ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (518)
  • Latest Papers from Table of Contents or Articles in Press  (518)
  • Copernicus  (518)
  • National Academy of Sciences
  • 2010-2014  (518)
  • 1980-1984
  • 1945-1949
  • 1925-1929
  • 2012  (518)
  • The Cryosphere Discussions  (157)
  • Geoscientific Model Development Discussions  (102)
  • 102049
  • 92598
Collection
  • Articles  (518)
Source
  • Latest Papers from Table of Contents or Articles in Press  (518)
Publisher
  • Copernicus  (518)
  • National Academy of Sciences
Years
  • 2010-2014  (518)
  • 1980-1984
  • 1945-1949
  • 1925-1929
Year
Topic
  • 1
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2012-03-10
    Description: Arctic sea ice variability and trends, 1979–2010 The Cryosphere Discussions, 6, 957-979, 2012 Author(s): D. J. Cavalieri and C. L. Parkinson Analyses of 32 yr (1979–2010) of Arctic sea ice extents and areas derived from satellite passive microwave radiometers are presented for the Northern Hemisphere as a whole and for nine Arctic regions. There is an overall negative yearly trend of −51.5 ± 4.1 × 10 3 km 2 yr −1 (−4.1 ± 0.3% decade −1 ) in sea ice extent for the hemisphere. The sea ice extent trends for the individual Arctic regions are all negative except for the Bering Sea: −3.9 ± 1.1 × 10 3 km 2 yr −1 (−8.7 ± 2.5% decade −1 ) for the Seas of Okhotsk and Japan, +0.3 ± 0.8 × 10 3 km 2 yr −1 (+1.2 ± 2.7% decade −1 ) for the Bering Sea, −4.4 ± 0.7 × 10 3 km 2 yr −1 (−5.1 ± 0.9% decade −1 ) for Hudson Bay, −7.6 ± 1.6 × 10 3 km 2 yr −1 (−8.5 ± 1.8% decade −1 ) for Baffin Bay/Labrador Sea, −0.5 ± 0.3 × 10 3 km 2 yr −1 (−5.9 ± 3.5% decade −1 ) for the Gulf of St. Lawrence, −6.5 ± 1.1 × 10 3 km 2 yr −1 (−8.6 ± 1.5% decade −1 ) for the Greenland Sea, −13.5 ± 2.3 × 10 3 km 2 yr −1 (−9.2 ± 1.6% decade −1 ) for the Kara and Barents Seas, −14.6 ± 2.3 × 10 3 km 2 yr −1 (−2.1 ± 0.3% decade −1 ) for the Arctic Ocean, and −0.9 ± 0.4 × 10 3 km 2 yr −1 (−1.3 ± 0.5% decade −1 ) for the Canadian Archipelago. Similarly, the yearly trends for sea ice areas are all negative except for the Bering Sea. On a seasonal basis for both sea ice extents and areas, the largest negative trend is observed for summer with the next largest negative trend being for autumn.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-22
    Description: The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use Geoscientific Model Development Discussions, 5, 571-638, 2012 Author(s): F. Souty, T. Brunelle, P. Dumas, B. Dorin, P. Ciais, R. Crassous, C. Müller, and A. Bondeau Interactions between food demand, biomass energy and forest preservation are driving both food prices and land-use changes, regionally and globally. This study presents a new model called Nexus Land-Use version 1.0 which describes these interactions through a generic representation of agricultural intensification mechanisms. The Nexus Land-Use model equations combine biophysics and economics into a single coherent framework to calculate crop yields, food prices, and resulting pasture and cropland areas within 12 regions inter-connected with each other by international trade. The representation of cropland and livestock production systems in each region relies on three components: (i) a biomass production function derived from the crop yield response function to inputs such as industrial fertilisers; (ii) a detailed representation of the livestock production system subdivided into an intensive and an extensive component, and (iii) a spatially explicit distribution of potential (maximal) crop yields prescribed from the Lund-Postdam-Jena global vegetation model for managed Land (LPJmL). The economic principles governing decisions about land-use and intensification are adapted from the Ricardian rent theory, assuming cost minimisation for farmers. The land-use modelling approach described in this paper entails several advantages. Firstly, it makes it possible to explore interactions among different types of biomass demand for food and animal feed, in a consistent approach, including indirect effects on land-use change resulting from international trade. Secondly, yield variations induced by the possible expansion of croplands on less suitable marginal lands are modelled by using regional land area distributions of potential yields, and a calculated boundary between intensive and extensive production. The model equations and parameter values are first described in details. Then, idealised scenarios exploring the impact of forest preservation policies or rising energy price on agricultural intensification are described, and their impacts on pasture and cropland areas are investigated.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-13
    Description: Modelling sub-grid wetland in the ORCHIDEE global land surface model: evaluation against river discharges and remotely sensed data Geoscientific Model Development Discussions, 5, 683-735, 2012 Author(s): B. Ringeval, B. Decharme, S. L. Piao, P. Ciais, F. Papa, N. de Noblet-Ducoudré, C. Prigent, P. Friedlingstein, I. Gouttevin, C. Koven, and A. Ducharne The quality of the global hydrological simulations performed by Land Surface Models (LSMs) strongly depends on processes that occur at unresolved spatial scales. Approaches such as TOPMODEL have been developed, which allow soil moisture redistribution within each grid-cell, based upon sub-grid scale topography. Moreover, the coupling between TOPMODEL and a LSM appears as a potential way to simulate wetland extent dynamic and its sensitivity to climate, a recently identified research problem for biogeochemical modelling, including methane emissions. Global evaluation of the coupling between TOPMODEL and an LSM is difficult, and prior attempts have been indirect, based on the evaluation of the simulated river flow. This study presents a new way to evaluate this coupling, within the ORCHIDEE LSM, using remote sensing data of inundated areas. Because of differences in nature between the satellite derived information – inundation extent – and the variable diagnosed by TOPMODEL/ORCHIDEE – area at maximum soil water content –, the evaluation focuses on the spatial distribution of these two quantities as well as on their temporal variation. Despite some difficulties in exactly matching observed localized inundated events, we obtain a rather good agreement in the distribution of these two quantities at a global scale. Floodplains are not accounted for in the model, and this is a major limitation. The difficulty of reproducing the year-to-year variability of the observed inundated area (for instance, the decreasing trend by the end of 90s) is also underlined. Classical indirect evaluation based on comparison between simulated and observed riverflow is also performed and underlines difficulties to simulate riverflow after coupling with TOPMODEL. The relationship between inundation and river flow at the basin scale in the model is analyzed, using both methods (evaluation against remote sensing data and riverflow). Finally, we discuss the potential of the TOPMODEL/LSM coupling to simulate wetland areas. A major limitation of the coupling for this purpose is linked to its ability to simulate a global wetland coverage consistent with the commonly used datasets. However, it seems to be a good opportunity to account for the wetland areas sensitivity to the climate and thus to simulate its temporal variability.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-15
    Description: Ikaite crystals in melting sea ice – implications for p CO 2 and pH levels in Arctic surface waters The Cryosphere Discussions, 6, 1015-1035, 2012 Author(s): S. Rysgaard, R. N. Glud, K. Lennert, M. Cooper, N. Halden, R. J. G. Leakey, F. C. Hawthorne, and D. Barber A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO 2 exchange. This has been complicated by the recent discoveries of ikaite (CaCO 3 ·6H 2 O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO 2 and pH conditions in surface waters. Here we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from an actively melting 1.7 km 2 (0.5–1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures gradually disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice flow thickness by ca. 0.2 m per week and resulted in an estimated 1.6 ppm decrease of p CO 2 in the ocean surface mixed layer. This corresponds to an air-sea CO 2 uptake of 11 mmol m −2 sea ice d −1 or to 3.5 ton km −2 ice floe week −1 .
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-11
    Description: Inferring snow pack ripening and melt out from distributed ground surface temperature measurements The Cryosphere Discussions, 6, 563-591, 2012 Author(s): M.-O. Schmid, S. Gubler, J. Fiddes, and S. Gruber The seasonal snow cover and its melting are heterogeneous both in space and time. Describing and modelling this variability are important because it affects divers phenomena such as runoff, ground temperatures or slope movements. This study investigates the derivation of melting characteristics based on spatial clusters of temperature measurements. Results are based on data from Switzerland where ground surface temperatures were measured with miniature loggers (iButtons) at 40 locations, referred to as footprints. At each footprint, ten iButtons have been distributed randomly few cm below the ground surface over an area of 10 m × 10 m. Footprints span elevations of 2100–3300 m a.s.l. and slope angles of 0–55°, as well as diverse slope expositions and types of surface cover and ground material. Based on two years of temperature data, the basal ripening date and the melt-out date are determined for each iButton, aggregated to the footprint level and further analysed. The date of melt out could be derived for nearly all iButtons, the ripening date could be extracted for only approximately half of them because it requires ground freezing below the snow pack. The variability within a footprint is often considerable and one to three weeks difference between melting or ripening of the points in one footprint is not uncommon. The correlation of mean annual ground surface temperatures, ripening date and melt-out date is moderate, making them useful intuitive complementary measured for model evaluation.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-02-14
    Description: Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the regional climate model MAR The Cryosphere Discussions, 6, 635-672, 2012 Author(s): B. Franco, X. Fettweis, C. Lang, and M. Erpicum With the aim to force an ice dynamical model, the Greenland ice sheet (GrIS) surface mass balance (SMB) was modelled at different spatial resolutions (15–50 km) for the period 1990–2010, using the regional climate model MAR (Modèle Atmosphérique Régional) forced by the ERA-INTERIM reanalysis. This comparison revealed that (i) the inter-annual variability of the SMB components is consistent within the different spatial resolutions investigated, (ii) the MAR model simulates heavier precipitation on average over the GrIS with diminishing spatial resolution, and (iii) the SMB components (except precipitation) can be derived from a simulation at lower resolution with an ''intelligent'' interpolation. This interpolation can also be used to approximate the SMB components over another topography/ice sheet mask of the GrIS. These results are important for the forcing of an ice dynamical model, needed to enable future projections of the GrIS contribution to sea level rise over the coming centuries.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-15
    Description: Uncertainty in future solid ice discharge from Antarctica The Cryosphere Discussions, 6, 673-714, 2012 Author(s): R. Winkelmann, A. Levermann, K. Frieler, and M. A. Martin Future solid ice discharge from Antarctica under climate scenarios based on the Extended Concentration Pathways is investigated with the Potsdam Parallel Ice Sheet Model (PISM-PIK), a shallow model with a consistent representation of the ice flow in sheet, shelves and the transition zone. Both the uncertainty in the climate forcing as well as the intra-model uncertainty are combined into a probability distribution for solid ice discharge from Antarctica until the year 2500 under the ECP scenarios: All simulations are performed for a 81-member perturbed-physics ensemble and the likely ranges of surface and ocean warming under the emission pathways derived from the results of 20 CMIP3-AOGCMS. The effects of surface warming, ocean warming and increased precipitation on solid ice discharge are separately considered. We find that solid ice discharge caused by enhanced sub-shelf melting exceeds that caused by surface warming. Increasing precipitation leads to a change from net sea-level rise to sea-level drop. Our results suggest that the history of the ice-sheet plays an important role with respect to projections of solid ice discharge. Although all climate-change-forced simulations begin with the year 1850, the ice discharge around 2000 is significantly smaller than observed. Observed changes in ice discharge are reached around 2077 under the ECP-8.5 scenario. During the subsequent century, ice discharge reaches up to 0.24 m.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-19
    Description: Snow specific surface area simulation using the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS) The Cryosphere Discussions, 6, 5255-5289, 2012 Author(s): A. Roy, A. Royer, B. Montpetit, P. A. Bartlett, and A. Langlois Snow grain size is a key parameter for modeling microwave snow emission properties and the surface energy balance because of its influence on the snow albedo, thermal conductivity and diffusivity. A model of the specific surface area (SSA) of snow was implemented in the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS) version 3.4. This offline multilayer model (CLASS-SSA) simulates the decrease of SSA based on snow age, snow temperature and the temperature gradient under dry snow conditions, whereas it considers the liquid water content for wet snow metamorphism. We compare the model with ground-based measurements from several sites (alpine, Arctic and sub-Arctic) with different types of snow. The model provides simulated SSA in good agreement with measurements with an overall point-to-point comparison RMSE of 8.1 m 2 kg −1 , and a RMSE of 4.9 m 2 kg −1 for the snowpack average SSA. The model, however, is limited under wet conditions due to the single-layer nature of the CLASS model, leading to a single liquid water content value for the whole snowpack. The SSA simulations are of great interest for satellite passive microwave brightness temperature assimilations, snow mass balance retrievals and surface energy balance calculations with associated climate feedbacks.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-12-19
    Description: Evaluation of a near-global eddy-resolving ocean model Geoscientific Model Development Discussions, 5, 4305-4354, 2012 Author(s): P. R. Oke, D. A. Griffin, A. Schiller, R. J. Matear, R. Fiedler, J. Mansbridge, A. Lenton, M. Cahill, M. A. Chamberlain, and K. Ridgway Analysis of the variability in an 18-yr run of a near-global, eddy-resolving ocean general circulation model coupled with biogeochemistry is presented. Comparisons between modelled and observed mean sea level (MSL), mixed-layer depth (MLD), sea-level anomaly (SLA), sea-surface temperature (SST), and Chlorophyll a indicate that the model variability is realistic. We find some systematic errors in the modelled MLD, with the model generally deeper than observations, that results in errors in the Chlorophyll a , owing to the strong biophysical coupling. We evaluate several other metrics in the model, including the zonally-averaged seasonal cycle of SST, meridional overturning, volume transports through key Straits and passages, zonal averaged temperature and salinity, and El Nino-related SST indices. We find that the modelled seasonal cycle in SST is 0.5–1.5 °C weaker than observed; volume transports of the Antarctic Circumpolar Current, the East Australian Current, and Indonesian Throughflow are in good agreement with observational estimates; and the correlation between the modelled and observed NINO SST indices exceed 0.91. Most aspects of the model circulation are realistic. We conclude that the model output is suitable for broader analysis to better understand ocean dynamics and ocean variability.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-12-20
    Description: Net accumulation rates derived from ice core stable isotope records of Pío XI glacier, Southern Patagonia Icefield The Cryosphere Discussions, 6, 5291-5316, 2012 Author(s): M. Schwikowski, M. Schläppi, P. Santibañez, A. Rivera, and G. Casassa Pío XI, the largest glacier of the Southern Patagonia Icefield, reached its neoglacial maximum extent in 1994 and is one of the few glaciers in that area which is not retreating. In view of the recent warming it is important to understand glacier responses to climate changes. Due to its remoteness and the harsh conditions in Patagonia, no systematic mass balance studies have been performed. In this study we derived net accumulation rates for the period 2000 to 2006 from a 50 m (33.2 4 m weq) ice core collected in the accumulation area of Pío XI (2600 m a.s.l., 49°16´40´´ S, 73°21´14´´ W). Borehole temperatures indicate near temperate ice, but the average melt percent is only 16% ± 14%. Records of stable isotopes are well preserved and were used for identification of annual layers. Net accumulation rates range from 3.4 to 7.1 water equivalent (m weq) with an average of 5.8 m weq, comparable to precipitation amounts at the Chilean coast, but not as high as expected for the Icefield. Ice core stable isotope data correlate well with upper air temperatures and may be used as temperature proxy.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2012-11-03
    Description: Evaluating a lightning parameterization based on cloud-top height for mesoscale numerical model simulations Geoscientific Model Development Discussions, 5, 3493-3531, 2012 Author(s): J. Wong, M. C. Barth, and D. Noone The Price and Rind lightning parameterization based on cloud-top height is a commonly used method for predicting flash rate in global chemistry models. As mesoscale simulations begin to implement flash rate predictions at resolutions that partially resolve convection, it is necessary to validate and understand the behavior of this method within such regime. In this study, we tested the flash rate parameterization, intra-cloud/cloud-to-ground (IC:CG) partitioning parameterization, and the associated resolution dependency "calibration factor" by Price and Rind using the Weather Research and Forecasting (WRF) model running at 36 km, 12 km, and 4 km grid spacings within the continental United States. Our results show that while the integrated flash count is consistent with observation when model biases in convection are taken into account, an erroneous frequency distribution is simulated. When the spectral characteristics of lightning flash rate is a concern, we recommend the use of prescribed IC:CG values. In addition, using cloud-top from convective parameterization, the "calibration factor" is also shown to be insufficient in reconciling the resolution dependency at the tested grid spacing used in this study. We recommend scaling by areal ratio relative to a base-case grid spacing determined by convective core density.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2012-11-03
    Description: Using model reduction to predict the soil-surface C 18 OO flux: an example of representing complex biogeochemical dynamics in a computationally efficient manner Geoscientific Model Development Discussions, 5, 3469-3491, 2012 Author(s): W. J. Riley Earth System Models (ESMs) must calculate large-scale interactions between the land and atmosphere while accurately characterizing fine-scale spatial heterogeneity in water, carbon, and nutrient dynamics. We present here a high-dimensional model representation (HDMR) approach that allows detailed process representation of a coupled carbon and water tracer (the δ 18 O value of the soil-surface CO 2 flux (δ F s )) in a computationally tractable manner. δ F s depends on the δ 18 O value of soil water, soil moisture, soil temperature, and soil CO 2 production (all of which are depth-dependent), and the δ 18 O value of above-surface CO 2 . We tested the HDMR approach over a growing season in a C 4 -dominated pasture using two vertical soil discretizations. The difference between the HDMR approach and the full model solution in the three-month integrated isoflux was less than 0.2% (0.5 mol m −2 ‰), and the approach is up to 100 times faster than the full numerical solution. This type of model reduction approach allows representation of complex coupled biogeochemical processes in regional and global climate models and can be extended to characterize subgrid-scale spatial heterogeneity.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2012-11-08
    Description: ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1-km resolution based on satellite information for use in land surface, meteorological and climate models Geoscientific Model Development Discussions, 5, 3573-3620, 2012 Author(s): S. Faroux, A. T. Kaptué Tchuenté, J.-L. Roujean, V. Masson, E. Martin, and P. Le Moigne The overall objective of the present study is to introduce the new ECOCLIMAP-II database for Europe, which is an upgrade for this region of the former initiative, ECOCLIMAP-I, already implemented at global scale. The ECOCLIMAP programme is a dual database at 1-km resolution that includes an ecosystem classification and a coherent set of land surface parameters that are primarily mandatory in meteorological modelling (notably leaf area index and albedo). Hence, the aim of this innovative physiography is to enhance the quality of initialisation and impose some surface attributes within the scope of weather forecasting and climate related studies. The strategy for implementing ECOCLIMAP-II is to depart from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global Land Cover) by splitting existing classes into new classes that possess a better regional character by virtue of the climatic environment (latitude, proximity to the sea, topography). The leaf area index (LAI) from MODIS and NDVI from SPOT/Vegetation yield the two proxy variables that were considered here in order to perform a multi-year trimmed analysis between 1999 and 2005 using the K-means method. Further, meteorological applications require each land cover type to appear as a partition of fractions of 4 main surface types or tiles (nature, water bodies, sea, urban areas) and, inside the nature tile, fractions of 12 Plant Functional Types (PFTs) representing generic vegetation types – principally broadleaf forest, needleleaf forest, C3 and C4 crops, grassland and bare land – as incorporated by the SVAT model ISBA developed at Météo France. This landscape division also forms the cornerstone of a validation exercise. The new ECOCLIMAP-II can be verified with auxiliary land cover products at very fine and coarse resolutions by means of versatile land occupation nomenclatures.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2012-11-10
