather weak and confined to a slightly better response of serpentine tetraploids to Mg stress and to higher biomass yields in tetraploids from both soil types. Conclusions The similar response of diploid and tetraploid serpentine populations to edaphic stress corresponded with their previously described genetic proximity. This suggests that serpentine tolerance might have been transmitted during the local autopolyploid origin of serpentine tetraploids.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-09-14
    Description: Sea surface temperatures (SSTs) are often used for the development of hydro-climatic variable forecasts based on teleconnection methods. Such methods rely on projections or linear combinations of teleconnection indices [e.g. El Niño-Southern Oscillation (ENSO)] and other predictor fields. This study introduces a new hydro-climatic forecasting method identifying SST “dipole” predictors motivated by major teleconnection patterns. An SST dipole is defined as a function of average SST anomalies over two oceanic areas of specific sizes and geographic locations. An optimization algorithm is developed to search for the most significant SST dipole predictors of an external hydro-climatic series based on the Gerrity Skill Score. The significant dipoles are cross-validated and used to generate multiple forecast values. The new method is applied to the forecasting of seasonal precipitation over the southeast US. Hindcasting results show that significant dipoles related to ENSO as well as other prominent patterns at different lead times can indeed be identified. The dipole method also compares favorably with existing statistical forecasting schemes with respect to multiple skill measures. Furthermore, an operational forecasting framework able to produce ensemble forecast traces and uncertainty intervals that can support regional water resources planning and management is also developed.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-09-15
    Description: Background and Aims Seed bank persistence plays a highly relevant role for population dynamics. The impact of interacting environmental factors on seed longevity has only scarcely been investigated. We aimed to analyse the effects of varied soil substrate type and moisture on soil seed survival. Methods Seeds of three Rumex species native to different habitats were buried in pots placed in open-air basins. The factors substrate (sand, loam, mud), water table depth (WTD; high, intermediate, low), time, and their interactions were investigated. Viability was tested after 6, 12, and 18 months. Results Seeds of R. acetosella (dry habitat) were short-term persistent with highest survival in low WTD on sand. Survival in R. acetosa (moist habitat) was very strongly reduced after 6 months with highest survival under wet conditions. R. maritimus (wet habitat) had overall long-term seed survival, where ‘substrate type’ had the strongest impact. Significant interactions of ‘substrate type’ and WTD were detected. Conclusions Seed bank longevity is not a fixed species trait, but varies with environmental factors. Soil moisture, substrate type and their interactions have different effects on the studied species. Persistence-classifications ought to consider the impact of environmental factors.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-09-17
    Description: Background and aims Chelant-enhanced phytoextraction has given variable and often unexplained experimental results. This work was carried out to better understand the mechanisms of Cd plant uptake in the presence of EDTA and to evaluate the contributions of Cd-EDTA complexes to the uptake. Method A 1-D mechanistic model was implemented, which described the free Cd 2+ root absorption, the dissociation and the direct absorption of the Cd-EDTA complexes. It was used to explain Cd uptake by maize in hydroponics and in soil. Results In hydroponics, the addition of EDTA caused a decrease in Cd uptake by maize, particularly when the ratio of total EDTA ([EDTA] T ) to total Cd ([Cd] T ) was greater than 1. At [Cd] T = 1 μM, when [EDTA] T /[Cd] T 〈 1, the model indicated that Cd uptake was predominantly due to the absorption of free Cd 2+ , whose pool was replenished by the dissociation of Cd-EDTA. When [EDTA] T /[Cd] T 〉 1, the low Cd uptake was mostly due to Cd-EDTA absorption. In soil spiked with 5 mg Cd kg −1 , Cd uptake was not affected by the various EDTA additions, because of the buffering capacity of the soil solid phase. Conclusions Addition of EDTA to soil increases Cd solubility but dissociation of Cd-EDTA limits the availability of the free Cd 2+ at the root surface, which finally reduces the plant uptake of the metal.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-09-18
