ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (17)
  • NASA Technical Reports  (17)
  • METEOROLOGY AND CLIMATOLOGY  (11)
  • INSTRUMENTATION AND PHOTOGRAPHY  (6)
  • LUNAR AND PLANETARY EXPLORATION
  • 1950-1954  (17)
Collection
  • Other Sources  (17)
Source
  • NASA Technical Reports  (17)
Years
Year
  • 1
    Publication Date: 2019-06-28
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-TM-82266
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: When a closed body or a duct envelope moves through the atmosphere, air pressure and temperature rises occur ahead of the body or, under ram conditions, within the duct. If cloud water droplets are encountered, droplet evaporation will result because of the air-temperature rise and the relative velocity between the droplet and stagnating air. It is shown that the solution of the steady-state psychrometric equation provides evaporation rates which are the maximum possible when droplets are entrained in air moving along stagnation lines under such conditions. Calculations are made for a wide variety of water droplet diameters, ambient conditions, and flight Mach numbers. Droplet diameter, body size, and Mach number effects are found to predominate, whereas wide variation in ambient conditions are of relatively small significance in the determination of evaporation rates. The results are essentially exact for the case of movement of droplets having diameters smaller than about 30 microns along relatively long ducts (length at least several feet) or toward large obstacles (wings), since disequilibrium effects are then of little significance. Mass losses in the case of movement within ducts will often be significant fractions (one-fifth to one-half) of original droplet masses, while very small droplets within ducts will often disappear even though the entraining air is not fully stagnated. Wing-approach evaporation losses will usually be of the order of several percent of original droplet masses. Two numerical examples are given of the determination of local evaporation rates and total mass losses in cases involving cloud droplets approaching circular cylinders along stagnation lines. The cylinders chosen were of 3.95-inch (10.0+ cm) diameter and 39.5-inch 100+ cm) diameter. The smaller is representative of icing-rate measurement cylinders, while with the larger will be associated an air-flow field similar to that ahead of an airfoil having a leading-edge radius comparable with that of the cylinder. It is found that the losses are less than 5 percent. It is concluded that such losses are, in general, very small (less than 1 percent) in the case of smaller obstacles (of icing-rate measurement- cylinder size); the motional dynamics are such, however, that exceptions will occur by reason of failure of very small droplets (moving along stagnation lines) to impinge upon obstacle surfaces. In such cases, the droplets will evaporate completely.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NACA-TN-3024
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A photographic technique for investigating water droplets of diameter less than 200 microns falling freely in air at temperatures between 0 C and -50 C has been devised and used to determine: (i) The shape of frozen droplets (2) The occurrence of collisions of partly frozen or of frozen and liquid droplets (3) The statistics on the freezing temperatures of individual free-falling droplets A considerable number of droplets were found to have a nonspherical shape after freezing because of various protuberances and frost growth, and droplet aggregates formed by collision. The observed frequency of collision of partly frozen droplets showed good order of magnitude agreement with the frequency computed from theoretical collection efficiencies. The freezing temperature statistics indicated a general similarity of the data to those obtained for droplets frozen on a metallic surface in previous experiments.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NACA-RM-E51L17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NACA-TN-2738
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Three multicylinder cloud meters, fundamentally similar but differing in important details, were compared in use at the Mount Washington Observatory. Determinations of liquid water content were found to agree within the limits of the probable error, but the two instruments designed by the National Advisory Committee for Aeronautics indicated larger drop sizes than did the Observatory's instrument, apparently because of spurious ice catch on the rather rough surface of the larger cylinders. Comparisons of drop-size distribution were largely indeterminate., In a critique of the method, the probable error of determination of liquid water content was found to be +/-8 percent; of drop size, +/-6 percent; and of drop-size distribution, about +/-0.7 unit of the modulus of distribution. Of the systematic errors, run-off of unfrozen water is most important, blow-off and erosion seldom being hampering. Revision of collection-efficiency computations for cylinders in clouds with distributed drop sizes was found necessary and also revision of one of the correction-factor graphs heretofore used. The assumption of constant ice density in deriving cylinder size was found to be permissible for cylinders 1 inch or more in diameter.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NACA-TN-2708