    Description: A general treatment of snow microstructure exemplified by an improved relation for the thermal conductivity The Cryosphere Discussions, 6, 4673-4693, 2012 Author(s): H. Löwe, F. Riche, and M. Schneebeli Finding relevant microstructural parameters beyond the density is a longstanding problem which hinders the formulation of accurate parametrizations of physical properties of snow. Towards a remedy we address the effective thermal conductivity tensor of snow via known anisotropic, second-order bounds. The bound provides an explicit expression for the thermal conductivity and predicts the relevance of a microstructural anisotropy parameter Q which is given by an integral over the two-point correlation function and unambiguously defined for arbitrary snow structures. For validation we compiled a comprehensive data set of 167 snow samples. The set comprises individual samples of various snow types and entire time series of metamorphism experiments under isothermal and temperature gradient conditions. All samples were digitally reconstructed by micro-computed tomography to perform microstructure-based simulations of heat transport. The incorporation of anisotropy via Q considerably reduces the root mean square error over the usual density-based parametrization. The systematic quantification of anisotropy via the two-point correlation function suggests a generalizable route to incorporate microstructure into snowpack models. We indicate the inter-relation of the conductivity to other properties and outline a potential impact of Q on dielectric constant, permeability and adsorption rate of diffusing species in the pore space.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2012-11-14
    Description: Intercomparison of temperature trends in IPCC CMIP5 simulations with observations, reanalyses and CMIP3 models Geoscientific Model Development Discussions, 5, 3621-3645, 2012 Author(s): J. Xu and A. M. Powell Jr. On the basis of the fifth Coupled Model Intercomparison Project (CMIP5) and the climate model simulations covering 1979 through 2005, the temperature trends and their uncertainties have been examined to note the similarities or differences compared to the radiosonde observations, reanalyses and the third Coupled Model Intercomparison Project (CMIP3) simulations. The results show noticeable discrepancies for the estimated temperature trends in the four data groups (Radiosonde, Reanalysis, CMIP3 and CMIP5) although similarities can be observed. Compared to the CMIP3 model simulations, the simulation in some of CMIP5 models were improved. The CMIP5 models displayed a negative temperature trend in the stratosphere closer to the strong negative trend seen in the observations. However, the positive tropospheric trend in the tropics is overestimated by the CMIP5 models relative to CMIP3 models. While some of the models produce temperature trend patterns more highly correlated with the observed patterns in CMIP5, the other models (such as CCSM4 and IPSL_CM5A-LR) exhibit the reverse tendency. The CMIP5 temperature trend uncertainty was significantly reduced in most areas, especially in the Arctic and Antarctic stratosphere, compared to the CMIP3 simulations. Similar to the CMIP3, the CMIP5 simulations overestimated the tropospheric warming in the tropics and Southern Hemisphere and underestimated the stratospheric cooling. The crossover point where tropospheric warming changes into stratospheric cooling occurred near 100 hPa in the tropics, which is higher than in the radiosonde and reanalysis data. The result is likely related to the overestimation of convective activity over the tropical areas in both the CMIP3 and CMIP5 models. Generally, for the temperature trend estimates associated with the numerical models including the reanalyses and global climate models, the uncertainty in the stratosphere is much larger than that in the troposphere, and the uncertainty in the Antarctic is the largest. In addition, note that the reanalyses show the largest uncertainty in the lower tropical stratosphere, and the CMIP3 simulations show the largest uncertainty in both the south and north polar regions.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-11-15
    Description: Radio-frequency probes of Antarctic ice birefringence at South Pole vs. East Antarctica; evidence for a changing ice fabric The Cryosphere Discussions, 6, 4695-4731, 2012 Author(s): D. Besson, N. Doolin, M. Stockham, and I. Kravchenko Following pioneering efforts in East Antarctica, we herein report on the amplitude and temporal characteristics of polarized surface radar echo data collected in South Polar ice using radio sounding equipment with 0.5-ns echo-time precision. We observe strong echoes at 6, 9.6, 13.9, 17, and 19 μs following vertical pulse emission from the surface, in the upper half of the ice sheet. The synchronicity of those echoes for all broadcast azimuthal polarizations affirms the lack of observable birefringence over the upper half of the ice sheet, in contrast to East Antarctica measurements in the vicinity of Dome Fuji, and signifies a dramatic difference in the character of the ice sheet in the intervening 1400 km. Of the five strongest echoes, three exhibit an evident correlation with the local surface ice flow direction, qualitatively consistent with measurements in East Antarctica. Our radio sounding measurements also permit the most precise determination to date of the ice thickness at South Pole.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2012-11-15
    Description: Boreal snow cover variations induced by aerosol emissions in the middle of the 21st century The Cryosphere Discussions, 6, 4733-4769, 2012 Author(s): M. Ménégoz, G. Krinner, Y. Balkanski, A. Cozic, O. Boucher, and P. Ciais We used a coupled climate-chemistry model to quantify the impacts of aerosols on snow cover both for the present-day and for the middle of the 21st century. Black carbon (BC) deposition over continents induces a reduction in the Mean Number of Days With Snow at the Surface (MNDWS) that ranges from 0 to 10 days over large areas of Eurasia and Northern America for the present-day relative to the pre-industrial period. This is mainly due to BC deposition during the spring, a period of the year when the remaining of snow accumulated during the winter is exposed to both strong solar radiation and large amount of aerosol deposition induced themselves by a high level of transport of particles from polluted areas. North of 30° N, this deposition flux represents 222 Gg BC month −1 on average from April to June in our simulation. A large reduction in BC emissions is expected in the future in the Radiative Concentration Pathway (RCP) scenarios. Considering this scenario in our simulation leads to a decrease in the spring BC deposition down to 110 Gg month −1 in the 2050s in the RCP8.5 scenario. However, despite the reduction of the aerosol impact on snow, the MNDWS is strongly reduced by 2050, with a decrease ranging from 10 to 100 days from pre-industrial values over large parts of the Northern Hemisphere. This reduction is essentially due to temperature increase, which is quite strong in the RCP8.5 scenario in the absence of climate mitigation policies. Moreover, the projected sea-ice retreat in the next decades will open new routes for shipping in the Arctic. However, a large increase in shipping emissions in the Arctic by the mid 21st century does not lead to significant changes of BC deposition over snow-covered areas in our simulation. Therefore, the MNDWS is clearly not affected through snow darkening effects associated to these Arctic ship emissions. In an experiment without nudging toward atmospheric reanalyses, we simulated however some changes of the MNDWS considering such aerosol ship emissions. These changes are generally not statistically significant in boreal continents, except in the Quebec and in the West Siberian plains, where they range between −5 and −10 days. They are induced both by radiative forcings of the aerosols when they are in the atmosphere, and by all the atmospheric feedbacks. Climate change by the mid 21st century could also cause biomass burning activity (forest fires) to become more intense and occur earlier in the season. In an idealized scenario in which forest fires are 50% stronger and occur 2 weeks earlier than at present, we simulated an increase in spring BC deposition of 21 Gg BC month −1 over continents located north of 30° N. This BC deposition does not impact directly the snow cover through snow darkening effects. However, in an experiment considering all the aerosol forcings and atmospheric feedbacks, enhanced fire activity induces a significant decrease of the MNDWS reaching a dozen of days in Quebec and in Eastern Siberia.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2012-12-07
    Description: Ikaite crystal distribution in Arctic winter sea ice and implications for CO 2 system dynamics The Cryosphere Discussions, 6, 5037-5068, 2012 Author(s): S. Rysgaard, D. H. Søgaard, M. Cooper, M. Pućko, K. Lennert, T. N. Papakyriakou, F. Wang, N. X. Geilfus, R. N. Glud, J. Ehn, D. F. McGinnnis, K. Attard, J. Sievers, J. W. Deming, and D. Barber The precipitation of ikaite (CaCO 3 ·6H 2 O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700–900 µmol kg −1 ice (~ 25 × 10 6 crystals kg −1 ) to bottom-layer values of 100–200 µmol kg −1 ice (1–7 × 10 6 kg −1 ), all of which are much higher (4–10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed p CO 2 conditions in polar surface waters, and hence, the air-sea CO 2 flux.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2012-12-08
    Description: Mass balance, runoff and surges of the Bering Glacier, Alaska The Cryosphere Discussions, 6, 5095-5117, 2012 Author(s): W. Tangborn The historical net, ablation and accumulation daily balances and runoff of the Bering Glacier, Alaska are determined for the 1951–2011 period with the PTAA (precipitation-temperature-area-altitude) model, using daily precipitation and temperature observations collected at the Cordova and Yakutat weather stations, together with the area-altitude distribution of the glacier. The mean annual balance for this 61-yr period is −0.6 mwe, the accumulation balance is +1.4 and the ablation balance is −2.0 mwe. Periodic surges of this glacier transport large volumes of ice to lower elevations where the ablation rate is higher, producing more negative balances and increasing runoff. During the 1993–1995 surge the average ablation balance is −3.3 mwe, over a meter greater than the 1951–2011 average. Runoff from the Bering Glacier (derived from simulated ablation and precipitation as rain) is highly correlated with the four glacier surges that have been observed since 1951. Ice volume loss for the 1972–2003 period measured with the PTAA model is 2.3 km 3 we a −1 and closely agrees with losses for the same period measured with the geodetic method.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2012-12-11
    Description: Present state of global wetland extent and wetland methane modelling: methodology of a model intercomparison project (WETCHIMP) Geoscientific Model Development Discussions, 5, 4071-4136, 2012 Author(s): R. Wania, J. R. Melton, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, G. Chen, A. V. Eliseev, P. O. Hopcroft, W. J. Riley, Z. M. Subin, H. Tian, V. Brovkin, P. M. van Bodegom, T. Kleinen, Z. C. Yu, J. S. Singarayer, S. Zürcher, D. P. Lettenmaier, D. J. Beerling, S. N. Denisov, C. Prigent, F. Papa, and J. O. Kaplan The Wetland and Wetland CH 4 Intercomparison of Models Project (WETCHIMP) was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH 4 ) emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO 2 ) forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2012). Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO 2 concentration). The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extents and CH 4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH 4 fluxes from wetland systems. Even though modelling of wetland extents and CH 4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH 4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2012-12-12
    Description: Improving the representation of secondary organic aerosol (SOA) in the MOZART-4 global chemical transport model Geoscientific Model Development Discussions, 5, 4187-4232, 2012 Author(s): A. Mahmud and K. C. Barsanti The secondary organic aerosol (SOA) module in the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) has been updated by replacing existing two-product (2p) parameters with those obtained from two-product volatility basis set (2p-VBS) fits, and by treating SOA formation from the following volatile organic compounds (VOCs): isoprene, propene and lumped alkenes. Strong seasonal and spatial variations in global SOA distributions were demonstrated, with significant differences in the predicted concentrations between the base-case and updated model versions. The base-case MOZART-4 predicted annual average SOA of 0.36 ± 0.50 μg m −3 in South America, 0.31 ± 0.38 μg m −3 in Indonesia, 0.09 ± 0.05 μg m −3 in the USA, and 0.12 ± 0.07 μg m −3 in Europe. Concentrations from the updated versions of the model showed a~marked increase in annual average SOA. Using the updated set of parameters alone (MZ4-v1) increased annual average SOA by ~8%, ~16%, ~56%, and ~108% from the base-case in South America, Indonesia, USA, and Europe, respectively. Treatment of additional parent VOCs (MZ4-v2) resulted in an even more dramatic increase of ~178–406% in annual average SOA for these regions over the base-case. The increases in predicted SOA concentrations further resulted in increases in corresponding SOA contributions to annual average total aerosol optical depth (AOD) by
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2012-12-12
    Description: Modeling agriculture in the Community Land Model Geoscientific Model Development Discussions, 5, 4137-4185, 2012 Author(s): B. Drewniak, J. Song, J. Prell, V. R. Kotamarthi, and R. Jacob The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types – maize, soybean, and spring wheat – into the coupled carbon-nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements. CLM-Crop yields were comparable with observations in some regions, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model – simulating agriculture in a realistic way, complete with fertilizer and residue management practices. Results are encouraging, with improved representation of human influences on the land surface and the potentially resulting climate impacts.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2012-12-12
    Description: A test of numerical instability and stiffness in the parametrizations of the ARPÉGE and ALADIN models Geoscientific Model Development Discussions, 5, 4233-4268, 2012 Author(s): M. Tudor Meteorological numerical weather prediction (NWP) models solve a system of partial differential equations in time and space. Semi-lagrangian advection scheme in the model dynamics allows for long time-steps. These longer time-steps can result in instabilities occurring in the model physics. A system of differential equations in which some solution components decay more rapidly than others is stiff. In this case it is stability rather than accuracy that restricts the time-step. The vertical diffusion parametrization can cause fast non-meteorological oscillations around the slowly evolving true solution (fibrillations). These are treated with an anti-fibrillation scheme. But small oscillations remain in an operational weather forecasts using ARPÉGE and ALADIN models. It is needed to test of the complete model formulation, as implemented in the operational forecast. In this paper, a simple test is designed. The test reveals if the formulation of particular physical parametrization is a stiff problem or potentially numerically unstable in combination with any other part of the model. When the test is applied to a stable scheme, the solution remains stable. But, applying the test to a potentially unstable scheme yields a solution with fibrillations of substantial amplitude. The parametrizations of a NWP model ARPÉGE were tested one by one to see which one may be the source of unstable model behaviour. The test has identified the stratiform precipitation scheme (a diagnostic Kessler type scheme) as a stiff problem, particularly the term that describes the evaporation of snow.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2012-12-14
    Description: Global glacier volumes and sea level – effects of ice below the surface of the ocean and of new local lakes on land The Cryosphere Discussions, 6, 5169-5179, 2012 Author(s): W. Haeberli and A. Linsbauer The potential contribution of glaciers and ice caps to sea level rise is usually calculated by comparing the estimated total ice volume with the surface area of the ocean. Part of this total ice volume, however, does not contribute to sea-level rise, because it is below the surface of the ocean or below the levels of future lakes on land. The present communication points to this so far overlooked phenomenon and provides a first order-of-magnitude estimate. It is shown that the effect is small (most likely 1 to 5 cm sea-level equivalent) but systematic, could primarily affect earlier stages of global glacier vanishing and should therefore be adequately considered. Now-available techniques of slope-related high-resolution glacier-bed modelling have the potential to provide more detailed assessments in the future.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2012-12-15
    Description: Micrometeorological conditions and surface mass and energy fluxes on Lewis glacier, Mt Kenya, in relation to other tropical glaciers The Cryosphere Discussions, 6, 5181-5224, 2012 Author(s): L. Nicholson, R. Prinz, T. Mölg, and G. Kaser The Lewis Glacier on Mt Kenya is one of the best-studied tropical glaciers, but full understanding of the interaction of the glacier mass balance and climate forcing has been hampered by a lack of long term meteorological data. Here we present 2.5 yr of meteorological data collected from the glacier surface from October 2009–February 2012, which indicate that mean meteorological conditions in the upper zone of Lewis Glacier are comparable to those experienced in the ablation zones of South American tropical glaciers. In the context of other glaciated mountains of equatorial east Africa, the summit zone of Mt Kenya shows strong diurnal cycles of convective cloud development as opposed to the Rwenzoris where cloud cover persists throughout the diurnal cycle and Kilimanjaro where clear skies prevail. Surface energy fluxes were calculated for the meteorological station site using a physical mass- and energy-balance model driven by hourly measured meteorological data and additional input parameters that were determined by Monte Carlo optimization. Sublimation rate was lower than those reported on other tropical glaciers and melt rate was high throughout the year, with the glacier surface reaching the melting point on an almost daily basis. Surface mass balance is influenced by both solid precipitation and air temperature, with radiation providing the greatest net source of energy to the surface. Cloud cover typically reduces the net radiation balance compared to clear sky conditions, and thus the more frequent formation of convective clouds over the summit of Mt Kenya, and the associated higher rate of snow accumulation are important in limiting the rate of mass loss from the glacier surface. The analyses shown here are the basis for glacier-wide mass and energy balance modeling to determine the climate proxy offered by the glaciers of Mt Kenya.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2012-09-25
    Description: MESMO 2: a mechanistic marine silica cycle and coupling to a simple terrestrial scheme Geoscientific Model Development Discussions, 5, 2999-3033, 2012 Author(s): K. Matsumoto, K. S. Tokos, A. Huston, and H. Joy-Warren Here we describe the second version of Minnesota Earth System Model for Ocean biogeochemistry (MESMO 2), an earth system model of intermediate complexity, which consists of a dynamical ocean, dynamic-thermodynamic sea ice, and energy moisture balanced atmosphere. The new version has more realistic land ice masks and is driven by seasonal winds. A major aim in version 2 is representing the marine silica cycle mechanistically in order to investigate climate-carbon feedbacks involving diatoms, a critically important class of phytoplankton in terms of carbon export production. This is achieved in part by including iron, on which phytoplankton uptake of silicic acid depends. Also, MESMO 2 is coupled to an existing terrestrial model, which allows for the exchange of carbon, water, and energy between land and the atmosphere. The coupled model, called MESMO 2E, is appropriate for more complete earth system simulations. The new version was calibrated with the goal of preserving reasonable interior ocean ventilation and various biological production rates in the ocean and land, while simulating key features of the marine silica cycle.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2012-10-02