    Description: Background and aims The feather moss Pleurozium schreberi (Brid.) Mitt. is colonized by cyanobacteria, which fix substantial amounts of atmospheric nitrogen (N) in pristine and N-poor ecosystems. Cyanobacterial N 2 fixation is inhibited by N deposition. However, the threshold of N input that leads to the inhibition of N 2 fixation has not been adequately investigated. Further, the ability of N 2 fixation to recover in mosses from high N deposition areas has not been studied to date. Methods We conducted two laboratory studies in which we (1) applied a range of concentrations of N as NH 4 NO 3 to mosses from low N-deposition areas, and (2) we deprived mosses from a high N-deposition area of N to test their ability to recover N 2 fixation. Results Higher addition rates (up to 10 kg N ha −1 ) did not systematically inhibit N 2 fixation in P. schreberi . Conversely, upon weeks of N deprivation of mosses from a high N environment, N 2 fixation rates increased. Conclusions The threshold of total N deposition above which N 2 fixation in P. schreberi is inhibited is likely to be 〉 10 kg N ha −1 . Further, cyanobacteria are able to recover from high N inputs and are able to fix atmospheric N 2 after a period of N deprivation.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-09-18
    Description: Background and aims Soil aggregation is a crucial aspect of ecosystem functioning in terrestrial ecosystems. Arbuscular mycorrhizal fungi (AMF) play a key role in soil aggregate formation and stabilization. Here we quantitatively analyzed the importance of experimental settings as well as biotic and abiotic factors for the effectiveness of AMF to stabilize soil macroaggregates. Methods We gathered 35 studies on AMF and soil aggregation and tested 13 predictor variables for their relevance with a boosted regression tree analysis and performed a meta-analysis, fitting individual random effects models for each variable. Results and conclusions The overall mean effect of inoculation with AMF on soil aggregation was positive and predictor variable means were all in the range of beneficial effects. Pot studies and studies with sterilized sandy soil, near neutral soil pH, a pot size smaller than 2.5 kg and a duration between 2.2 and 5 months were more likely to result in stronger effects of AMF on soil aggregation than experiments in the field, with non-sterilized or fine textured soil or an acidic pH. This is the first study to quantitatively show that the effect of AMF inoculation on soil aggregation is positive and context dependent. Our findings can help to improve the use of this important ecosystem process, e.g. for inoculum application in restoration sites.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-09-19
    Description: The equatorial edge of the Western Pacific Warm Pool is operationally identified by one isotherm ranging between 28° and 29 °C, chosen to align with the interannual variability of strong zonal salinity gradients and the convergence of zonal ocean currents. The simulation of this edge is examined in 19 models from the World Climate Research Program Coupled Model Intercomparison Project Phase 5 (CMIP5), over the historical period from 1950 to 2000. The dynamic warm pool edge (DWPE), where the zonal currents converge, is difficult to determine from limited observations and biased models. A new analysis technique is introduced where a proxy for DWPE is determined by the isotherm that most closely correlates with the movements of the strong salinity gradient. It can therefore be a different isotherm in each model. The DWPE is simulated much closer to observations than if a direct temperature-only comparison is made. Aspects of the DWPE remain difficult for coupled models to simulate including the mean longitude, the interannual excursions, and the zonal convergence of ocean currents. Some models have only very weak salinity gradients trapped to the western side of the basin making it difficult to even identify a DWPE. The model’s DWPE are generally 1–2 °C cooler than observed. In line with theory, the magnitude of the zonal migrations of the DWPE are strongly related to the amplitudes of the Nino3.4 SST index. Nevertheless, a better simulation of the mean location of the DWPE does not necessarily improve the amplitude of a model’s ENSO. It is also found that in a few models (CSIROMk3.6, inmcm and inmcm4-esm) the warm pool displacements result from a net heating or cooling rather than a zonal advection of warm water. The simulation of the DWPE has implications for ENSO dynamics when considering ENSO paradigms such as the delayed action oscillator mechanism, the Advective-Reflective oscillator, and the zonal-advective feedback. These are also discussed in the context of the CMIP5 simulations.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-09-21