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Ground tests have been made of an instrument which, when assembled in a more compact form for flight installation, could be used to obtain statistical flight data on the liquid-water content of icing clouds and to provide an indication of icing severity. The sensing element of the instrument consists of an electrically heated wire which is mounted in the air stream. The degree of cooling of the wire resulting from evaporation of the impinging water droplets is a measure. of the liquid-water content of the cloud. Determination of the value of the liquid-water content from the wire temperature at any instant requires a knowledge of the airspeed, altitude, and air temperature. An analysis was made of the temperature response of a heated wire exposed to an air stream containing water drops. Comparisons were made of the liquid-water content as measured with several heated wires and absorbent cylinders in an artificially produced cloud. For one of the wires, comparative tests were made with a rotating-disk icing-rate meter in an icing wind tunnel. From the test results, it was shown that an instrument for measuring the concentration of liquid water in an air stream can be built using an electrically heated wire of known temperatureresistance characteristics, and that the performance of such a device can be predicted using appropriate theory. Although an instrument in a form suitable for gathering statistical data in flight was not built, the practicability of constructing such an instrument was illustrated. The ground-test results indicated that a flight heated-wire instrument would be simple and durable, would respond rapidly to variations in liquid-water content, and could be used for the measurement of water content in clouds which are above freezing temperature, as well as in icing clouds.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NACA-TN-2615
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Icing data collected on routine operations by four DC-4-type aircraft equipped with NACA pressure-type icing-rate meters are presented as preliminary information obtained from a statistical icing data program sponsored by the NACA with the cooperation of many airline companies and the United States Air Force. The program is continuing on a much greater scale to provide large quantities of data from many air routes in the United States and overseas. Areas not covered by established air routes are also being included in the survey. The four aircraft which collected the data presented in this report were operated by United Air Lines over a transcontinental route from January through May, 1951. An analysis of the pressure-type icing-rate meter was satisfactory for collecting statistical data during routine operations. Data obtained on routine flight icing encounters from.these four instrumented aircraft, although insufficient for a conclusive statistical analysis, provide a greater quantity and considerably more realistic information than that obtained from random research flights. A summary of statistical data will be published when the information obtained daring the 1951-52 icing season and that to be obtained during the 1952-53 season can be analyzed and assembled. The 1951-52 data already analyzed indicate that the quantity, quality, and range of icing information being provided by this expanded program should afford a sound basis for ice-protection-system design by defining the important meteorological parameters of the icing cloud.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NACA-RM-E52J06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Flight icing-rate data obtained in a dense and. abnormally deep supercooled stratiform cloud system indicated the existence of liquid-water contents generally exceeding values in amount and extent previously reported over the midwestern sections of the United States. Additional information obtained during descent through a part of the cloud system indicated liquid-water contents that significantly exceeded theoretical values, especially near the middle of the cloud layer.. The growth of cloud droplets to sizes that resulted in sedimentation from the upper portions of the cloud is considered to be a possible cause of the high water contents near the center of the cloud layer. Flight measurements of the vertical temperature distribution in the cloud layer indicated a rate of change of temperature with altitude exceeding that of the moist adiabatic lapse rate. This excessive rate of change is considered to have contributed to the severity of the condition.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NACA-RM-E51D18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Liquid-water content, droplet size, and temperature data measured during 22 flights in predominatly stratiform clouds through the 1948-49 and the 1949-50 winters are presented. Several icing encounters were of greater severity than those previously measured over the same geographical area, but were within the limits of similar measurements obtained over different terrain within the United States. An analysis of meteorological conditions existing during the 74 flights conducted for four winters indicated an inverse relation of liquid-water concentration to maximum horizontal extent of icing clouds. Data on the vertical extent of supercooled clouds are also presented. Icing conditions were most likely to occur in the southwest and northwest quadrants of a cyclone area, and least likely to occur in the southeast and northeast quadrants where convergent air flow and lifting over the associated warm frontal surface usually cause precipitation. Additional data indicated that, icing conditions were usually encountered in nonprecipitating clouds existing at subfreezing temperatures and were unlikely over areas where most weather observing stations reported the existence of precipitation. Measurements of liquid-water content obtained during 12 flights near the time and location of radiosonde observations were compared with theoretical values. The average liquid-water content of a cloud layer, as measured by the multicylinder technique, seldom exceeded two-thirds of that which could be released by adiabatic lifting. Local areas near the cloud tops equaled or occasionally exceeded the calculated maximum quantity of liquid water.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NACA-TN-2306