    Description: A century of ice retreat on Kilimanjaro: the mapping reloaded The Cryosphere Discussions, 6, 4233-4265, 2012 Author(s): N. J. Cullen, P. Sirguey, T. Mölg, G. Kaser, M. Winkler, and S. J. Fitzsimons A new and consistent time series of glacier retreat on Kilimanjaro over the last century has been established by re-interpreting two historical maps and processing nine satellite images, which removes uncertainty about the location and extent of past and present ice bodies. Three-dimensional visualization techniques were used in conjunction with aerial and ground-based photography to facilitate the interpretation of ice boundaries over eight epochs between 1912 and 2011. The glaciers have retreated from their former extent of 11.40 km 2 in 1912 to 1.76 km 2 in 2011, which represents a total loss of about 85% of the ice cover over the last 100 yr. The total loss of ice cover is in broad agreement with previous estimates but to further characterize the spatial and temporal variability of glacier retreat a cluster analysis using topographical information (elevation, slope and aspect) was performed to segment the ice cover as observed in 1912, which resulted in three glacier zones being identified. Linear extrapolation of the retreat in each of the three identified glacier assemblages imply the ice cover on the western slopes of Kilimanjaro will be gone before 2020, while the remaining ice bodies on the plateau and southern slopes will most likely disappear by 2040. It is highly unlikely that any body of ice will be present on Kilimanjaro after 2060 if present-day climatological conditions are maintained. Importantly, the geo-statistical approach developed in this study provides us with an additional tool to characterize the physical processes governing glacier retreat on Kilimanjaro. It remains clear that to use glacier response to unravel past climatic conditions on Kilimanjaro the transition from growth to decay of the plateau glaciers must be further resolved, in particular the mechanisms responsible for vertical cliff development.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2012-10-02
    Description: Inhomogeneous snow distribution and depletion patterns at grid scale in a shallow snowpack region The Cryosphere Discussions, 6, 4171-4203, 2012 Author(s): H. Li, J. Wang, Z. Tang, and J. Wang Understanding inhomogeneous snow processes at the grid scale is crucial for distributed snow hydrology research. Many studies on inhomogeneous snow processes focus on the annual similarity of snow distribution and depletion and the roles of topography and other environmental conditions. In contrast, this study examines the snow distribution and depletion patterns at a small grid scale in a shallow snowpack region and analyzes how meteorological factors influence these patterns by using the SNOWPACK model for scenario simulations. These simulations enable quantification of the role of three main meteorological factors: shortwave radiation, longwave radiation, and air temperature. The study region is located in the Northeastern Qinghai-Tibet plateau. The results of the study indicate the following two points. (1) During different snowmelt periods, spatial similarity exists between the periodical cumulative snow distributions, and the relationships between snow cover fraction and mean snow water equivalent are similar. However, this similarity is not applicable to the period before snowmelt. (2) Shortwave radiation has a~major impact on the snow distribution and depletion patterns at the small grid scale. Increasing shortwave radiation can greatly promote the heterogeneity of the snow distribution. The contributions of longwave radiation and air temperature to the heterogeneity of snow distribution are minor. Moreover, there are similarities between the simulated snow distributions when considering the scenarios of increases in longwave radiation or in air temperature.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2012-10-13
    Description: A new method to diagnose the contribution of anthropogenic activities to temperature: temperature tagging Geoscientific Model Development Discussions, 5, 3183-3215, 2012 Author(s): V. Grewe This study presents a new methodology, called temperature tagging. It keeps track of the contributions of individual processes to temperature within a climate model simulation. As a first step and as a test bed a simple box climate model is regarded. The model consists of an atmosphere, which absorbs and emits radiation and of a surface, which reflects, absorbs and emits radiation. The tagging methodology is used to investigate the impact of the atmosphere on surface temperature. Four processes are investigated in more detail and their contribution to the surface temperature quantified: (i) shortwave influx and shortwave atmospheric absorption ("sw"), (ii) longwave atmospheric absorption due to non-CO 2 greenhouse gases ("nC"), (iii) due to a base case CO 2 concentration ("bC"), and (iv) due to an enhanced CO 2 concentration ("eC"). The differential equation for the temperature in the box climate model is decomposed into four equations for the tagged temperatures. This method is applied to investigate the contribution of longwave absorption to the surface temperature (greenhouse effect), which is calculated to be 68 K. This estimate contrasts an alternative calculation of the greenhouse effect of slightly more than 30 K based on the difference of the surface temperature with and without an atmosphere. The difference of the two estimates is due to a shortwave cooling effect and a reduced contribution of the shortwave to the total downward flux: The shortwave absorption of the atmosphere results in a reduced net shortwave flux at the surface of 192 W m −2 , leading to a cooling of the surface by 14 K. Introducing an atmosphere results in a downward longwave flux at the surface due to atmospheric absorption of 189 W m −2 , which roughly equals the net shortwave flux of 192 W m −2 . This longwave flux is a result of both, the radiation due to atmospheric temperatures and its longwave absorption. Hence the longwave absorption roughly accounts for 91 W m −2 out of a total of 381 W m −2 (roughly 25%) and therefore accounts for a temperature of 68 K. In a second experiment, the CO 2 concentration is doubled, which leads to an increase in surface temperature of 1.2 K, resulting from an temperature increase due to CO 2 of 1.9 K, due to non-CO 2 greenhouse gases of 0.6 K and a cooling of 1.3 K due to a reduced importance of the solar heating for the surface and atmospheric temperatures. These two experiments show the feasibility of temperature tagging and its potential as a diagnostic for climate simulations.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2012-10-13
    Description: Thinning and slowdown of Greenland's Mittivakkat Gletscher The Cryosphere Discussions, 6, 4387-4415, 2012 Author(s): S. H. Mernild, N. T. Knudsen, M. J. Hoffman, J. C. Yde, W. H. Lipscomb, E. Hanna, J. K. Malmros, and R. S. Fausto Here, we document changes for the Mittivakkat Gletscher, the glacier in Greenland (disconnected to the Greenland Ice Sheet, GrIS) having the longest observed mass balance and surface velocity time series (since 1995). Between 1986 and 2011, this glacier decreased by 15% in mean ice thickness and 30% in volume. We attribute these changes to summer warming and less winter snowfall. The vertical strain was able to compensate about 60% of the elevation change due to surface mass balance (SMB) in the lower part, and about 25% in the upper part. The annual mean ice surface velocity decreased by 30%, likely as a dynamic effect of ice thinning. Mittivakkat Gletscher summer surface velocities were on average 50–60% above winter background values, and up to 160% higher during peak velocity events.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2012-10-13
    Description: Variability of light transmission through Arctic land-fast sea ice during spring The Cryosphere Discussions, 6, 4363-4385, 2012 Author(s): M. Nicolaus, C. Petrich, S. R. Hudson, and M. A. Granskog The amount of solar radiation transmitted through Arctic sea ice is determined by the thickness and physical properties of snow and sea ice. Light transmittance is highly variable in space and time since thickness and physical properties of snow and sea ice are highly heterogeneous on variable time and length scales. We present field measurements of under-ice irradiance along repeated (March, May, June 2010) transects under un-deformed land-fast sea ice at Barrow, Alaska. The objective was to quantify seasonal evolution and spatial variability of light transmittance through snow and sea ice. Along with optical measurements, snow depth, sea ice thickness, and freeboard were recorded, and ice cores were analyzed for Chlorophyll a and particulate matter. Our results show that snow cover variability prior to onset of snow melt may cause as much spatial variability of relative light transmittance as the contrast of ponded and white ice during summer. In both instances, a spatial variability of up to three times above and below the mean was measured. In addition, we found a thirtyfold increase of light transmittance as a result of partial snowmelt. Hence, the seasonal evolution of transmittance through sea ice exceeded the spatial variability. Nevertheless, more comprehensive under-ice radiation measurements are needed for a more generalized and large-scale understanding of the under-ice energy budget for physical, biological, and geochemical applications.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2012-09-25
    Description: Brief communication "Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet" The Cryosphere Discussions, 6, 4101-4122, 2012 Author(s): X. Fettweis, E. Hanna, C. Lang, A. Belleflamme, M. Erpicum, and H. Gallée Since 2007, there has been a succession of surface melt records over the Greenland Ice Sheet (GrIS) in continuity of the trend observed since the end of the 1990s towards increasing melt. But, these last two decades are characterized by an increase of negative phases of the North-Atlantic Oscillation (NAO) favouring warmer and drier summers than normal over GrIS. In this context, we use a circulation type classification based on the daily 500 hPa geopotential height to evaluate the role of the atmospheric dynamics in this surface melt acceleration since 20 yr. Due to the lack of direct observations, the interannual melt variability is gauged here by the summer (June-July-August) mean temperature at 700 hPa over Greenland; analogous atmospheric circulations in the past show that ~70% of the 1992–2011 warming at 700 hPa over Greenland has been driven by changes in the atmospheric flow frequencies. Indeed, the occurrence of anticyclones in surface and at 500 hPa centred over the GrIS has doubled since the end of 1990s which induces southerly warm air advection along the Western Greenland coast and over the neighbouring Canadian islands. These changes in the NAO modes explain also why no significant warming has been observed these last five summers over Svalbard, where northerly atmospheric flows are more frequent than before. Therefore, the recent warmer summers over Greenland, Ellesmere and Baffin Islands can not be considered as a long term climate warming but are more rather a consequence of the NAO variability impacting the atmospheric heat transport. While no global model from the CMIP5 database projects consequent changes in NAO through this century, we can not exclude that these changes in NAO are due to global warming.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2012-09-25
    Description: Surface deformation detected by the space-observed small baseline SAR interferometry over permafrost environment in Tibet Plateau, China The Cryosphere Discussions, 6, 4071-4099, 2012 Author(s): F. Chen and H. Lin The evolution of permafrost and the active layer is highly related to climate change because of its feedback effects involving water and carbon storage. In this study, we firstly examined the relationship of regional water balance, geomorphological process and anthropogenic activities by means of Small Baseline Synthetic Aperture Radar Interferometry (SB-InSAR) to monitor the surface movements overlaid on the permafrost of Tibet Plateau (TP), China, using 3.5-yr observation span of L-band ALOS PALSAR data (June, 2007 to December, 2010). The estimated displacements (primarily in the range of −30 mm yr −1 to 30 mm yr −1 ) and time-series implied evolutions of the active layer and permafrost beneath. The motion trend along slopes was complicated, and thus interdisciplinary interpretations were required. Water level variations of inland lakes were then detected, although further investigations were required for validation. Anthropogenic influences on this frail permafrost environment were significant, proved by the remarkable surface settlement along the embankment of Qinghai-Tibet Railway. Consequently, it is crucial and necessary to monitor this arid and cold plateau owing to the combination of climate change, geo-hazards prediction as well as the regional sustainable development.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2012-09-27
    Description: Mechanical effect of mélange-induced buttressing on embayment-terminating glacier dynamics The Cryosphere Discussions, 6, 4123-4136, 2012 Author(s): D. Seneca Lindsey and T. K. Dupont Embayment terminating glaciers interact dynamically with seasonal sea ice and icebergs, a mixture we refer to as mélange. For certain glaciers, mélange prevents calved bergs from rotating away from the front, thus allowing the ice front to advance into the embayment. Here we demonstrate that mélange can, if rigid enough, provide sufficient buttressing to reduce the calving rate, while leaving the ice-front velocity largely unaffected. The net result is additional ice-front advance. Observations indicate a seasonal advance/retreat cycle has occurred at Jakobshavn Isbræ since the 1950s. We model an idealized Jakobshavn Isbræ-like scenario and find that mélange may be responsible for a seasonal ice-front advance of up to 0.6 km. These results come from a model that incorporates mélange into the interior of the domain, includes relevant stresses, and models drag via a kinematic boundary condition. A weakening or loss of mélange due to increasing temperatures would lead to further mass loss from glaciers such as Jakobshavn Isbræ.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2012-08-01
    Description: Heterogeneity in Glacier response from 1973 to 2011 in the Shyok valley, Karakoram, India The Cryosphere Discussions, 6, 3049-3078, 2012 Author(s): R. Bhambri, T. Bolch, P. Kawishwar, D. P. Dobhal, D. Srivastava, and B. Pratap A glacier inventory for the Shyok and Chang Chenmo basins was generated for the year 2002 using semi-automated methods based on Landsat ETM+ and SRTM3 DEM data. Glacier change analysis was carried out for 134 glaciers based on Hexagon KH-9 (years 1973, 1974) and Landsat TM/ETM+ (1989, 2002 and 2011) images. The 2002 inventory contains 2123 glaciers with an area of 2977.9±92.2 km 2 in the entire study area including Shyok (1605 glaciers; area 2499±77.4 km 2 ) and Chang Chenmo basins (518 glaciers; area 478.7±14.8 km 2 ). Out of 2123 glaciers, only eight glaciers have higher elevation ranges than 2000 m. On average, the glacier area in Chang Chenmo basin exhibited no changes during the study period. However, individual absolute glacier area changes varied from −0.7±0.03 km 2 to +0.2±0.01 km 2 between 1973 and 2011. 10 glaciers exhibited an area increase of 1.7±0.07 km 2 in total while 36 glaciers lost about total 1.8±0.07 km 2 . The glacier area decreased by 11±0.47 km 2 from 1973 to 1989 in the Shyok basin whereas an increase in area of 8.2±0.33 km 2 was observed during 1989–2002. The area has further increased by 5.6±0.21 km 2 from 2002 to 2011 in the respective basin. This individual glacier response heterogeneity can be attributed to surging and possibly due to decreased temperature in last decades. However, further detailed studies are needed to understand glacier surge mechanism and the possible mass gain.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2012-08-01
    Description: The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean in spring The Cryosphere Discussions, 6, 3011-3048, 2012 Author(s): A. Tetzlaff, L. Kaleschke, C. Lüpkes, F. Ament, and T. Vihma The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and the JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model which only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I and AMSR-E data. Under nearly cloud free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 60% for Barrow using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Near-surface winds of both reanalyses show a large inconsistency in the Central Arctic, which leads to a large difference in the correlations between modeled and observed 2-m air temperatures at Tara. Explained variances amount to 70% using JRA and only 45% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 150 to 350 km radius around the site.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2012-10-18
    Description: Implementation of the Fast-JX Photolysis scheme into the UKCA component of the MetUM chemistry climate model Geoscientific Model Development Discussions, 5, 3217-3260, 2012 Author(s): P. J. Telford, N. L. Abraham, A. T. Archibald, P. Braesicke, M. Dalvi, O. Morgenstern, F. M. O'Connor, N. A. D. Richards, and J. A. Pyle Atmospheric chemistry is driven by photolytic reactions, making their modelling a crucial component of atmospheric models. We describe the implementation and validation of Fast-JX, a state of the art model of interactive photolysis, into the MetUM chemistry climate model. This allows for interactive photolysis frequencies to be calculated in the troposphere and augments the calculation of the frequencies in the stratosphere by accounting for clouds and aerosols in addition to ozone. In order to demonstrate the effectiveness of this new photolysis scheme we employ new methods of validating the model, including techniques for sampling the model to compare to flight track and satellite data.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2012-10-18
    Description: COSTRICE – three model online coupling using OASIS: problems and solutions Geoscientific Model Development Discussions, 5, 3261-3310, 2012 Author(s): H. T. M. Ho, B. Rockel, H. Kapitza, B. Geyer, and E. Meyer The coupled system COSTRICE is developed for the first time in order to reproduce the interactions and feedbacks between atmosphere, ocean and sea-ice in a two-way online coupled model system containing three component models for regional climate simulations over Baltic Sea and North Sea regions. The regional climate model CCLM 1 is coupled to the regional ocean model TRIMNP 1 and the sea ice model CICE 1 via the coupler OASIS3. In this study, CCLM is setup with a horizontal grid mesh size of 50 km and 32 vertical atmosphere layers and driven by the 6-h ERA-interim reanalysis data as initial and boundary conditions. TRIMNP is setup with a horizontal grid mesh size of 12.8 km and 50 vertical ocean levels. CICE calculates ice in 5 categories and runs with the same horizontal resolution as TRIMNP but only over the Baltic Sea and the Kattegat Bay of the North Sea. In a two-way online coupling process, CCLM is linked to TRIMNP through sea surface temperature (SST) as lower boundary condition every 3 h and TRIMNP is driven by 1-h atmospheric state variables and fluxes of CCLM. The data exchange processes between TRIMNP and CICE as well as from CCLM to CICE take place with an interval of 3 h. The coupled model is applied in a study for climate simulations over Baltic Sea and North Sea regions in 1997. The coupled system is set up to run in parallel on the super computing system IBM-power 6 at the German Climate Computing Center (DKRZ). 1 See Table A1.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2012-10-19
    Description: A generalized tagging method Geoscientific Model Development Discussions, 5, 3311-3324, 2012 Author(s): V. Grewe The understanding of causes of changes in climate-chemistry simulations is an important, but often challenging task. In atmospheric chemistry, one approach is to tag species according to their origin (e.g. emission categories) and to inherit these tags to other species during subsequent reactions. This concept was recently employed to calculate the contribution of atmospheric processes to temperature. Here a new concept for tagging any state variable is presented. This generalized tagging method results from a sensitivity analysis of the forcing terms of the right hand side of the governing differential equations. In a couple of examples, the consistency with previous approaches is shown. Since the method is based on a ratio describing relative sensitivities, singularities occur where the method is not applicable. For some applications, like in atmospheric chemistry, these singularities can easily be removed. However, one theoretical example is given, where this method is not applicable at all.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2012-10-20