    Description: Background and aims Emission of the greenhouse gas (GHG) nitrous oxide (N 2 O) are strongly affected by nitrogen (N) fertilizer application rates. However, the role of other nutrients through stoichiometric relations with N has hardly been studied. We tested whether phosphorus (P) availability affects N 2 O emission. We hypothesized that alleviation of plant P-limitation reduces N 2 O emission through lowering soil mineral N concentrations. Methods We tested our hypothesis in a pot experiment with maize ( Zea mays L.) growing on a P-limiting soil/sand mixture. Treatment factors included P and N fertilization and inoculation with Arbuscular Mycorrhizal Fungi (AMF; which can increase P uptake). Results Both N and P fertilization, as well as their interaction significantly ( P  〈 0.01) affected N 2 O emission. Highest N 2 O emissions (2.38 kg N 2 O-N ha −1 ) were measured at highest N application rates without P fertilization or AMF. At the highest N application rate, N 2 O fluxes were lowest (0.71 kg N 2 O-N ha −1 ) with both P fertilization and AMF. The N 2 O emission factors decreased with 50 % when P fertilization was applied. Conclusions Our results illustrate the importance of the judicious use of all nutrients to minimize N 2 O emission, and thereby further underline the intimate link between sound agronomic practice and prudent soil GHG management.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-09-22
    Description: Winter-spring precipitation in southern China tends to be higher (lower) than normal in El Niño (La Niña) years during 1953–1973. The relationship between the southern China winter-spring precipitation and El Niño-Southern Oscillation (ENSO) is weakened during 1974–1994. During 1953–1973, above-normal southern China rainfall corresponds to warmer sea surface temperature (SST) in the equatorial central Pacific. There are two anomalous vertical circulations with ascent over the equatorial central Pacific and ascent over southern China and a common branch of descent over the western North Pacific that is accompanied by an anomalous lower-level anticyclone. During 1974–1994, above-normal southern China rainfall corresponds to warmer SST in eastern South Indian Ocean and cooler SST in western South Indian Ocean. Two anomalous vertical circulations act to link southern China rainfall and eastern South Indian Ocean SST anomalies, with ascent over eastern South Indian Ocean and southern China and a common branch of descent over the western North Pacific. Present analysis shows that South Indian Ocean SST anomalies can contribute to southern China winter-spring precipitation variability independently. The observed change in the relationship between southern China winter-spring rainfall and ENSO is likely related to the increased SST variability in eastern South Indian Ocean and the modulation of the Pacific decadal oscillation.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-09-24
    Description: Aims Integrating multiple soil and disease management practices may improve crop productivity and disease control, but potential interactions and limitations need to be determined. Methods Three different potential disease-suppressive management practices, including a Brassica napus (rapeseed) green manure rotation crop, conifer-based compost amendment, and three biological control organisms ( Trichoderma virens, Bacillus subtilis , and Rhizoctonia solani hypovirulent isolate Rhs1A1 ) were evaluated alone and in combination at sites with both organic and conventional management histories for their effects on soilborne diseases and tuber yield. Results Rapeseed rotation reduced all observed soilborne diseases (stem canker, black scurf, common scab, and silver scurf) by 10 to 52 % in at least one year at both sites. Compost amendment had variable effects on tuber diseases, but consistently increased yield (by 9 to 15 %) at both sites. Biocontrol effects on disease varied, though Rhs1A1 decreased black scurf at the conventional site and T. virens reduced multiple diseases at the organic site in at least one year. Combining rapeseed rotation with compost amendment both reduced disease and increased yield, whereas biocontrol additions produced only marginal additive effects. Conclusions Use of these treatments alone, and in combination, can be effective at reducing disease and increasing yield under both conventional and organic production practices.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-09-24
