ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (94,621)
  • NASA Technical Reports  (94,621)
  • 2005-2009  (25,428)
  • 1980-1984  (54,298)
  • 1960-1964  (13,466)
  • 1940-1944  (1,429)
Collection
  • Other Sources  (94,621)
Years
Year
  • 1
    Publication Date: 2020-01-24
    Description: NASA has developed the Autonomous Operations Planner (AOP) airborne decision support tool to explore advanced air traffic control concepts that include delegating separation authority to aircraft. A key element of the AOP is its strategic conflict resolution (CR) algorithm, which must resolve conflicts while maintaining conformance with traffic flow management constraints. While a previous CR algorithm, which focused on broader flight plan optimization objectives as a part of conflict resolution, had successfully been developed, new research has identified the need for resolution routes the users find more acceptable (i.e., simpler and more intuitive). A new CR algorithm is presented that uses a combination of pattern-based maneuvers and a genetic algorithm to achieve these new objectives. Several lateral and vertical maneuver patterns are defined and the application of the genetic algorithm explained. A new approach to defining a conflicted fitness function using estimates of the local conflict region around a conflicted trajectory is also presented. Preliminary performance characteristics of the implemented algorithm are provided.
    Keywords: Air Transportation and Safety
    Type: NF1676L-LARC , AIAA Guidance, Navigation, and Control Conference and Exhibit; Aug 21, 2006 - Aug 24, 2006; Keystone, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-24
    Description: Decision-support tools for maintaining pairwise aircraft separation rely on conflict detection to alert the operator when the predicted trajectories of aircraft will result in a loss of separation. But aircraft frequently do not follow their predicted trajectories exactly. This can cause missed alerts and the failure of strategic separation procedures. We present a technique for modeling a bounded region of uncertainty around a four-dimensional predicted trajectory and an algorithm for detecting conflicts between trajectories modeled in this way that avoids missed alerts as long as the aircraft remain within the specified regions of uncertainty. In addition, we present an algorithm for detecting the intrusion of a trajectory modeled in this way into an area hazard modeled as a polygonal region. The size of the region of uncertainty can vary along the trajectory continually and independently in the along-path, cross-track, and vertical dimensions, providing an opportunity to reduce the likelihood of false alerts while protecting against typical prediction errors. The algorithm has been implemented in the Autonomous Operations Planner, a NASA Langley prototype decision support tool for airborne self-separation.
    Keywords: Air Transportation and Safety
    Type: NF1676L-LARC , AIAA Guidance, Navigation, and Control Conference and Exhibit; Aug 21, 2006 - Aug 24, 2006; Keystone, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2020-01-17
    Description: Theory of dispersion strengthening
    Keywords: MATERIALS, NONMETALLIC
    Type: HQ-E-DAA-TN75875
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-18
    Description: Beacon explorer satellite for ionospheric study and evaluation of laser technique for deriving orbital and geodetic information
    Keywords: STRUCTURAL MECHANICS
    Type: HQ-E-DAA-TN75269
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-13
    Description: An experimental investigation has been made to determine the landing characteristics of a conical-shaped reentry capsule by using torus-shaped air bags for impact-load alleviation. An impact bag was attached below the large end of the capsule to absorb initial impact loads and a second bag was attached around the canister to absorb loads resulting from impact on the canister when the capsule overturned. A 1/6-scale dynamic model of the configuration was tested for nominal flight paths of 60 deg. and 90 deg. (vertical), a range of contact attitudes from -25 deg. to 30 deg., and a vertical contact velocity of 12.25 feet per second. Accelerations were measured along the X-axis (roll) and Z-axis (yaw) by accelerometers rigidly installed at the center of gravity of the model. Actual flight path, contact attitudes, and motions were determined from high-speed motion pictures. Landings were made on concrete and on water. The peak accelerations along the X-axis for landings on concrete were in the order of 3Og for a 0 deg. contact attitude. A horizontal velocity of 7 feet per second, corresponding to a flight path of 60 deg., had very little effect upon the peak accelerations obtained for landings on concrete. For contact attitudes of -25 deg. and 30 deg. the peak accelerations along the Z-axis were about +/- l5g, respectively. The peak accelerations measured for the water landings were about one-third lower than the peak accelerations measured for the landings on concrete. Assuming a rigid body, computations were made by using Newton's second law of motion and the force-stroke characteristics of the air bag to determine accelerations for a flight path of 90 deg. (vertical) and a contact attitude of 0 deg. The computed and experimental peak accelerations and strokes at peak acceleration were in good agreement for the model. The special scaling appears to be applicable for predicting full-scale time and stroke at peak acceleration for a landing on concrete from a 90 deg. flight path at a 0 deg. It appears that the full-scale approximately the same as those obtained from the model for the range of attitudes and flight paths investigated.