    Description: Technical Note: Improving computational efficiency in large linear inverse problems: an example from carbon dioxide flux estimation Geoscientific Model Development Discussions, 5, 3325-3342, 2012 Author(s): V. Yadav and A. M. Michalak Addressing a variety of questions within Earth science disciplines entails the inference of the spatio-temporal distribution of parameters of interest based on observations of related quantities. Such estimation problems often represent inverse problems that are formulated as linear optimization problems. Computational limitations arise when the number of observations and/or the size of the discretized state space become large, especially if the inverse problem is formulated in a probabilistic framework and therefore aims to assess the uncertainty associated with the estimates. This work proposes two approaches to lower the computational costs and memory requirements for large linear space-time inverse problems, taking the Bayesian approach for estimating carbon dioxide (CO 2 ) emissions and uptake (a.k.a. fluxes) as a prototypical example. The first algorithm can be used to efficiently multiply two matrices, as long as one can be expressed as a Kronecker product of two smaller matrices, a condition that is typical when multiplying a sensitivity matrix by a covariance matrix in the solution of inverse problems. The second algorithm can be used to compute a posteriori uncertainties directly at aggregated spatio-temporal scales, which are the scales of most interest in many inverse problems. Both algorithms have significantly lower memory requirements and computational complexity relative to direct computation of the same quantities (O( n 2.5 ) vs. O( n 3 )). For an examined benchmark problem, the two algorithms yielded a three and six order of magnitude increase in computational efficiency, respectively, relative to direct computation of the same quantities. Sample computer code is provided for assessing the computational and memory efficiency of the proposed algorithms for matrices of different dimensions.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2012-04-14
    Description: Quality assessment concept of the World Data Center for Climate and its application to CMIP5 data Geoscientific Model Development Discussions, 5, 781-802, 2012 Author(s): M. Stockhause, H. Höck, F. Toussaint, and M. Lautenschlager The preservation of data in a high state of quality and suitable for interdisciplinary use is one of the most pressing and challenging current issues in long-term archiving. For high volume data such as climate model data, the data and data replica are no longer stored centrally but distributed over several local data repositories, e.g. the data of the Climate Model Intercomparison Project No. 5 (CMIP5). The most important part of the data is to be published as DOI according to the World Data Center for Climate's (WDCC) application of the DataCite regulations. The integrated part of WDCC's data publication process, the data quality assessment, was adapted to the requirements of a federated data infrastructure. A concept of a distributed and federated quality assessment procedure was developed, in which the work load and responsibility for quality control is shared between the three primary CMIP5 data centers: Program for Climate Model Diagnosis and Intercomparison (PCMDI), British Atmospheric Data Centre (BADC), and WDCC. This distributed quality control concept, its pilot implementation for CMIP5, and first experiences are presented.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2012-04-06
    Description: Uncertainties in the global temperature change caused by carbon release from permafrost thawing The Cryosphere Discussions, 6, 1367-1404, 2012 Author(s): E. J. Burke, I. P. Hartley, and C. D. Jones Under climate change thawing permafrost will cause old carbon which is currently frozen and inert to become vulnerable to decomposition and release into the climate system. This paper develops a simple framework for estimating the impact of this permafrost carbon release on the global mean temperature (P-GMT). The analysis is based on simulations made with the Hadley Centre climate model (HadGEM2-ES) for a range of representative CO 2 concentration pathways. Results using the high concentration pathway (RCP 8.5) suggest that by 2100 the annual methane (CH 4 ) emission rate is 2–59 Tg CH 4 yr −1 and 50–270 Pg C has been released as CO 2 with an associated P-GMT of 0.08–0.36 °C (all 5th–95th percentile ranges). P-GMT is considerably lower – between 0.02 and 0.11 °C – for the low concentration pathway (RCP2.6). The uncertainty in climate model scenario causes about 50% of the spread in P-GMT by the end of the 21st century, indicating that the effect of permafrost thaw on global mean temperature is currently controllable by mitigation measures. The distribution of soil carbon, in particular how it varies with depth, contributes to about half of the remaining spread in P-GMT by 2100 with quality of soil carbon and decomposition processes contributing a further quarter each. These latter uncertainties could be reduced through additional observations. Over the next 20–30 yr, whilst scenario uncertainty is small, improving our knowledge of the quality of soil carbon will contribute significantly to reducing the spread in the, albeit relatively small, P-GMT.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2012-04-13
    Description: A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica The Cryosphere Discussions, 6, 1405-1444, 2012 Author(s): D. Pollard and R. M. DeConto Variations in intrinsic bed conditions that affect basal sliding, such as the distribution of deformable sediment versus hard bedrock, are important boundary conditions for large-scale ice-sheet models, but are hard to observe and remain largely uncertain below the modern Greenland and Antarctic ice sheets. Here a very simple model-based method is described for deducing the modern spatial distribution of basal sliding coefficients. The model is run forward in time, and the basal sliding coefficient at each grid point is periodically increased or decreased depending on whether the local ice surface elevation is too high or too low compared to observed, in areas of unfrozen bed. The method considerably reduces large-scale errors in Antarctic ice elevation, from several 100's to a few 10 m in most regions. Remaining ice elevation errors over mountain ranges such as the Transantarctics are further improved by parameterizing the possible effect of sub-grid topography in the basal sliding law, representing sliding in deep valleys. Results are briefly compared with previous work using relatively sophisticated control methods, and the method is applied to alternate topographies of the Recovery Glacier basin.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2012-08-24
    Description: SPITFIRE-2: an improved fire module for Dynamic Global Vegetation Models Geoscientific Model Development Discussions, 5, 2347-2443, 2012 Author(s): M. Pfeiffer and J. O. Kaplan Fire is the primary disturbance factor in many terrestrial ecosystems. Wildfire alters vegetation structure and composition, affects carbon storage and biogeochemical cycling, and results in the release of climatically relevant trace gases, including CO 2 , CO, CH 4 , NO x , and aerosols. Assessing the impacts of global wildfire on centennial to multi-millennial timescales requires the linkage of process-based fire modeling with vegetation modeling using Dynamic Global Vegetation Models (DGVMs). Here we present a new fire module, SPITFIRE-2, and an update to the LPJ-DGVM that includes major improvements to the way in which fire occurrence, behavior, and the effect of fire on vegetation is simulated. The new fire module includes explicit calculation of natural ignitions, the representation of multi-day burning and coalescence of fires and the calculation of rates of spread in different vegetation types, as well as a simple scheme to model crown fires. We describe a new representation of anthropogenic biomass burning under preindustrial conditions that distinguishes the way in which the relationship between humans and fire are different between hunter-gatherers, obligate pastoralists, and farmers. Where and when available, we evaluate our model simulations against remote-sensing based estimates of burned area. While wildfire in much of the modern world is largely influenced by anthropogenic suppression and ignitions, in those parts of the world where natural fire is still the dominant process, e.g. in remote areas of the boreal forest, our results demonstrate a significant improvement in simulated burned area over previous models. With its unique properties of being able to simulate preindustrial fire, the new module we present here is particularly well suited for the investigation of climate-human-fire relationships on multi-millennial timescales.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2012-08-29
    Description: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics Geoscientific Model Development Discussions, 5, 2445-2502, 2012 Author(s): J.-F. Lamarque, D. T. Shindell, B. Josse, P. J. Young, I. Cionni, V. Eyring, D. Bergmann, P. Cameron-Smith, W. J. Collins, R. Doherty, S. Dalsoren, G. Faluvegi, G. Folberth, S. J. Ghan, L. W. Horowitz, Y. H. Lee, I. A. MacKenzie, T. Nagashima, V. Naik, D. Plummer, M. Righi, S. Rumbold, M. Schulz, R. B. Skeie, D. S. Stevenson, S. Strode, K. Sudo, S. Szopa, A. Voulgarakis, and G. Zeng The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of timeslice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting radiative forcing and the associated composition changes. Here we introduce the various simulations performed under ACCMIP and the associated model output. The ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions lead to a significant range in emissions, mostly for ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results, but with outliers different enough to possibly affect their representation of climate impact on chemistry.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2012-09-01
    Description: Brief communication: Historical glacier length changes in West Greenland The Cryosphere Discussions, 6, 3491-3501, 2012 Author(s): P. W. Leclercq, A. Weidick, F. Paul, T. Bolch, M. Citterio, and J. Oerlemans Past glacier fluctuations provide insight into glacier dynamics, climate change, and the contribution of glaciers to sea-level rise. Here, the length fluctuations since the 19th century of 18 local glaciers in West and South Greenland are presented, extending and updating the study by Weidick (1968). The studied glaciers all show an overall retreat with an average of 1.2 ± 0.2 km over the 20th century, indicating a general rise of the equilibrium line along the west coast of Greenland during the last century. The rate of retreat was largest in the first half of the 20th century.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2012-09-01
    Description: Satellite-Derived Volume Loss Rates and Glacier Speeds for the Cordillera Darwin Icefield, Chile The Cryosphere Discussions, 6, 3503-3538, 2012 Author(s): A. K. Melkonian, M. J. Willis, M. E. Pritchard, A. Rivera, F. Bown, and S. A. Bernstein We produce the first icefield-wide volume change rate and glacier velocity estimates for the Cordillera Darwin Icefield (CDI), a 2605 km 2 temperate icefield in Southern Chile (69.6° W, 54.6° S). Velocities are measured from optical and radar imagery between 2001–2011. Thirty-seven digital elevation models (DEMs) from ASTER and the SRTM are stacked and a weighted linear regression is applied to elevations on a pixel-by-pixel basis to estimate volume change rates. The CDI lost mass at an average rate of 3.9 ± 0.3 Gt yr −1 between 2000 and 2011, equivalent to a sea level rise (SLR) of 0.01 ± 0.001 mm yr −1 . Thinning is widespread, with concentrations near the front of two northern glaciers (Marinelli, Darwin) and one western (CDI-08) glacier. Thickening is apparent in the south, most notably over the advancing Garibaldi Glacier. We attribute this thinning pattern to warmer temperatures, particularly in the north, which triggered rapid retreat at Marinelli Glacier (~4 km from 2001–2011). Velocities are obtained over many of the swiftly flowing glaciers for the first time. We provide a repeat speed timeseries at the Marinelli Glacier. Maximum front speeds there accelerated from 7.5 m day −1 in 2001 to 9.5 m day −1 in 2003, to a peak of 10 m day −1 in 2011.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2012-09-04
    Description: An updated and quality controlled surface mass balance dataset for Antarctica The Cryosphere Discussions, 6, 3667-3702, 2012 Author(s): V. Favier, C. Agosta, S. Parouty, G. Durand, G. Delaygue, H. Gallée, A.-S. Drouet, A. Trouvilliez, and G. Krinner We present an updated and quality controlled surface mass balance (SMB) database for the Antarctic ice sheet. We retrieved a total of 5284 SMB data documented with important meta-data, to which a filter was applied to discard data with limited spatial and temporal representativeness, too small measurement accuracy, or lack of quality control. A total of 3438 reliable data was obtained, which is about four times more than by applying the same data filtering process to previously available databases. New important data with high spatial resolution are now available over long traverses, and at low elevation in some areas. However, the quality control led to a considerable reduction in the spatial density of data in several regions, particularly over West Antarctica. Over interior plateaus, where the SMB is low, the spatial density of measurements remained high. This quality controlled dataset was compared to results from ERA-Interim reanalysis to assess model representativeness over Antarctica, and also to identify large areas where data gaps impede model validation. Except for very few areas (e.g. Adelie Land), the elevation range between 200 m and 1000 m a.s.l. is not correctly sampled in the field, and measurements do not allow a thorough validation of models in regions with complex topography, where the highest scattering of SMB values is reported. Clearly, increasing the spatial density of field measurements at low elevations, in the Antarctic Peninsula and in West Antarctica remains a scientific priority.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2012-09-04
    Description: Setup of the PMIP3 paleoclimate experiments conducted using an Earth System Model, MIROC-ESM Geoscientific Model Development Discussions, 5, 2527-2569, 2012 Author(s): T. Sueyoshi, R. Ohgaito, A. Yamamoto, M. O. Chikamoto, T. Hajima, H. Okajima, M. Yoshimori, M. Abe, R. O'ishi, F. Saito, S. Watanabe, M. Kawamiya, and A. Abe-Ouchi The importance of climate model evaluation using paleoclimate simulations for better future climate projections has been recognized by the Intergovernmental Panel on Climate Change. In recent years, Earth System Models (ESMs) were developed to investigate carbon-cycle climate feedback, as well as to project the future climate. Paleoclimate events, especially those associated with the variations in atmospheric CO 2 level or land vegetation, provide suitable benchmarks to evaluate ESMs. Here we present implementations of the paleoclimate experiments proposed by the Coupled Model Intercomparison Project phase 5/Paleoclimate Modelling Intercomparison Project phase 3 (CMIP5/PMIP3) using an Earth System Model, MIROC-ESM. In this paper, experimental settings and procedures of the mid-Holocene, the Last Glacial Maximum, and the Last Millennium experiments are explained. The first two experiments are time slice experiments and the last one is a transient experiment. The complexity of the model requires various steps to correctly configure the experiments. Several basic outputs are also shown.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2012-08-24
    Description: Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models The Cryosphere Discussions, 6, 3447-3489, 2012 Author(s): A. Levermann, R. Winkelmann, S. Nowicki, J. L. Fastook, K. Frieler, R. Greve, H. H. Hellmer, M. A. Martin, M. Mengel, A. J. Payne, D. Pollard, T. Sato, R. Timmermann, W. L. Wang, and R. A. Bindschadler The largest uncertainty in projections of future sea-level change still results from the potentially changing dynamical ice discharge from Antarctica. While ice discharge can alter through a number of processes, basal ice-shelf melting induced by a warming ocean has been identified as a major if not the major cause for possible additional ice flow across the grounding line. Here we derive dynamic ice-sheet response functions for basal ice-shelf melting using experiments carried out within the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. As used here these response functions provide separate contributions for four different Antarctic drainage regions. Under the assumptions of linear-response theory we project future ice-discharge for each model, each region and each of the four Representative Concentration Pathways (RCP) using oceanic temperatures from 19 comprehensive climate models of the Coupled Model Intercomparison Project, CMIP-5, and two ocean models from the EU-project Ice2Sea. Uncertainty in the climatic forcing, the oceanic response and the ice-model differences is combined into an uncertainty range of future Antarctic ice-discharge induced from basal ice-shelf melt. The additional ice-loss (Table 6) is clearly scenario-dependent and results in a median of 0.07 m (66%-range: 0.04–0.10 m; 90%-range: −0.01–0.26 m) of global sea-level equivalent for the low-emission RCP-2.6 scenario and yields 0.1 m (66%-range: 0.06–0.14 m; 90%-range: −0.01–0.45 m) for the strongest RCP-8.5. If only models with an explicit representation of ice-shelves are taken into account the scenario dependence remains and the values change to: 0.05 m (66%-range: 0.03–0.08 m) for RCP-2.6 and 0.07 m (66%-range: 0.04–0.11 m) for RCP-8.5. These results were obtained using a time delay between the surface warming signal and the subsurface oceanic warming as observed in the CMIP-5 models. Without this time delay the ranges for all ice-models changes to 0.10 m (66%-range: 0.07–0.12 m; 90%-range: 0.01–0.28 m) for RCP-2.6 and 0.15 m (66%-range: 0.10–0.21 m; 90%-range: 0.02–0.53 m) for RCP-8.5. All probability distributions as provided in Fig. 10 are highly skewed towards high values.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2012-09-04
    Description: Aerosol-climate interactions in the Norwegian Earth System Model – NorESM Geoscientific Model Development Discussions, 5, 2599-2685, 2012 Author(s): A. Kirkevåg, T. Iversen, Ø. Seland, C. Hoose, J. E. Kristjánsson, H. Struthers, A. M. L. Ekman, S. Ghan, J. Griesfeller, E. D. Nilsson, and M. Schulz The objective of this study is to document and evaluate recent changes and updates to the module for aerosols and aerosol-cloud-radiation interactions in the atmospheric module CAM4-Oslo of the Norwegian Earth System Model (NorESM). Particular attention is paid to the role of natural organics, sea salt, and mineral dust in determining the gross aerosol properties as well as the anthropogenic contribution to these properties and the associated direct and indirect radiative forcing. The aerosol module is extended from earlier versions that have been published, and includes life-cycling of sea-salt, mineral dust, particulate sulphate, black carbon, and primary and secondary organics. The impacts of most of the numerous changes since previous versions are thoroughly explored by sensitivity experiments. The most important changes are: modified prognostic sea salt emissions; updated treatment of precipitation scavenging and gravitational settling; inclusion of biogenic primary organics and methane sulphonic acid (MSA) from oceans; almost doubled production of land-based biogenic secondary organic aerosols (SOA); and increased ratio of organic matter to organic carbon (OM / OC) for biomass burning aerosols from 1.4 to 2.6. Compared with in-situ measurements and remotely sensed data, the new treatments of sea salt and dust aerosols give smaller biases in near surface mass concentrations and aerosol optical depth than in the earlier model version. The model biases for mass concentrations are approximately unchanged for sulphate and BC. The enhanced levels of modeled OM yield improved overall statistics, even though OM is still underestimated in Europe and over-estimated in North America. The global direct radiative forcing (DRF) at the top of the atmosphere has changed from a small positive value to −0.08 W m −2 in CAM4-Oslo. The sensitivity tests suggest that this change can be attributed to the new treatment of biomass burning aerosols and gravitational settling. Although it has not been a goal in this study, the new DRF estimate is closer both to the median model estimate from the AeroCom inter-comparison and the best estimate in IPCC AR4. Estimated DRF at the ground surface has increased by ca. 60%, to −1.89 W m −2 . We show that this can be explained by new emission data and omitted mixing of constituents between updrafts and downdrafts in convective clouds. The increased abundance of natural OM and the introduction of a cloud droplet spectral dispersion formulation are the most important contributions to a considerably decreased estimate of the indirect radiative forcing (IndRF). The IndRF is also found to be sensitive to assumptions about the coating of insoluble aerosols by sulphate and OM. The IndRF of −1.2 W m −2 , which is closer to the IPCC AR4 estimates than the previous estimate of −1.9 W m −2 , has thus been obtained without imposing unrealistic artificial lower bounds on cloud droplet number concentrations.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2012-09-04
    Description: Inclusion of Ash and SO 2 emissions from volcanic eruptions in WRF-CHEM: development and some applications Geoscientific Model Development Discussions, 5, 2571-2597, 2012 Author(s): M. Stuefer, S. R. Freitas, G. Grell, P. Webley, S. Peckham, and S. A. McKeen We describe a new functionality within the Weather Research and Forecasting model with coupled Chemistry (WRF-Chem) that allows simulating emission, transport, dispersion, transformation and sedimentation of pollutants released during volcanic activities. Emissions from both an explosive eruption case and relatively calm degassing situation are considered using the most recent volcanic emission databases. A preprocessor tool provides emission fields and additional information needed to establish the initial three-dimensional cloud umbrella/vertical distribution within the transport model grid, as well as the timing and duration of an eruption. From this source condition, the transport, dispersion and sedimentation of the ash-cloud can be realistically simulated by WRF-Chem using its own dynamics, physical parameterization as well as data assimilation. Examples of model validation include a comparison of tephra fall deposits from the 1989 eruption of Mount Redoubt (Alaska), and the dispersion of ash from the 2010 Eyjafjallajökull eruption in Iceland. Both model applications show good coincidence between WRF-Chem and observations.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2012-09-04