    Description: Aims This study investigated Cu uptake and accumulation as well as physiological and biochemical changes in grapevines grown in soils containing excess Cu. Methods The grapevines were collected during two productive cycles from three vineyards with increasing concentrations of Cu in the soil and at various growth stages, before and after the application of Cu-based fungicides. The Cu concentrations in the grapevine organs and the macronutrients and biochemical parameters in the leaf blades were analyzed. Results At close to the flowering stage of the grapevines, the concentration and content of Cu in the leaves were increased. However, the Cu concentrations in the roots, stem, shoots and bunches did not correlate with the metal concentrations in the soil. The application of Cu-based fungicides to the leaves increased the Cu concentrations in the shoots, leaves and rachis; however, the effect of the fungicides on the Cu concentration in the berries was not significant. The biochemical analyses of the leaf blades demonstrated symptoms of oxidative stress that correlated with the Cu concentrations in soil. Conclusions The increased availability of Cu in soil had a slight effect on the levels and accumulation of Cu in mature grapevines during the productive season and did not alter the nutritional status of the plant. However, increased Cu concentrations were observed in the leaves. The evidence of oxidative stress in the leaves correlated with the increased levels of Cu in soil.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-12-13
    Description: Aims Accumulation of p-hydroxybenzonic acid (PHBA) in soil will cause plant stress. Our aims were to characterize PHBA-degrading Pseudomonas putida CSY-P1 and to assess its role on alleviating PHBA stress in plants. Methods Strain CSY-P1 was isolated from rhizosphere soil, and its properties were investigated. The effects of CSY-P1 on soil enzymes and oxidative damage in plants were analyzed. Under PHBA-contaminated environments, antioxidant enzyme activities in CSY-P1 were assessed. Results Optimal conditions for degradation of PHBA by CSY-P1 were 28 °C, pH 9, and an initial PHBA concentration of 0.6 g l −1 . Protocatechoic acid was a metabolite. CSY-P1 decomposed PHBA effectively in unplanted autoclaved soil. After the strain was applied to PHBA-contaminated cucumber-planted soil, activities of some soil enzymes were increased and the PHBA concentration in soil decreased. Some antioxidant enzyme activities in leaves were elevated, thus reducing malondialdehyde levels in seedlings and mitigating PHBA stress in cucumber. Catalase activity in PHBA-exposed CSY-P1 increased. Conclusions Pseudomonas putida CSY-P1 degrades PHBA in autoclaved soil and alleviates PHBA stress to plants by inducing some soil enzymes and antioxidant enzymes in leaves. Catalase in strain CSY-P1 contributes to its PHBA tolerance, making it a promising strain for remediation of PHBA-contaminated soil.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-12-14
    Description: Background and Aims Given that plant growth is often water limited in drylands, it has been proposed that water seems to influence productivity by altering physiological/metabolic responses and nutrient availability in short term. It is unclear, however, whether water mediates a positive plant-soil feedback and whether the feedback drives variations in plant productivity. Methods A 4-year field experiment was performed to examine the effects of water and nitrogen (N) addition on nutrient concentrations in soil and plant, nutrient resorption and potential return, in a temperate grassland in northern China. Results Water addition enhanced plant N and phosphorus (P) concentrations but reduced plant N and P resorption efficiency, leading to the increased potential N and P return to soil via litterfall. Enhanced nutrient potential return likely contributed to an increase of plant productivity in the following year. These “fertilization effects” caused by water addition were similar to those by N addition. Conclusions Our study suggests that the positive plant-soil feedback induced by increased precipitation may have a role in water-induced increases in productivity, and highlights the “fertilization effect” of water addition in a semiarid grassland in short term.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-12-16
    Description: Aims In deserts, moss-dominated crusts may play an important role in terrestrial-aquatic and aboveground-belowground connections. Despite its importance, very little is known about moss’s role in biogeochemical cycles and how nutrient pulses (e.g., from N deposition in air pollution) will affect their functional significance as an integrator of nutrient cycling in deserts. Methods Moss and soil were sampled from 15 sites in the Sonoran Desert in and around Phoenix, covering the city core subject to N deposition and rural areas to the east and west. Samples were analyzed for C, N, P and micronutrient content to compare moss stoichiometry over a gradient of soil resource availability. Results Moss %N and %P were positively correlated with soil N and P. Thus, sites in the city core subject to N deposition tended to have higher soil N and therefore higher moss N than the sites outside the city core. Micronutrient content varied with sampling region but was not related to soil content. Conclusions Results suggest that moss can take up excess N,, but overall coverage of moss is lower in the city, limiting its ability to act as a N sink.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...