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: The results of surface-tension measurements for supercooled water are presented. A total of 702 individual measurements of surface tension of triple-distilled water were made in the temperature range, 27 to -22.2 C, with 404 of these measurements at temperatures below 0 C. The increase in magnitude of surface tension with decreasing temperature, as indicated by measurements above 0 C, continues to -22.2 C. The inflection point in the surface-tension - temperature relation in the vicinity of 0 C, as indicated by the International Critical Table values for temperatures down to -8 C, is substantiated by the measurements in the temperature range, 0 to -22.2 C. The surface tension increases at approximately a linear rate from a value of 76.96+/-0.06 dynes per centimeter at -8 C to 79.67+/-0.06 dynes per centimeter at -22.2 C.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NACA-TN-2510
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-06-28
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NACA-TN-2569
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-28
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NACA-RM-E51E16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-06-28
    Description: A flight instrument that uses electric means for measuring the droplet-size distribution in above-freezing clouds has been devised and given preliminary evaluation in flight. An electric charge is placed on the droplets and they are separated aerodynamically according to their mass. Because the charge placed on the droplets is a. function of the droplet size, the size spectrum can 'be determined by measurement of the charge deposited on cylinders of several different sizes placed to intercept the charged droplets. An expression for the rate of charge acquisition by a water droplet in a field of coronal discharge is derived. The results obtained in flight with an instrument based on the method described indicate that continuous records of droplet-size spectrum variations in clouds can be obtained. The experimental instrument was used to evaluate the method and was not refined to the extent necessary for obtaining conclusive meteorological data. The desirable features of an instrument based on the method described are (i) The instrument can be used in clouds with temperatures above freezing; (2) the size and the shape of the cylinders do not change during the exposure time; (3) the readings are instantaneous and continuous; (4) the available sensitivity permits the study of variations in cloud structures of less than 200 feet in extent.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NACA-TN-2458
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-06-28
    Description: A cascade impactor, an instrument for obtaining: the size distribution of droplets borne in a low-velocity air stream, was adapted for flight cloud droplet-size studies. The air containing the droplets was slowed down from flight speed by a diffuser to the inlet-air velocity of the impactor. The droplets that enter the impactor impinge on four slides coated with magnesium oxide. Each slide catches a different size range. The relation between the size of droplet impressions and the droplet size was evaluated so that the droplet-size distributions may be found from these slides. The magnesium oxide coating provides a permanent record. of the droplet impression that is not affected by droplet evaporation after the. droplets have impinged.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NACA-RM-E51G05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-06-28
    Description: A principle formerly used in an instrument for cloud detection was further investigated to provide a simple and rapid means for measuring the liquid-water content of clouds at temperatures above and below freezing. The instrument consists of a small cylindrical element so operated at high surface temperatures that the impingement of cloud droplets creates a significant drop in the surface temperature. ? The instrument is sensitive to a wide range of liquid-water content and was calibrated at one set of fixed conditions against rotating multicylinder measurements. The limited conditions of the calibration Included an air temperature of 20 F, an air velocity of 175 miles per hour, and a surface temperature in clear air of 475 F. The results obtained from experiments conducted with the instrument indicate that the principle can be used for measurements in clouds at temperatures above and below freezing. Calibrations for ranges of airspeed, air temperature, and air density will be necessary to adapt the Instrument for general flight use.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NACA-RM-E50J12A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-06-28
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NACA-TN-2234
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-06-28
    Description: A photomicrographic technique for investigating eupercooled. water droplets has been devised and. used. to determine the spontaneous freezing temperatures of eupercooled. water droplets of the size ordinarily found. in the atmosphere. The freezing temperatures of 4527 droplets ranging from 8.75 to 1000 microns in diameter supported on a platinum surface and 571 droplets supported on copper were obtained. The average spontaneous freezing temperature decreased with decrease in the size of the droplets. The effect of size on the spontaneous freezing temperature was particularly marked below 60 microns. Frequency-distribution curves of the spontaneous freezing temperatures observed for droplets of a given size were obtained. Although no droplet froze at a temperature above 20 0 F, all droplets melted at 32 F. Results obtained with a copper support did not differ essentially from those obtained with a platinum surface.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NACA-TN-2142
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...