    Description: Event-driven deposition: a new paradigm for snow-cover modelling in Antarctica based on surface measurements The Cryosphere Discussions, 6, 3575-3612, 2012 Author(s): C. D. Groot Zwaaftink, A. Cagnati, A. Crepaz, C. Fierz, M. Lehning, G. Macelloni, and M. Valt Antarctic surface snow is studied by means of continuous measurements and observations over a period of 3 yr at Dome C. Snow observations include precipitation, daily records of deposition and erosion, snow temperatures at several depths, and snow profiles. Together with meteorological data from automatic weather stations, this forms a unique and complete dataset of snow conditions on the Antarctic Plateau. Large differences in snow amounts and density exist between precipitation measured 1 m above the surface and deposition on the surface. We then used the snow-cover model SNOWPACK to simulate the snow-cover evolution for different deposition parameterizations. The main adaptation of the model described here is a new event-driven accumulation scheme. The scheme assumes that snow is added to the snow cover permanently only for periods of strong winds. This assumption followed from the comparison between precipitation observations and daily records of changes in snow height, which showed that over a period of 235 days there was precipitation on 40% and deposition on 25% of the days, but precipitation accompanied by deposition on 14% of the days only. This confirms that precipitation is not necessarily the driving force behind snow height changes. A comparison of simulated snow height to stake farm measurements over 3 yr showed that we underestimate the total accumulation by about 64%, when the total snow deposition is constrained by the precipitation measurements. This is because the precipitation measured above the surface and used to drive the model, even though comparable to ECMWF forecasts in its total magnitude, should be seen as a lower boundary of accumulation. As a result of the new deposition mechanism, we found a good agreement between model results and measurements of snow temperatures and recorded snow profiles. In spite of the underestimated accumulation, the results strongly suggest that we can obtain quite realistic simulations of the Antarctic snow cover by the introduction of event-driven snow accumulation.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2012-09-04
    Description: How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? The Cryosphere Discussions, 6, 3539-3573, 2012 Author(s): V. Zunz, H. Goosse, and F. Massonnet Observations over the last 30 yr have shown that the sea ice extent in the Southern Ocean has slightly increased since 1979. Mechanisms responsible for this positive trend have not been well established yet and climate models are generally unable to simulate correctly this expansion. In this study, we focus on two related hypotheses that could explain the misrepresentation of the positive trend in sea ice extent by climate models: an unrealistic internal variability and an inadequate initialization of the system. For that purpose, we analyze the evolution of sea ice around the Antarctic simulated by 24 different general circulation models involved in the 5th Coupled Model Intercomparison Project (CMIP5). On the one hand, historical simulations, driven by external forcing and initialized without observations, are examined. They provide information about the mean state, the variability and the trend in sea ice extent simulated by each model. On the other hand, decadal prediction experiments, driven by external forcing and initialized with some observed fields, allow us to assess the impact of the representation of the observed initial state on the quality of model predictions. Our analyses show that CMIP5 models respond to the forcing, including the one induced by stratospheric ozone depletion, by reducing the sea ice cover in the Southern Ocean. Some simulations display an increase in sea ice extent. However, models strongly overestimate the variability of sea ice extent and the initialization methods currently used in models do not improve systematically the simulated trends in sea ice extent. On the basis of those results, a critical role of the internal variability in the observed increase in the sea ice extent in the Southern Ocean could not be ruled out but current models results appear inadequate to test more precisely this hypothesis.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2012-09-04
    Description: An estimate of global glacier volume The Cryosphere Discussions, 6, 3647-3666, 2012 Author(s): A. Grinsted I asses the feasibility of multi-variate scaling relationships to estimate glacier volume from glacier inventory data. I calibrate scaling laws against volume observations of optimized towards the purpose of estimating the total global ice volume. This is applied individually to each record in the Randolph Glacier Inventory which is the first globally complete inventory of glaciers and ice caps. I estimate that the total volume of all glaciers in the world is 0.35 ± 0.07 m sea level equivalent. This is substantially less than a recent state-of-the-art estimate. Area volume scaling bias issues for large ice masses, and incomplete inventory data are offered as explanations for the difference.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2012-09-01
    Description: A web-based software tool to estimate unregulated daily streamflow at ungauged rivers Geoscientific Model Development Discussions, 5, 2503-2526, 2012 Author(s): S. A. Archfield, P. A. Steeves, J. D. Guthrie, and K. G. Ries III Streamflow information is critical for solving any number of hydrologic problems. Often times, streamflow information is needed at locations which are ungauged and, therefore, have no observations on which to base water management decisions. Furthermore, there has been increasing need for daily streamflow time series to manage rivers for both human and ecological functions. To facilitate negotiation between human and ecological demands for water, this paper presents the first publically-available, map-based, regional software tool to interactively estimate daily streamflow time series at any user-selected ungauged river location. The map interface allows users to locate and click on a river location, which then returns estimates of daily streamflow for the location selected. For the demonstration region in the northeast United States, daily streamflow was shown to be reliably estimated by the software tool, with efficiency values computed from observed and estimated streamflows ranging from 0.69 to 0.92. The software tool provides a general framework that can be applied to other regions for which daily streamflow estimates are needed.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2012-09-04
    Description: Mapping radiation transfer through sea ice using a remotely operated vehicle (ROV) The Cryosphere Discussions, 6, 3613-3646, 2012 Author(s): M. Nicolaus and C. Katlein Light (solar short-wave radiation) transmission into and through sea ice is of high importance for various processes in Polar Regions. The amount of energy transferred through the ice determines formation and melt of sea ice and finally contributes to warming of the uppermost ocean. At the same time the amount and distribution of light, as the primary source of energy, is of critical importance for sea-ice associated organisms and bio-geochemical processes. However, our current understanding of these processes and their interdisciplinary interactions is still sparse. The main reason is that the under-ice environment is difficult to access and measurements require large logistical and instrumental efforts. Particularly, it was not possible to map light conditions under sea ice over larger areas. Here we present a detailed methodical description of operating spectral radiometers on a remotely operated vehicle (ROV) in the Central Arctic under sea ice. This new measurement concept resulted in a~most comprehensive data set of spectral radiance and irradiance under and above sea ice, complemented through various additional in-situ measurements of sea-ice, snow, and surface properties. Finally, such data sets allow quantifying the spatial variability of light under sea ice, especially highlighting differences between ponded and white ice as well as different ice types.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2012-08-16
    Description: Variability of mass changes at basin scale for Greenland and Antarctica The Cryosphere Discussions, 6, 3397-3446, 2012 Author(s): V. R. Barletta, L. S. Sørensen, and R. Forsberg During the last decade, the GRACE mission has provided valuable data for determining the mass changes of the Greenland and Antarctic ice sheets. Yet, discrepancies still exist in the published mass balance results, and analyses on the sources of errors and discrepancies are lacking. Here, we present monthly mass changes together with trends derived from GRACE data at basin scale for both the Greenland and Antarctica ice sheets and we assess, for the first time systematically, the variability and errors for each of the possible sources of discrepancies: mass inference methods, data sets and background models. We find a very good agreement between the monthly mass change results derived from two independent methods, which represents a cross validation. For the monthly solutions, we find that most of the variability is caused by the use of different data sets rather than different methods. Besides the well-known GIA trend uncertainty, we find that the degree-1 variability and the recent de-aliasing corrections have significant impact on monthly time series and trends respectively. We also show the remarkable differences between the use of release RL04 and the new RL05, and how the latter results in smaller mass trends for the majority of the basins. The overall variability of the solutions well exceeds the uncertainties propagated from the data errors and the leakage (as done in the past), hence we calculate new sound total errors for the monthly solutions and the trends. For the whole GRACE period our trend estimate for Greenland is −234 ± 20 Gt yr −1 and −83 ± 36 Gt yr −1 for Antarctica (−111 ± 15 Gt yr −1 in the western part). These trends show a clear (with respect to our errors) increase of mass loss in the last four years.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2012-08-21
    Description: Using multi-model averaging to improve the reliability of catchment scale nitrogen predictions Geoscientific Model Development Discussions, 5, 2289-2310, 2012 Author(s): J.-F. Exbrayat, N. R. Viney, H.-G. Frede, and L. Breuer Hydro-biogeochemical models are used to foresee the impact of mitigation measures on water quality. Usually, scenario-based studies rely on single model applications. This is done in spite of the widely acknowledged advantage of ensemble approaches to cope with structural model uncertainty issues. As an attempt to demonstrate the reliability of such multi-model efforts in the hydro-biogeochemical context, this methodological contribution proposes an adaptation of the Reliability Ensemble Averaging (REA) philosophy to nitrogen losses predictions. A total of 4 models are used to predict the total nitrogen (TN) losses from the well-monitored Ellen Brook catchment in Western Australia. Simulations include re-predictions of current conditions and a set of straightforward management changes targeting fertilization scenarios. Results show that, in spite of good calibration metrics, one of the models provides a very different response to management changes. This behaviour leads the simple average of the ensemble members to also predict reductions in TN export that are not in agreement with the other models. However, considering the convergence of model predictions in the more sophisticated REA approach assigns more weight to previously less well calibrated models that are more in agreement with each other. This method also avoids having to disqualify any of the ensemble members, which is always sensible.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2012-07-18
    Description: The influence of climate and hydrological variables on opposite anomaly in active layer thickness between Eurasian and North American watersheds The Cryosphere Discussions, 6, 2537-2574, 2012 Author(s): H. Park, J. Walsh, A. N. Fedorov, A. B. Sherstiukov, Y. Iijima, and T. Ohata This study not only examined the spatiotemporal variations of permafrost active layer thickness (ALT) during 1948–2006 over the terrestrial Arctic regions experiencing climate changes, but also identified the associated drivers based on observational data and a simulation conducted by a land surface model (CHANGE). The focus on the ALT extends previous studies that have emphasized ground temperatures in permafrost regions. The Ob, Yenisey, Lena, Yukon, and Mackenzie watersheds are foci of the study. Time series of ALT in Eurasian watersheds showed generally increasing trends, while ALT in North American watersheds showed decreases. An opposition of ALT variations implicated with climate and hydrological variables was most significant when the Arctic air temperature entered into a warming phase. The warming temperatures were not simply expressed to increases in ALT. Since 1990 when the warming increased, the forcing of the ALT by the higher Annual Thawing Index in the Mackenzie and Yukon Basins was offset by the combined effects of less insulation caused by thinner snow depth and drier soil during summer. In contrast, the increasing Annual Thawing Index together with thicker snow depth and higher summer soil moisture in the Lena contributed to the increase in ALT. The results imply that the soil thermal and moisture regimes formed in the pre-thaw season(s) provide memory that manifests itself during the summer. While it is widely believed that ALT will increase with global warming, this hypothesis may need modification because the ALT also shows responses to variations in snow depth and soil moisture that can over-ride the effect of air temperature. The dependence of the hydrological variables driven by the atmosphere further increases the uncertainty in future changes of the permafrost active layer.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2012-07-19
    Description: A recent bifurcation in Arctic sea-ice cover The Cryosphere Discussions, 6, 2621-2651, 2012 Author(s): V. N. Livina and T. M. Lenton There is ongoing debate over whether Arctic sea-ice has already passed a "tipping point", or whether it will do so in future, with several recent studies arguing that the loss of summer sea ice does not involve a bifurcation because it is highly reversible in models. Recently developed methods can detect and sometimes forewarn of bifurcations in time-series data, hence we applied them to satellite data for Arctic sea-ice cover. Here we show that a new low ice cover state has appeared from 2007 onwards, which is distinct from the normal state of seasonal sea ice variation, suggesting a bifurcation has occurred from one attractor to two. There was no robust early warning signal of critical slowing down prior to this bifurcation, consistent with it representing the appearance of a new ice cover state rather than the loss of stability of the existing state. The new low ice cover state has been sampled predominantly in summer-autumn and seasonal forcing combined with internal climate variability are likely responsible for triggering recent transitions between the two ice cover states. However, all early warning indicators show destabilization of the summer-autumn sea-ice since 2007. This suggests the new low ice cover state may be a transient feature and further abrupt changes in summer-autumn Arctic sea-ice cover could lie ahead; either reversion to the normal state or a yet larger ice loss.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2012-07-25
    Description: A simple approach to providing a more consistent Arctic sea ice extent timeseries from the 1950s to present The Cryosphere Discussions, 6, 2827-2853, 2012 Author(s): W. N. Meier, J. Stroeve, A. Barrett, and F. Fetterer Observations for passive microwave satellite sensors have provided a continuous and consistent record of sea ice extent since late 1978. Earlier records, compiled from ice charts and other sources exist, but are not consistent with the satellite record. Here, a method is presented to adjust a compilation of pre-satellite sources to remove discontinuities between the two periods and create a more consistent combined 59-yr timeseries spanning 1953–2011. This adjusted combined timeseries shows more realistic behavior across the transition between the two individual timeseries and thus provides higher confidence in trend estimates from 1953 through 2011. The long-term timeseries is used to calculate linear trend estimates and compare them with trend estimates from the satellite period. The results indicate that trends through the 1960s were largely positive (though not statistically significant) and then turned negative by the mid-1970s and have been consistently negative since, reaching statistical significance (at the 95% confidence level) by the late 1980s. The trend for September (when Arctic extent reaches its seasonal minimum) for the satellite period, 1979–2011 is –12.9% decade –1 , nearly double the 1953–2011 trend of –6.8% decade –1 (relative to the 1981–2010 mean). The recent decade (2002–2011) stands out as a period of persistent decline in ice extent. The combined 59-yr timeseries puts the strong observed decline in the Arctic sea ice cover during 1979–2011 in a longer-term context and provides a useful resource for comparisons with historical model estimates.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2012-06-13
    Description: Development of high resolution land surface parameters for the Community Land Model Geoscientific Model Development Discussions, 5, 1435-1481, 2012 Author(s): Y. Ke, L. R. Leung, M. Huang, A. M. Coleman, H. Li, and M. S. Wigmosta There is a growing need for high-resolution land surface parameters as land surface models are being applied at increasingly higher spatial resolution offline as well as in regional and global models. The default land surface parameters for the most recent version of the Community Land Model (i.e. CLM 4.0) are at 0.5° or coarser resolutions, released with the model from the National Center for Atmospheric Research (NCAR). Plant Functional Types (PFTs), vegetation properties such as Leaf Area Index (LAI), Stem Area Index (SAI), and non-vegetated land covers were developed using remotely-sensed datasets retrieved in late 1990's and the beginning of this century. In this study, we developed new land surface parameters for CLM 4.0, specifically PFTs, LAI, SAI and non-vegetated land cover composition, at 0.05° resolution globally based on the most recent MODIS land cover and improved MODIS LAI products. Compared to the current CLM 4.0 parameters, the new parameters produced a decreased coverage by bare soil and trees, but an increased coverage by shrub, grass, and cropland. The new parameters result in a decrease in global seasonal LAI, with the biggest decrease in boreal forests; however, the new parameters also show a large increase in LAI in tropical forest. Differences between the new and the current parameters are mainly caused by changes in the sources of remotely sensed data and the representation of land cover in the source data. The new high-resolution land surface parameters have been used in a coupled land-atmosphere model (WRF-CLM) applied to the western US to demonstrate their use in high-resolution modeling. Future work will include global offline CLMsimulations to examine the impacts of source data resolution and subsequent land parameter changes on simulated land surface processes.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2012-06-13
    Description: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions Geoscientific Model Development Discussions, 5, 1503-1560, 2012 Author(s): A. B. Guenther, X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) is a modeling framework for estimating fluxes of 147 biogenic compounds between terrestrial ecosystems and the atmosphere using simple mechanistic algorithms to account for the major known processes controlling biogenic emissions. It is available as an offline code and has also been coupled into land surface models and atmospheric chemistry models. MEGAN2.1 is an update from the previous versions including MEGAN2.0 for isoprene emissions and MEGAN2.04, which estimates emissions of 138 compounds. Isoprene comprises about half of the estimated total global biogenic volatile organic compound (BVOC) emission of 1 Pg (1000 Tg or 10 15 g). Another 10 compounds including methanol, ethanol, acetaldehyde, acetone, α-pinene, β-pinene, t −β-ocimene, limonene, ethene, and propene together contribute another 30% of the estimated emission. An additional 20 compounds (mostly terpenoids) are associated with another 17% of the total emission with the remaining 3% distributed among 125 compounds. Emissions of 41 monoterpenes and 32 sesquiterpenes together comprise about 15% and 3%, respectively, of the total global BVOC emission. Tropical trees cover about 18% of the global land surface and are estimated to be responsible for 60% of terpenoid emissions and 48% of other VOC emissions. Other trees cover about the same area but are estimated to contribute only about 10% of total emissions. The magnitude of the emissions estimated with MEGAN2.1 are within the range of estimates reported using other approaches and much of the differences between reported values can be attributed to landcover and meteorological driving variables. The offline version of MEGAN2.1 source code and driving variables is available from http://acd.ucar.edu/~guenther/MEGAN/MEGAN.htm and the version integrated into the Community Land Model version 4 (CLM4) can be downloaded from http://www.cesm.ucar.edu/ .