    Keywords: Launch Vehicles and Launch Operations
    Type: NASA-TN-D-628 , L-792
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-12-11
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TN-D-423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-11-26
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-ACR-3I30 , NACA-WR-W-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-23
    Description: Most of the subject matter of a full training course in applying remote sensing is presented in a self-teaching mode in this how-to manual which combines a review of basics, a survey of systems, and a treatment of the principles and mechanics of image analysis by computers, with a laboratory approach for learning to utilize the data through practical experiences. All relevant image products are included.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: NASA-RP-1078 , NAS 1.61:1078 , E83-10001 , LC-81-600117
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-16
    Description: Recent engineering analyses of the integrated Ares-Orion stack show that vibration levels for Orion crews have the potential to be much higher than those experienced in Gemini, Apollo, and Shuttle vehicles. Of particular concern to the Constellation Program (CxP) is the 12 Hz thrust oscillation (TO) that the Ares-I rocket develops during the final ~20 seconds preceding first-stage separation, at maximum G-loading. While the structural-dynamic mitigations being considered can assure that vibration due to TO is reduced to below the CxP crew health limit, it remains to be determined how far below this limit vibration must be reduced to enable effective crew performance during launch. Moreover, this "performance" vibration limit will inform the operations concepts (and crew-system interface designs) for this critical phase of flight. While Gemini and Apollo studies provide preliminary guidance, the data supporting the historical limits were obtained using less advanced interface technologies and very different operations concepts. In this study, supported by the Exploration Systems Mission Directorate (ESMD) Human Research Program, we investigated display readability-a fundamental prerequisite for any interaction with electronic crew-vehicle interfaces-while observers were subjected to 12 Hz vibration superimposed on the 3.8 G loading expected for the TO period of ascent. Two age-matched groups of participants (16 general population and 13 Crew Office) performed a numerical display reading task while undergoing sustained 3.8 G loading and whole-body vibration at 0, 0.15, 0.3, 0.5, and 0.7 g in the eyeballs in/out (x-axis) direction. The time-constrained reading task used an Orion-like display with 10- and 14-pt non-proportional sans-serif fonts, and was designed to emulate the visual acquisition and processing essential for crew system monitoring. Compared to the no-vibration baseline, we found no significant effect of vibration at 0.15 and 0.3 g on task error rates (ER) or response times (RT). Significant degradations in both ER and RT, however, were observed at 0.5 and 0.7 g for 10-pt, and at 0.7 g for 14-pt font displays. These objective performance measures were mirrored by participants' subjective ratings. Interestingly, we found that the impact of vibration on ER increased with distance from the center of the display, but only for vertical displacements. Furthermore, no significant ER or RT aftereffects were detected immediately following vibration, regardless of amplitude. Lastly, given that our reading task required no specialized spaceflight expertise, our finding that effects were not statistically distinct between our two groups is not surprising. The results from this empirical study provide initial guidance for evaluating the display readability trade-space between text-font size and vibration amplitude. However, the outcome of this work should be considered preliminary in nature for a number of reasons: 1. The single 12 Hz x-axis vibration employed was based on earlier load-cycle models of the induced TO environment at the end of Ares-I first stage flight. Recent analyses of TO mitigation designs suggest that significant concurrent off-axis vibration may also occur. 2. The shirtsleeve environment in which we tested fails to capture the full kinematic and dynamic complexity of the physical interface between crewmember and the still-to-bematured helmet-suit-seat designs, and the impact these will have for vibration transmission and consequent performance. 3. By examining performance in this reading and number processing task, we are only assessing readability, a first and necessary step that in itself does not directly address the performance of more sophisticated operational tasks such as vehicle-health monitoring or manual control of the vehicle.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: NASA/TM-2009-215386 , TH-079 , ARC-E-DAA-TN17188
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-10-31
    Description: Results are presented of a fatigue investigation conducted using 18 outer wing panels of T-29A airplanes. Constant-amplitude tests were performed using the resonant-frequency method at three different alternating load levels superposed on a 1 g, or level-flight mean load. Information is presented concerning crack location, cycles to crack initiation, crack propagation, and residual static strength.
    Keywords: Structural Mechanics
    Type: NASA-TN-D-635
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...