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2012-06-14
    Description: Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models The Cryosphere Discussions, 6, 2059-2113, 2012 Author(s): J. G. L. Rae, G. Aðalgeirsdóttir, T. L. Edwards, X. Fettweis, J. M. Gregory, H. T. Hewitt, J. A. Lowe, P. Lucas-Picher, R. H. Mottram, A. J. Payne, J. K. Ridley, S. R. Shannon, W. J. van de Berg, R. S. W. van de Wal, and M. R. van den Broeke Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs). This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr −2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr −2 ), with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual-mean near-surface air temperature increase over Greenland of ~2 ○ C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice-sheet would eventually be eliminated.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2012-07-17
    Description: Review article of the current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change The Cryosphere Discussions, 6, 2477-2536, 2012 Author(s): A. Rabatel, B. Francou, A. Soruco, J. Gomez, B. Cáceres, J. L. Ceballos, R. Basantes, M. Vuille, J.-E. Sicart, C. Huggel, M. Scheel, Y. Lejeune, Y. Arnaud, M. Collet, T. Condom, G. Consoli, V. Favier, V. Jomelli, R. Galarraga, P. Ginot, L. Maisincho, J. Mendoza, M. Ménégoz, E. Ramirez, P. Ribstein, W. Suarez, M. Villacis, and P. Wagnon The aim of this paper is to provide the community with a comprehensive overview of the studies of glaciers in the tropical Andes conducted in recent decades leading to the current status of the glaciers in the context of climate change. In terms of changes in surface area and length, we show that the glacier retreat in the tropical Andes over the last three decades is unprecedented since the maximum extension of the LIA (mid 17th–early 18th century). In terms of changes in mass balance, although there have been some sporadic gains on several glaciers, we show that the trend has been quite negative over the past 50 yr, with a mean mass balance deficit for glaciers in the tropical Andes that is slightly more negative than the computed global average. A break point in the trend appeared in the late 1970s with mean annual mass balance per year decreasing from −0.2 m w.e. in the period 1964–1975 to −0.76 m w.e. in the period 1976–2010. In addition, even if glaciers are currently retreating everywhere in the tropical Andes, it should be noted that as a percentage, this is much more pronounced on small glaciers at low altitudes that do not have a permanent accumulation zone, and which could disappear in the coming years/decades. Monthly mass balance measurements performed in Bolivia, Ecuador and Colombia showed that variability of the surface temperature of the Pacific Ocean is the main factor governing variability of the mass balance variability at the interannual to decadal time scale. Precipitation did not display a significant trend in the tropical Andes in the 20th century, and consequently cannot explain the glacier recession. On the other hand, temperature increased at a significant rate of 0.10 °C decade −1 in the last 70 yr. The higher frequency of El Niño events and changes in its spatial and temporal occurrence since the late 1970s together with a warming troposphere over the tropical Andes may thus explain much of the recent dramatic shrinkage of glaciers in this part of the world.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2012-07-19
    Description: Mechanisms causing reduced Arctic sea ice loss in a coupled climate model The Cryosphere Discussions, 6, 2653-2687, 2012 Author(s): A. E. West, A. B. Keen, and H. T. Hewitt The fully-coupled climate model HadGEM1 produces one of the most accurate simulations of the historical record of Arctic sea ice seen in the IPCC AR4 multi-model ensemble. In this study, we examine projections of sea ice decline out to 2030, produced by two ensembles of HadGEM1 with natural and anthropogenic forcings included. These ensembles project a significant slowing of the rate of ice loss to occur after 2010, with some integrations even simulating a small increase in ice area. We use an energy budget of the Arctic to examine the causes of this slowdown. A negative feedback effect by which rapid reductions in ice thickness north of Greenland reduce ice export is found to play a major role. A slight reduction in ocean-to-ice heat flux in the relevant period, caused by changes in the MOC and subpolar gyre in some integrations, is also found to play a part. Finally, we assess the likelihood of a slowdown occurring in the real world due to these causes.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2012-07-24
    Description: A computationally efficient model for the Greenland ice sheet The Cryosphere Discussions, 6, 2751-2788, 2012 Author(s): J. Haqq-Misra, P. Applegate, B. Tuttle, R. Nicholas, and K. Keller We present a one-dimensional model of the Greenland Ice Sheet (GIS) for use in analysis of future sea level rise. Simulations using complex three-dimensional models suggest that the GIS may respond in a nonlinear manner to anthropogenic climate forcing and cause potentially nontrivial sea level rise. These GIS projections are, however, deeply uncertain. Analyzing these uncertainties is complicated by the substantial computational demand of the current generation of complex three-dimensional GIS models. As a result, it is typically computationally infeasible to perform the large number of model evaluations required to carefully explore a multi-dimensional parameter space, to fuse models with observational constraints, or to assess risk-management strategies in Integrated Assessment Models (IAMs) of climate change. Here we introduce GLISTEN (GreenLand Ice Sheet ENhanced), a computationally efficient, mechanistically based, one-dimensional flow-line model of GIS mass balance capable of reproducing key instrumental and paleo-observations as well as emulating more complex models. GLISTEN is based on a simple model developed by Pattyn (2006). We have updated and extended this original model by improving its computational functionality and representation of physical processes such as precipitation, ablation, and basal sliding. The computational efficiency of GLISTEN enables a systematic and extensive analysis of the GIS behavior across a wide range of relevant parameters and can be used to represent a potential GIS threshold response in IAMs. We demonstrate the utility of GLISTEN by performing a pre-calibration and analysis. We find that the added representation of processes in GLISTEN, along with pre-calibration of the model, considerably improves the hindcast skill of paleo-observations.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2012-07-24
    Description: A simulation study of the ensemble-based data assimilation of satellite-borne lidar aerosol observations Geoscientific Model Development Discussions, 5, 1877-1947, 2012 Author(s): T. T. Sekiyama, T. Y. Tanaka, and T. Miyoshi A four-dimensional ensemble-based data assimilation system was assessed by observing system simulation experiments (OSSEs), in which the CALIPSO satellite was emulated via simulated satellite-borne lidar aerosol observations. Its performance over athree-month period was validated according to the Method for Object-based Diagnostic Evaluation (MODE), using aerosol optical thickness (AOT) distributions in East Asia as the objects of analysis. Consequently, this data assimilation system demonstrated the ability to produce better analyses of sulfate and dust aerosols in comparison to a free-running simulation model. For example, the mean centroid distance (from the truth) over a three-month collection period of aerosol plumes was improved from 2.15 grids (≈ 600 km) to 1.45 grids (≈ 400 km) for sulfate aerosols and from 2.59 grids (≈ 750 km) to 1.14 grids (≈ 330 km) for dust aerosols; the mean area ratio (to the truth) over a three-month collection period of aerosol plumes was improved from 0.49 to 0.76 for sulfate aerosols and from 0.51 to 0.72 for dust aerosols. The satellite-borne lidar data assimilation successfully improved the aerosol plume analysis and the dust emission estimation in the OSSEs. These results present great possibilities for the beneficial use of lidar data, whose distribution is vertically/temporally dense but horizontally sparse, when coupled with a four-dimensional data assimilation system. In addition, sensitivity tests were conducted, and their results indicated that the degree of freedom to control the aerosol variables was probably limited in the data assimilation because the meteorological field in the system was constrained to weather reanalysis using Newtonian relaxation. Further improvements to the aerosol analysis can be performed through the simultaneous assimilation of aerosol observations with meteorological observations. The OSSE results strongly suggest that the use of real CALIPSO data will have a beneficial effect on obtaining more accurate sulfate and dust aerosol analyses. Furthermore, the use of the same OSSE technique will allow us to perform a prior assessment of the next-generation lidar satellite EarthCARE, which will be launched in 2015.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2012-07-17
    Description: Snow cover thickness estimation by using radial basis function networks The Cryosphere Discussions, 6, 2437-2475, 2012 Author(s): A. Guidali, E. Binaghi, V. Pedoia, and M. Guglielmin This work investigates learning and generalisation capabilities of radial basis function networks (RBFN) used to solve snow cover thickness estimation model as regression and classification. The model is based on a minimal set of climatic and topographic data collected from a limited number of stations located in the Italian Central Alps. Several experiments have been conceived and conducted adopting different evaluation indexes in both regression and classification tasks. The snow cover thickness estimation by RBFN has been proved a valuable tool able to deal with several critical aspects arising from the specific experimental context.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2012-07-17
    Description: The first complete glacier inventory for the whole of Greenland The Cryosphere Discussions, 6, 2399-2436, 2012 Author(s): P. Rastner, T. Bolch, N. Mölg, H. Machguth, and F. Paul Glacier inventories provide important baseline information for the determination of water resources, glacier-specific changes in area and volume, climate change impacts, and the past, potential and future contribution of glaciers to sea-level rise. Though heavily glacierized and thus highly relevant for all of the above points, such an inventory of all local glaciers and icecaps (GIC) was not available so far for Greenland. Here we present the details and results of our inventory, that has been compiled from more than 70 Landsat scenes mostly acquired between 1999 and 2002 using semi-automated multispectral mapping techniques. A digital elevation model (DEM) was used to derive drainage divides from watershed analysis and topographic parameters for each glacier entity. We assigned to each entity one of three connectivity levels (CL0, CL1, CL2; i.e. no, weak, and strong connection) with the ice sheet to distinguish the local GIC from the ice sheet and its outlet glaciers and to serve the specific needs of different user communities. All GIC larger 0.05 km 2 include ~20 300 entities (of which 900 are marine terminating), covering an area of 129 983 ± 4029 km 2 , or 89 273 ± 2767 km 2 without the CL2 GIC. The latter is about 50% more than according to all previous estimates. Glaciers smaller 0.5 km 2 contribute only 1.5% to the total area but more than 50% (11 000) to the total number. In contrast, the 25 largest GIC (〉500 km 2 ) contribute 28% to the total area, but only 0.1% to the total number. Most of the ice was located at elevations around 1000 m, except in the eastern sector with elevation arround 1700 m. In addition, a strong dependence of the median elevation to the distance from the ocean was found, but only a weak dependence on aspect. All data will be made available in the Global Land Ice Measurement from Space (GLIMS) glacier database.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2012-07-17
    Description: Sensitivity analysis and calibration of a soil carbon model (SoilGen2) in two contrasting loess forest soils Geoscientific Model Development Discussions, 5, 1817-1849, 2012 Author(s): Y. Y. Yu, P. A. Finke, H. B. Wu, and Z. T. Guo To accurately estimate past terrestrial carbon pools is the key to understand the global carbon cycle and its relationship with the climate system. SoilGen2 is a useful tool to obtain aspects of soil properties (including carbon content) by simulating soil formation processes; thus it offers an opportunity for past soil carbon pool reconstruction. In order to apply it to various environmental conditions, parameters related to carbon cycle process in SoilGen2 are calibrated based on 6 soil pedons from two typical loess deposition regions (Belgium and China). Sensitivity analysis using Morris' method shows that decomposition rate of humus ( k HUM ), fraction of incoming plant material as leaf litter (fr ecto ) and decomposition rate of resistant plant material ( k RPM ) are 3 most sensitive parameters that would cause the greatest uncertainty in simulated change of soil organic carbon in both regions. According to the principle of minimizing the difference between simulated and measured organic carbon by comparing quality indices, the suited values of k HUM , fr ecto and k RPM in the model are deduced step by step. The difference of calibrated parameters between Belgium and China may be attributed to their different vegetation types and climate conditions. This calibrated model is improved for better simulation of carbon change in the whole pedon and has potential for future modeling of carbon cycle in paleosols.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2012-07-17
    Description: Activation of the operational ecohydrodynamic model (3-D CEMBS) – the hydrodynamic part Geoscientific Model Development Discussions, 5, 1851-1875, 2012 Author(s): L. Dzierzbicka-Głowacka, J. Jakacki, M. Janecki, and A. Nowicki The paper presents a description of the hydrodynamic part of the coupled ice-ocean model that also includes ecosystem predictive model for evaluation of the condition of the marine environment and the Baltic ecosystem, as well as a preliminary empirical verification of the operational hydrodynamic model based on the POP code in order to determine the consistence between the results obtained from the model and experimental results for the sea surface temperature. The current Baltic Sea model is based on the Community Earth System Model (CESM from NCAR – National Center for Atmospheric Research). CESM was adopted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0) and the Parallel Ocean Program (POP, version 2.1). The models are coupled through the coupler (CPL7), which is based on the Model Coupling Toolkit (MCT) routines. The current horizontal resolution is about 2 km (1/48 degrees). The ocean model has 21 vertical levels. The driver time step is 1440 s and it is also coupling the time step. The ocean model time step is about 480 s (8 min). Currently, the model is forced by fields from the European Center for Medium Weather Forecast. In the operational mode, 48-h atmospheric forecasts are used, which are supplied by the UM model of the Interdisciplinary Centre for Mathematical and Computational Modelling of the Warsaw University. The model of the marine ecosystem is the right tool for monitoring the state and bioproductivity of the marine ecosystem and forecasting the physical and ecological changes in the studied basin.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2012-07-19
    Description: Borehole temperatures reveal a changed energy budget at Mill Island, East Antarctica over recent decades The Cryosphere Discussions, 6, 2575-2595, 2012 Author(s): J. L. Roberts, A. D. Moy, T. D. van Ommen, M. A. J. Curran, A. P. Worby, I. D. Goodwin, and M. Inoue A borehole temperature record from the Mill Island (East Antarctic) icecap reveals a large surface warming signal manifested as a 0.75 K temperature difference over the approximate 100 m depth below the seasonally varying zone. The temperature profile shows a break in gradient between 49 and 69 m depth, which we model with inverse numerical simulations, indicating that surface warming started around the austral summer of 1980/1981 AD ± 5 yr. This warming of approximately 0.37 K per decade is large by Antarctic standards and is only exceeded in regions of the Antarctic Peninsula. While this warming may reflect regional scale air temperature increases, the lack of comparable trends for other East Antarctic sites suggests local influences are largely responsible for the observed trend. Alteration of the surface energy budget arising from changes in radiation balances due to local cloud, the amount of liquid deposition and local air temperatures associated with altered air/sea exchanges potentially play a key role at this location due to the proximity of the Shackleton Ice Shelf and sea-ice zone.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2012-07-24
    Description: Analysis of the snow-atmosphere energy balance during wet-snow instabilities and implications for avalanche prediction The Cryosphere Discussions, 6, 2715-2749, 2012 Author(s): C. Mitterer and J. Schweizer Wet-snow avalanches are notoriously difficult to predict, as their formation mechanism is poorly understood and in-situ measurements closely related to instability are inexistent. Instead, air temperature is commonly used as predictor variable for days with high wet-snow avalanche danger – with limited success. As melt water is a major driver of wet-snow instability and snow melt depends on the energy input into the snow cover, we computed the energy balance and study whether it is a better proxy than meteorological parameters such as air temperature for predicting periods with high wet-snow avalanche activity. The energy balance was partly measured and partly modelled for virtual slopes at different elevations for the aspects south and north using the 1-D snow cover model SNOWPACK. We used measured meteorological variables and computed energy balance and its components to compare wet-snow avalanche days to non-avalanche days for four consecutive winter seasons in the surroundings of Davos, Switzerland. Air temperature, the net shortwave radiation and the energy input integrated over 3 or 5 days showed best results in discriminating event from non-event days. Multivariate statistics, however, revealed that for better predicting avalanche days, information on the cold content of the snowpack is necessary. Wet-snow avalanche activity was closely related to periods when large parts of the snowpack reached an isothermal state (0 °C) and energy input exceeded a maximum value of 200 kJ m −2 in one day, or the 3-day sum of positive energy input was larger than 1.2 MJ m −2 . Prediction accuracy with measured meteorological variables was as good as with computed energy balance parameters, but simulated energy balance variables accounted better for different aspects, slopes and elevations than meteorological data.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2012-07-25
    Description: Tagged ozone mechanism for MOZART-4, CAM-chem, and other chemical transport models Geoscientific Model Development Discussions, 5, 1949-1985, 2012 Author(s): L. K. Emmons, P. G. Hess, J.-F. Lamarque, and G. G. Pfister A procedure for tagging ozone produced from NO sources through updates to an existing chemical mechanism is described, and results from its implementation in the Model for Ozone and Related chemical Tracers (MOZART-4), a global chemical transport model, are presented. Artificial tracers are added to the mechanism, thus not affecting the standard chemistry. The results are linear in the troposphere, i.e., the sum of ozone from individual tagged sources equals the ozone from all sources to within 3% in zonal mean monthly averages. The stratospheric ozone contribution to the troposphere determined from the difference between total ozone and ozone from all tagged sources is significantly less than estimates using a traditional stratospheric ozone tracer (8 vs 20 ppbv at the surface). The commonly used technique of perturbing NO emissions by 20% in a region to determine its ozone contribution is compared to the tagging technique, showing that the tagged ozone is 2–4 times the ozone contribution that was deduced from perturbing emissions.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2012-07-26
    Description: Coupling technologies for Earth System Modelling Geoscientific Model Development Discussions, 5, 1987-2006, 2012 Author(s): S. Valcke, V. Balaji, A. Craig, C. DeLuca, R. Dunlap, R. W. Ford, R. Jacob, J. Larson, R. O'Kuinghttons, G. D. Riley, and M. Vertenstein This paper presents a review of the software currently used in climate modelling in general and in CMIP5 in particular to couple the numerical codes representing the different components of the Earth system. The coupling technologies presented show common features, such as the ability to communicate and regrid data, but also offer different functions and implementations. Design characteristics of the different approaches are discussed as well as future challenges arising from the increasing complexity of scientific problems and computing platforms.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2012-07-25
    Description: Greenland Ice Sheet contribution to sea-level rise from a new-generation ice-sheet model The Cryosphere Discussions, 6, 2789-2826, 2012 Author(s): F. Gillet-Chaulet, O. Gagliardini, H. Seddik, M. Nodet, G. Durand, C. Ritz, T. Zwinger, R. Greve, and D. G. Vaughan Over the last two decades, the Greenland Ice Sheet (GrIS) has been losing mass at an increasing rate, enhancing its contribution to sea-level rise. The recent increases in ice loss appear to be due to changes in both the surface mass balance of the ice sheet and ice discharge (ice flux to the ocean). Rapid ice flow directly affects the discharge, but also alters ice-sheet geometry and so affects climate and surface mass balance. The most usual ice-sheet models only represent rapid ice flow in an approximate fashion and, as a consequence, have never explicitly addressed the role of ice discharge on the total GrIS mass balance, especially at the scale of individual outlet glaciers. Here, we present a new-generation prognostic ice-sheet model which reproduces the current patterns of rapid ice flow. This requires three essential developments: the complete solution of the full system of equations governing ice deformation; an unstructured mesh to usefully resolve outlet glaciers and the use of inverse methods to better constrain poorly known parameters using observations. The modelled ice discharge is in good agreement with observations on the continental scale and for individual outlets. By conducting perturbation experiments, we investigate how current ice loss will endure over the next century. Although we find that increasing ablation tends to reduce outflow and on its own has a stabilising effect, if destabilisation processes maintain themselves over time, current increases in the rate of ice loss are likely to continue.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2012-07-25
    Description: Snow accumulation variability in Adelie Land (East Antarctica) derived from radar and firn core data. A 600 km transect from Dome C The Cryosphere Discussions, 6, 2855-2889, 2012 Author(s): D. Verfaillie, M. Fily, E. Le Meur, O. Magand, B. Jourdain, L. Arnaud, and V. Favier Polar ice sheets mass balance is a timely topic intensively studied in the context of global change and sea-level rise. However, obtaining mass balance estimates in Antarctica in particular, remains difficult due to various logistical problems. In the framework of the TASTE-IDEA program, labeled as an International Polar Year project, continuous Ground Penetrating Radar (GPR) measurements were carried out during a traverse realised in Adelie Land (East Antarctica) during the 2008–2009 austral summer between the Italo-French Dome C (DC) polar plateau site and French Dumont D'Urville (DdU) coastal station. The aim of this study was to process and interpret GPR data in terms of snow accumulation, to analyse its spatial and temporal variability along the DC-DdU traverse and compare it with historical data and modeling. The emphasis has been put on the last 300 yr, from the pre-industrial to recent time period. Beta-radioactivity counting and gamma spectrometry were studied in cores at LGGE laboratory, providing a depth-age calibration for radar measurements. Over the 600 km of usable GPR data, depth and snow accumulation were determined with the help of three distinct layers visible on the radargrams (≈1730, 1799 and 1941 AD). Preliminary results reveal a gradual accumulation increase towards the coast and the occurrence of previously undocumented undulating structures between 300 and 600 km from DC. Results agree fairly well with data from previous studies and modeling. Concluding on temporal variations is difficult because of the margin of error introduced by density estimation. This study should have various applications such as for model validation.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2012-07-17
    Description: Downscale cascades in tracer transport test cases: an intercomparison of the dynamical cores in the Community Atmosphere Model CAM5 Geoscientific Model Development Discussions, 5, 1781-1816, 2012 Author(s): J. Kent, C. Jablonowski, J. P. Whitehead, and R. B. Rood The accurate modelling of cascades to unresolved scales is an important part of the tracer transport component of dynamical cores of weather and climate models. This paper aims to investigate the ability of the advection schemes in the National Center for Atmospheric Research's Community Atmosphere Model version 5 (CAM5) to model this cascade. In order to quantify the effects of the different advection schemes in CAM5, four two-dimensional tracer transport test cases are presented. Three of the tests stretch the tracer below the scale of coarse resolution grids to ensure the downscale cascade of tracer variance. These results are compared with a high resolution reference solution, which is simulated on a resolution fine enough to resolve the tracer during the test. The fourth test has two separate flow cells, and is designed so that any tracer in the Western Hemisphere should not pass into the Eastern Hemisphere. This is to test whether the diffusion in transport schemes, often in the form of explicit hyper-diffusion terms or implicit through monotonic limiters, contains unphysical mixing. An intercomparison of three of the dynamical cores of the National Center for Atmospheric Research's Community Atmosphere Model version 5 is performed. The results show that the finite-volume (CAM-FV) and spectral element (CAM-SE) dynamical cores model the downscale cascade of tracer variance better than the semi-Lagrangian transport scheme of the Eulerian spectral transform core (CAM-EUL). Each scheme tested produces unphysical mass in the Eastern Hemisphere of the separate cells test.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2012-07-19
    Description: The stability of grounding lines on retrograde slopes The Cryosphere Discussions, 6, 2597-2619, 2012 Author(s): G. H. Gudmundsson, J. Krug, G. Durand, L. Favier, and O. Gagliardini The stability of marine ice sheets grounded on beds that slope upwards in the overall direction of flow is investigated numerically in two horizontal dimensions. We give examples of stable grounding lines on such retrograde slopes illustrating that marine ice sheets are not unconditionally unstable in two-horizontal dimensions. Retrograde bed slopes at the grounding lines of maritime ice sheets, such as the West Antarctic Ice Sheet (WAIS), do not per se imply an instability, nor do they imply that these regions are close to a threshold of instability. We therefore question those estimates of the potential near-future contribution of WAIS to global sea level change based solely on the notion that WAIS, resting on retrograde slope, must be inherently unstable.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2012-07-21
    Description: Manufactured solutions and the numerical verification of isothermal, nonlinear, three-dimensional Stokes ice-sheet models The Cryosphere Discussions, 6, 2689-2714, 2012 Author(s): W. Leng, L. Ju, M. Gunzburger, and S. Price The technique of manufactured solutions is used for verification of computational models in many fields. In this paper we construct manufactured solutions for models of three-dimensional, isothermal, nonlinear Stokes flow in glaciers and ice sheets. The solution construction procedure starts with kinematic boundary conditions and is mainly based on the solution of a first-order partial differential equation for the ice velocity that satisfies the incompressibility condition. The manufactured solutions depend on the geometry of the ice sheet and other model parameters. Initial conditions are taken from the periodic geometry of a standard problem of the ISMIP-HOM benchmark tests and altered through the manufactured solution procedure to generate an analytic solution for the time-dependent flow problem. We then use this manufactured solution to verify a parallel, high-order accurate, finite element Stokes ice-sheet model. Results from the computational model show excellent agreement with the manufactured analytic solutions.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2012-09-11
    Description: CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application Geoscientific Model Development Discussions, 5, 2705-2744, 2012 Author(s): J. Tang, W. J. Riley, C. D. Koven, and Z. M. Subin To improve regional and global biogeochemistry modeling and climate predictability, we have developed a generic reactive transport module for the land model CLM4 (called CLM4-BeTR (Biogeochemical Transport and Reactions)). CLM4-BeTR represents the transport, interactions, and biotic and abiotic transformations of an arbitrary number of tracers (aka chemical species) in an arbitrary number of phases (e.g. dissolved, gaseous, sorbed, aggregate). An operator splitting approach was employed and consistent boundary conditions were derived for each modeled sub-process. Tracer fluxes, associated with hydrological processes such as surface run-on and run-off, belowground drainage, and ice to liquid conversion were also computed consistently with the bulk water fluxes calculated by the soil physics module in CLM4. The transport code was evaluated and found be in good agreement with several analytical test cases. The model was then applied at the Harvard Forest site with a representation of depth-dependent belowground biogeochemistry. The results indicated that, at this site, (1) CLM4-BeTR was able to simulate soil-surface CO 2 effluxes and soil CO 2 profiles accurately; (2) the transient surface CO 2 effluxes calculated based on the tracer transport mechanism were in general not equal to the belowground CO 2 production rates and that their differences varied according to the seasonal cycle of soil physics and biogeochemistry; (3) losses of CO 2 through processes other than surface gas efflux were less than 1% of the overall soil respiration; and (4) the contributions of root respiration and heterotrophic respiration have distinct temporal signals in surface CO 2 effluxes and soil CO 2 concentrations. The development of CLM4-BeTR will allow detailed comparisons between ecosystem observations and predictions and insights to the modeling of terrestrial biogeochemistry.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2012-09-15
    Description: The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response and scenario projections Geoscientific Model Development Discussions, 5, 2933-2998, 2012 Author(s): T. Iversen, M. Bentsen, I. Bethke, J. B. Debernard, A. Kirkevåg, Ø. Seland, H. Drange, J. E. Kristjánsson, I. Medhaug, M. Sand, and I. A. Seierstad The NorESM1-M simulation results for CMIP5 ( http://cmip-pcmdi.llnl.gov/cmip5/index.html ) are described and discussed. Together with the accompanying paper by Bentsen et al. (2012), this paper documents that NorESM1-M is a valuable global climate model for research and for providing complementary results to the evaluation of possible man made climate change. NorESM is based on the model CCSM4 operated at NCAR on behalf of many contributors in USA. The ocean model is replaced by a developed version of MICOM and the atmospheric model is extended with on-line calculations of aerosols, their direct effect, and their indirect effect on warm clouds. Model validation is presented in a companion paper (Bentsen et al., 2012). NorESM1-M is estimated to have equilibrium climate sensitivity slightly smaller than 2.9 K, a transient climate response just below 1.4 K, and is less sensitive than most other models. Cloud feedbacks damp the response, and a strong AMOC reduces the heat fraction available for increasing near surface temperatures, for evaporation, and for melting ice. The future projections based on RCP scenarios yield global surface air temperature increase almost one standard deviation lower than a 15-model average. Summer sea-ice is projected to decrease considerably by 2100, and completely for RCP8.5. The AMOC is projected to reduce by 12%, 15–17%, and 32% for the RCP2.6, 4.5, 6.0 and 8.5 respectively. Precipitation is projected to increase in the tropics, decrease in the subtropics and in southern parts of the northern extra-tropics during summer, and otherwise increase in most of the extra-tropics. Changes in the atmospheric water cycle indicate that precipitation events over continents will become more intense and dry spells more frequent. Extra-tropical storminess in the Northern Hemisphere is projected to shift northwards. There are indications of more frequent spring and summer blocking in the Euro-Atlantic sectors and that ENSO events weaken but appear more frequent. These indications are uncertain because of biases in the model's representation of present-day conditions. There are indications that positive phase PNA and negative phase NAO become less frequent under the RCP8.5 scenario, but also this result is considered uncertain. Single-forcing experiments indicate that aerosols and greenhouse gases produce similar geographical patterns of response for near surface temperature and precipitation. These patterns tend to have opposite sign, with important exceptions for precipitation at low latitudes. The asymmetric aerosol effects between the two hemispheres leads to a southward displacement of ITCZ. Both forcing agents thus tend to reduce northern hemispheric subtropical precipitation.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2012-09-15
    Description: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation Geoscientific Model Development Discussions, 5, 2843-2931, 2012 Author(s): M. Bentsen, I. Bethke, J. B. Debernard, T. Iversen, A. Kirkevåg, Ø. Seland, H. Drange, C. Roelandt, I. A. Seierstad, C. Hoose, and J. E. Kristjánsson The core version of the Norwegian Climate Center's Earth System Model, named NorESM1-M, is presented. The NorESM-family of models are based on the Community Climate System Model version 4 (CCSM4) of the University Corporation for Atmospheric Research, but differs from the latter by, in particular, an isopycnic coordinate ocean model and advanced chemistry-aerosol-cloud-radiation interaction schemes. NorESM1-M has a horizontal resolution of approximately 2° for the atmosphere and land components and 1° for the ocean and ice components. NorESM is also available in a lower resolution version (NorESM1-L) and a version that includes prognostic biogeochemical cycling (NorESM1-ME). The latter two model configurations are not part of this paper. Here, a first-order assessment of the model stability, the mean model state and the internal variability based on the model experiments made available to CMIP5 are presented. Further analysis of the model performance is provided in an accompanying paper (Iversen et al., 2012), presenting the corresponding climate response and scenario projections made with NorESM1-M.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2012-09-13
    Description: Seasonal controls on snow distribution and aerial ablation at the snow-patch and landscape scales, McMurdo Dry Valleys, Antarctica The Cryosphere Discussions, 6, 3823-3862, 2012 Author(s): J. W. Eveland, M. N. Gooseff, D. J. Lampkin, J. E. Barrett, and C. D. Takacs-Vesbach Accumulated snow in the McMurdo Dry Valleys, while limited, has great ecological significance to subnivian soil environments. Though sublimation dominates the ablation process in this region, measurable increases in soil moisture and insulation from temperature extremes provide more favorable conditions with respect to subnivian soil communities. While precipitation is not substantial, significant amounts of snow can accumulate, via aeolian redistribution, in topographic lees along the valley bottoms, forming thousands of discontinuous snow patches. These patches have the potential to act as significant sources of local melt water, controlling biogeochemical cycling and the landscape distribution of microbial communities. Therefore, determining the spatial and temporal dynamics of snow at multiple scales is imperative to understanding the broader ecological role of snow in this region. High-resolution satellite imagery acquired during the 2009–2010 and 2010–2011 austral summers was used to quantify the distribution of snow across Taylor and Wright Valleys. Extracted snow-covered area from the imagery was used as the basis for assessing seasonal variability and seasonal controls on accumulation and ablation of snow at multiple scales. In addition, fifteen 1 km 2 plots (3 in each of 5 study regions) were selected to assess the prevalence of snow cover at finer spatial scales. Results confirm that snow patches tend to form in the same locations each year with some minor deviations observed. At the snow-patch scale, neighboring patches often exhibit considerable differences in aerial ablation rates, and particular snow patches do not reflect trends for snow-covered area observed at the landscape scale. These differences are presumably related to microtopographic influences over snow depth and exposure. This highlights the importance of both the landscape and snow-patch scales in assessing the effects of snow cover on biogeochemical cycling and microbial communities.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2012-09-13
    Description: Environmental controls on the thermal structure of alpine glaciers The Cryosphere Discussions, 6, 3781-3822, 2012 Author(s): N. J. Wilson and G. E. Flowers Water entrapped in glacier accumulation zones represents a significant latent heat contribution to the development of thermal structure. It also provides a direct link between glacier environments and thermal regimes. We apply a two-dimensional mechanically-coupled model of heat flow to synthetic glacier geometries in order to explore the environmental controls on flowband thermal structure. We use this model to test the sensitivity of thermal structure to physical and environmental variables and to explore glacier response to potential environmental changes. In different conditions consistent with a warming climate, mean glacier temperature and the volume of temperate ice may either increase or decrease, depending on the competing effects of elevated meltwater production, reduced accumulation zone extent, and thinning firn. For two model reference states that exhibit commonly-observed thermal structures, the volume of temperate ice is shown to decline with warming air temperatures. Mass balance sensitivity plays an important role in determining how the englacial thermal regimes of alpine glaciers will adjust in the future.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2012-09-14
    Description: Simulations of the Mid-Pliocene Warm Period using the NASA/GISS ModelE2-R Earth System Model Geoscientific Model Development Discussions, 5, 2811-2842, 2012 Author(s): M. A. Chandler, L. E. Sohl, J. A. Jonas, and H. J. Dowsett Climate reconstructions of the mid-Pliocene Warm Period (mPWP) bear many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change. In particular, marine and terrestrial paleoclimate data point to high latitude temperature amplification, with associated decreases in sea ice and land ice and altered vegetation distributions that show expansion of warmer climate biomes into higher latitudes. NASA GISS climate models have been used to study the Pliocene climate since the USGS PRISM project first identified that the mid-Pliocene North Atlantic sea surface temperatures were anomalously warm. Here we present the most recent simulations of the Pliocene using the AR5/CMIP5 version of the GISS Earth System Model known as ModelE2-R. These simulations constitute the NASA contribution to the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasize features in the ModelE2-R simulations that are unlike the ensemble means. We provide discussion of features that show considerable improvement compared with simulations from previous versions of the NASA GISS models, improvement defined here as simulation results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene climate. In some regions even qualitative agreement between model results and paleodata are an improvement over past studies, but the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea in these new simulations is by far the most accurate portrayal ever of this key geographic region by the GISS climate model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterizations in the ocean model, have led to an Earth System Model that will produce more accurate projections of future climate.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2012-09-11
    Description: PORT, a CESM tool for the diagnosis of radiative forcing Geoscientific Model Development Discussions, 5, 2687-2704, 2012 Author(s): A. J. Conley, J.-F. Lamarque, F. Vitt, W. D. Collins, and J. Kiehl The Parallel Offline Radiative Transfer (PORT) model is a tool for diagnosing radiative forcing. It isolates the radiation code from the Community Atmosphere Model (CAM4) in the Community Earth System Model (CESM1). The computation of radiative forcing from doubling of carbon dioxide and from the change of ozone concentration from year 1850 to 2000 illustrates the use of PORT.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2012-09-13
    Description: A methodology for estimating seasonal cycles of atmospheric CO 2 resulting from terrestrial net ecosystem exchange (NEE) fluxes using the Transcom T3L2 pulse-response functions Geoscientific Model Development Discussions, 5, 2789-2809, 2012 Author(s): C. D. Nevison, D. F. Baker, and K. R. Gurney We present a method for translating modeled terrestrial net ecosystem exchange (NEE) fluxes of carbon into the corresponding seasonal cycles in atmospheric CO 2 . The method is based on the pulse-response functions from the Transcom 3 Level 2 (T3L2) atmospheric tracer transport model (ATM) intercomparison. The new pulse-response method is considerably faster than a full forward ATM simulation, allowing CO 2 seasonal cycles to be computed in seconds, rather than the days or weeks required for a forward simulation. Further, the results provide an estimate of the range of transport uncertainty across 13 different ATMs associated with the translation of surface NEE fluxes into an atmospheric signal. We evaluate the method against the results of archived forward ATM simulations from T3L2. The latter are also used to estimate the uncertainties associated with oceanic and fossil fuel influences. We present a regional breakdown at selected monitoring sites of the contribution to the atmospheric CO 2 cycle from the 11 different T3L2 land regions. A test case of the pulse-response code, forced by NEE fluxes from the Community Land Model, suggests that for many terrestrial models, discrepancies between model results and observed atmospheric CO 2 cycles will be large enough to clearly transcend ATM uncertainties.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2012-09-13
    Description: Modeling atmospheric ammonia and ammonium using a backward-in-time stochastic Lagrangian air quality model (STILT-Chem v0.7) Geoscientific Model Development Discussions, 5, 2745-2788, 2012 Author(s): D. Wen, J. C. Lin, L. Zhang, R. Vet, and M. D. Moran A new chemistry module of atmospheric ammonia (NH 3 ) and ammonium (NH 4 + ) was incorporated into a backward-in-time stochastic Lagrangian air quality model (STILT-Chem) that was originally developed to simulate the concentrations of a variety of gas-phase species at receptors. STILT-Chem simulates the transport of air parcels backward in time using ensembles of fictitious particles with stochastic motions, while simulating emissions, deposition and chemical transformation forward in time along trajectories identified by the backward-in-time simulations. The incorporation of the new chemistry module allows the model to simulate not only gaseous species, but also multi-phase species involving NH 3 and NH 4 + . The model was applied to simulate concentrations of NH 3 and particulate NH 4 + at six sites in the Canadian province of Ontario for a six-month period in 2006. The model-predicted concentrations of NH 3 and particulate NH 4 + were compared with observations, which show broad agreement between simulated concentrations and observations. Since the model is based on back trajectories, the influence of each major process such as emission, deposition and chemical conversion on the concentration of a modeled species at a receptor can be determined for every upstream location at each time step. This makes it possible to quantitatively investigate the upstream processes affecting receptor concentrations. The modeled results suggest that the concentrations of NH 3 at those sites were significantly and frequently affected by southwestern Ontario, northern Ohio, and nearby areas. NH 3 is mainly contributed by emission sources whereas particulate NH 4 + is mainly contributed by the gas-to-aerosol chemical conversion of NH 3 . Dry deposition is the largest removal process for both NH 3 and particulate NH 4 + . This study revealed the contrast between agricultural versus forest sites. Not only were emissions of NH 3 higher, but removal mechanisms (especially chemical loss for NH 3 and dry deposition for NH 4 + ) were less efficient for agricultural sites. This combination explains the significantly higher concentrations of NH 3 and particulate NH 4 + observed at agricultural sites.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2012-08-21
    Description: How should sparse in situ measurements be compared to continuous model data? Geoscientific Model Development Discussions, 5, 2311-2345, 2012 Author(s): L. de Mora, M. Butenschön, and J. I. Allen This work demonstrates the importance of an adequate method to sub-sample model results when comparing with in situ measurements. A test of model skill was performed by comparing a multi-decadal hindcast against a sparse, unevenly distributed historic in situ dataset. The comparison was performed using a point-to-point method. The point-to-point method masked out all hindcast cells that did not have a corresponding in situ measurement in order to compare each in situ measurement against its most similar cell from the model. The application of the point-to-point method showed that the model was successful at reproducing many inter-annual trends. Furthermore, this success was not immediately apparent using the previous comparison methods, which compared model and measurements aggregated to regional averages. Time series, data density and target diagrams were employed to illustrate the impact of switching from the previous method to the point-to-point method. The comparison based on regional averages gave significantly different and sometimes contradicting results that could lead to erroneous conclusions on the model performance. We therefore recommend that researchers take into account for the limitations of the in situ datasets, process the model to resemble the data as much as possible, and we advocate greater transparency in the publication of methodology.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2012-06-13
    Description: The early twentieth century warming and winter Arctic sea ice The Cryosphere Discussions, 6, 2037-2057, 2012 Author(s): V. A. Semenov and M. Latif The Arctic featured the strongest surface warming over the globe during the recent decades, and the temperature increase was accompanied by a rapid decline in sea ice extent. However, little is known about Arctic sea ice change during the Early Twentieth Century Warming (ETCW) during 1920–1940, also a period of a strong surface warming, both globally and in the Arctic. Here, we investigate the sensitivity of Arctic winter surface air temperature (SAT) to sea ice during 1875–2008 by means of simulations with an atmospheric general circulation model (AGCM) forced by estimates of the observed sea surface temperature (SST) and sea ice concentration. The Arctic warming trend since the 1960s is very well reproduced by the model. In contrast, ETCW in the Arctic is hardly captured. This is consistent with the fact that the sea ice extent in the forcing data does not strongly vary during ETCW. AGCM simulations with observed SST but fixed sea ice reveal a strong dependence of winter SAT on sea ice extent. In particular, the warming during the recent decades is strongly underestimated by the model, if the sea ice extent does not decline and varies only seasonally. This suggests that a significant reduction of Arctic sea ice extent may have also accompanied the Early Twentieth Century Warming, pointing toward an important link between anomalous sea ice extent and Arctic surface temperature variability.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2012-06-15
    Description: Climatic drivers of seasonal glacier mass balances: an analysis of 6 decades at Glacier de Sarennes (French Alps) The Cryosphere Discussions, 6, 2115-2160, 2012 Author(s): E. Thibert, N. Eckert, and C. Vincent Refined temporal signals are extracted from a glacier winter and summer mass balance series recorded at Glacier de Sarennes (French Alps) using variance decomposition. They are related to local and synoptic meteorological data in terms of interannual variability and structured trends. The winter balance has increased by +23% since 1976 due to more precipitation in early and late winter. The summer balance has decreased since 1982 due to a 43% increase in snow and ice melt. A 24-day lengthening of the ablation period – mainly due to longer ice ablation – is the main component in the overall increase in ablation. In addition, the last 25 yr have seen increases in ablation rates of 14 and 10% for snow and ice respectively. A simple degree-day analysis can account for both the snow/ice melt rate rise and the lengthening of the ablation period as a function of higher air temperatures. From the same analysis, the equilibrium line altitude of this 45° North latitude south-facing glacier has sensitivity to temperature of +93 m °C −1 around its mean elevation of 3100 m a.s.l. over 6 decades. The sensitivity of summer balance to temperature is −0.62 m w.e. yr −1 °C −1 for a typical 125-day long ablation season. Finally, the time structure of winter and summer mass balance terms are connected to NAO anomalies. Best correlations are obtained with winter NAO anomalies. However, they strongly depend on how the NAO signal is smoothed, so that the link between mass-balance seasonal terms and NAO signal remains tenuous and hard to interpret.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2012-06-19
    Description: Sea ice inertial oscillation magnitudes in the Arctic basin The Cryosphere Discussions, 6, 2179-2220, 2012 Author(s): F. Gimbert, D. Marsan, J. Weiss, N. C. Jourdain, and B. Barnier An original method to quantify the amplitude of inertial motion of oceanic and ice drifters, through the introduction of a non-dimensional parameter M defined from a spectral analysis, is presented. A strong seasonal dependence of the magnitude of sea ice inertial oscillations is revealed, in agreement with the corresponding annual cycles of sea ice extent, concentration, thickness, advection velocity, and deformation rates. The spatial pattern of the magnitude of the sea ice inertial oscillations over the Arctic basin is also in agreement with the sea ice thickness and concentration patterns. This argues for a strong link between the magnitude of inertial motion on one hand, the dissipation of energy through mechanical processes, and the cohesiveness of the cover on the other hand. Finally, a significant pluri-annual evolution towards greater magnitudes of inertial oscillations in recent years, in both summer and winter, is reported, thus concomitant with reduced sea ice thickness, concentration and spatial extent.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2012-06-20
    Description: The chemical transport model Oslo CTM3 Geoscientific Model Development Discussions, 5, 1561-1626, 2012 Author(s): O. A. Søvde, M. J. Prather, I. S. A. Isaksen, T. K. Berntsen, F. Stordal, X. Zhu, C. D. Holmes, and J. Hsu We present here the global chemical transport model Oslo CTM3, an update of the Oslo CTM2. The update comprises a faster transport scheme, an improved wet scavenging scheme for large scale rain, updated photolysis rates and a new lightning parameterization. Oslo CTM3 is better parallelized and allows for stable, large time steps for advection, enabling more complex or high resolution simulations. Thorough comparisons between the Oslo CTM3, Oslo CTM2 and measurements are performed, and in general the Oslo CTM3 is found to reproduce measurements well. Inclusion of tropospheric sulfur chemistry and nitrate aerosols in CTM3 is shown to be important to reproduce tropospheric O 3 , OH and the CH 4 lifetime well. Using the same meteorology to drive the two models, shows that some features related to transport are better resolved by the CTM3, such as polar cap transport, while features like transport close to the vortex edge are resolved better in the Oslo CTM2 due to its required shorter transport time step. The longer transport time steps in CTM3 result in larger errors e.g. near the jets, and when necessary, this can be remedied by using a shorter time step. An additional, more accurate and time consuming, treatment of polar cap transport is presented, however, both perform acceptably. A new treatment of the horizontal distribution of lightning is presented and found to compare well with measurements. Vertical distributions of lighting are updated, and tested against the old vertical distribution. The new profiles are found to produce more NO x in the tropical middle troposphere, and less at the surface and at high altitudes.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2012-07-10
    Description: Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006 The Cryosphere Discussions, 6, 2327-2361, 2012 Author(s): C. Tennant, B. Menounos, and R. Wheate We used Interprovincial Boundary Commission Survey (IBCS) maps of the Alberta–British Columbia (BC) border (1903–1924), BC Terrain Resource Information Management (TRIM) data (1982–1987), and Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery (2000–2002 and 2006) to document planimetric changes in glacier cover in the Central and Southern Canadian Rocky Mountains between 1919 and 2006. Total glacierized area decreased by 590 ± 100 km 2 (40 ± 7%), with 17 of 523 glaciers disappearing and 124 glaciers fragmenting into multiple ice masses. Fourteen of the glaciers that disappeared were less than 0.5 km 2 , and glaciers smaller than 1.0 km 2 experienced the greatest relative area loss (64 ± 17%). Variation in area loss increased with small glaciers, suggesting local topographic setting controls the response of these glaciers to climate change. Absolute area loss negatively correlates with slope and minimum elevation, and relative area change negatively correlates with mean and median elevations. Similar average rates of area change were observed for the periods 1919–1985 and 1985–2001, at −6.3 ± 0.9 km 2 yr −1 (−0.4 ± 0.1% yr −1 ) and −5.0 ± 0.5 km 2 yr −1 (−0.3 ± 0.1% yr −1 ), respectively. The rate of area loss significantly increased for the period 2001–2006, −19.3 ± 2.4 km 2 yr −1 (−1.3 ± 0.2% yr −1 ), with continued high minimum and accumulation season temperature anomalies and variable precipitation anomalies.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2012-07-11
    Description: Linking glacier annual mass balance and glacier albedo retrieved from MODIS data The Cryosphere Discussions, 6, 2363-2398, 2012 Author(s): M. Dumont, J. Gardelle, P. Sirguey, A. Guillot, D. Six, A. Rabatel, and Y. Arnaud Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS) on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ice are particularly investigated. The methods are tested on the Saint Sorlin Glacier (Grandes Rousses area, French Alps). The accuracy of the retrieved albedo is estimated using both field measurements, at two automatic weather stations located on the glacier, and albedo values derived from terrestrial photographs. For summers 2008 and 2009, the Root Mean Square Deviation (RMSD) between field measurements and the broadband albedo retrieved from MODIS data at 250 m spatial resolution was found to be 0.052 or about 10% relative error. The RMSD estimated for the MOD10 daily albedo product is about three times higher. One decade (2000–2009) of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin Glacier during the ablation season. The annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (average over the whole glacier surface) observed with MODIS during the ablation season. A strong linear correlation exists between the two variables. Furthermore, the date when the average albedo of the whole glacier reaches a minimum closely corresponds to the period when the snowline is located at its highest elevation, thus when the snowline is a good indicator of the glacier equilibrium line. This indicates that this strong correlation results from the fact that the minimal average albedo values of the glacier contains a considerable information regarding the relative share of areal surfaces between the ablation zone (i.e. ice with generally low albedo values) and the accumulation zone (i.e. snow with a relatively high albedo). As a consequence, the monitoring of the glacier surface albedo using MODIS data can provide a useful means to evaluate the inter-annual variability of the glacier mass balance. Finally, the albedo in the ablation area of Saint Sorlin Glacier does not exhibit any decreasing trend over the study period, contrasting with the results obtained on Morteratsch Glacier in the Swiss Alps.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-07-05
    Description: Investigating the dynamics of bulk snow density in dry and moist conditions using a one-dimensional model The Cryosphere Discussions, 6, 2305-2325, 2012 Author(s): C. De Michele, F. Avanzi, A. Ghezzi, and C. Jommi Snowpack is a complicated multiphase mixture with mechanical, hydraulic, and thermal properties, highly variable within the year in response to climatic forcings. Bulk density is a macroscopic property of the snowpack used, together with snow depth, to quantify the water stored. In seasonal snowpacks, the bulk density is characterized by a strong non-linear behaviour due to the occurrence of both dry and wet conditions. In literature, bulk snow density estimates are obtained principally with multiple regressions, and snowpack models have put the attention principally on the snow depth and snow water equivalent. Here a one-dimensional model for the temporal dynamics of the bulk snow density has been proposed, accounting for both dry and moist conditions. The model assimilates the snowpack to a two-constituent mixture: a dry part including ice structure, and air, and a wet part constituted by liquid water. It describes the dynamics of three variables: the depth and density of the dry part and the depth of liquid water. The model has been calibrated and validated against hourly data registered in two SNOTEL stations, Western US, with mean values of the Nash-Sutcliffe coefficient ≈0.90–0.92.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-07-07
    Description: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the community atmosphere model: single column experiments Geoscientific Model Development Discussions, 5, 1743-1780, 2012 Author(s): P. A. Bogenschutz, A. Gettelman, H. Morrison, V. E. Larson, D. P. Schanen, N. R. Meyer, and C. Craig This paper describes the coupling of the Community Atmosphere Model (CAM) version 5 with a unified multi-variate probability density function (PDF) parameterization, Cloud Layers Unified by Binormals (CLUBB). CLUBB replaces the planetary boundary layer (PBL), shallow convection, and cloud macrophysics schemes in CAM5 with a higher-order turbulence closure based on an assumed PDF. Comparisons of single-column versions of CAM5 and CAM-CLUBB are provided in this paper for several boundary layer regimes. As compared to Large Eddy Simulations (LES), CAM-CLUBB and CAM5 simulate marine stratocumulus regimes with similar accuracy. For shallow convective regimes, CAM-CLUBB improves the representation of cloud cover and liquid water path (LWP). In addition, for shallow convection CAM-CLUBB offers better fidelity for sub-grid scale vertical velocity, which is an important input for aerosol activation. Finally, CAM-CLUBB results are more robust to changes in vertical and temporal resolution when compared to CAM5.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...