ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-11-16
    Description: We have collected year-round nanoclimate data for the cryptoendolithic microbial habitat in sandstones of the Ross desert, Antarctica, obtained with an Argos satellite data system. Data for two sites in the McMurdo Dry Valleys are available: Linnaeus Terrace, January 1985 to June 1988, and Battleship Promontory, 1986-1987. The focus of this research is ecological, and hence year-round environmental data have been obtained for the ambient environment as well as for conditions within the rock. Using data from the summer, we compare the conditions inside the rock to the outside weather. This demonstrates how the rock provides a shelter for the endolithic microbial community. The most important property of the rock is that it absorbs the summer sunlight, thereby warming up to temperatures above freezing. This warming allows snowmelt to seep into the rock, and the moisture level in the rocks can remain high for weeks against loss to the dry environment.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204249 , NAS 1.26:204249 , Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations; 61; 201-207
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-05
    Description: This document contains a description of a comprehensive database that is to be used for certification testing of airborne forward-look windshear detection systems. The database was developed by NASA Langley Research Center, at the request of the Federal Aviation Administration (FAA), to support the industry initiative to certify and produce forward-look windshear detection equipment. The database contains high resolution, three dimensional fields for meteorological variables that may be sensed by forward-looking systems. The database is made up of seven case studies which have been generated by the Terminal Area Simulation System, a state-of-the-art numerical system for the realistic modeling of windshear phenomena. The selected cases represent a wide spectrum of windshear events. General descriptions and figures from each of the case studies are included, as well as equations for F-factor, radar-reflectivity factor, and rainfall rate. The document also describes scenarios and paths through the data sets, jointly developed by NASA and the FAA, to meet FAA certification testing objectives. Instructions for reading and verifying the data from tape are included.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-TM-109012 , NAS 1.15:109012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: The Software Formal Inspections Guidebook is designed to support the inspection process of software developed by and for NASA. This document provides information on how to implement a recommended and proven method for conducting formal inspections of NASA software. This Guidebook is a companion document to NASA Standard 2202-93, Software Formal Inspections Standard, approved April 1993, which provides the rules, procedures, and specific requirements for conducting software formal inspections. Application of the Formal Inspections Standard is optional to NASA program or project management. In cases where program or project management decide to use the formal inspections method, this Guidebook provides additional information on how to establish and implement the process. The goal of the formal inspections process as documented in the above-mentioned Standard and this Guidebook is to provide a framework and model for an inspection process that will enable the detection and elimination of defects as early as possible in the software life cycle. An ancillary aspect of the formal inspection process incorporates the collection and analysis of inspection data to effect continual improvement in the inspection process and the quality of the software subjected to the process.
    Keywords: Computer Programming and Software
    Type: NASA-GB-A302
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: In recent calculations on the dissociative recombination (DR) of the v=1 vibrational level of the ground state of N2(+), N2(+)(v=1) + e(-) yields N + N, we have observed an important continuun-continuum mixing process involving the open channels on both sides of N2(+)(v=1) + e(-) yields N2(+)(v=0) + e(-). In vibrational relaxation by electron impact (immediately above) the magnitude of the cross section depends upon the strength of the interaction between these continua. In DR of the v=1 ion level, these continua can also interact in the entrance channel, and the mixing can have a profound effect upon the DR cross section from v=1, as we illustrate in this paper. In our theoretical calculations of N2(+) DR using multichannel quantum defect theory (MQDT), the reactants and products in the two above equations are described simultaneously. This allows us to calculate vibrational relaxation and excitation cross sections as well as DR cross sections. In order to understand the mixing described above, we first present a brief review of the prior results for DR of the v=0 level of N2(+).
    Keywords: ATOMIC AND MOLECULAR PHYSICS
    Type: ; fe sciences and spac
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: Voyager 2 observations of electrostatic electron and ion harmonic waves in Neptune's magnetosphere are addressed. A model of electron Bernstein modes generated by a loss cone distribution of superthermal electrons is scaled to Neptune parameters and a comparison of theory with the observed electron flux shows good agreement. A model of proton Bernstein modes generated by a ring distribution of Tritonogenic nitrogen ions is also investigated and satisfactory agreement with the data are obtained compatible with known properties of the magnetosphere. The success of the model in accounting for electrostatic emission observed by Voyager over a wide range of sampled parameters recommends its general applicability to planetary magnetospheres.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 19,465-19,469
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: Ionospheric plasma flowing out from the cusp can be an important source of plasma to the magnetosphere. One source of free energy that can drive this outflow is the injection of magnetosheath plasma into the cusp. Two-dimensional (three velocity) mesoscale particle simulations are used to investigate the particle dynamics in the cusp during southward interplanetary magnetic field. This mesoscale model self-consistently incorporates (1) global influences such as the convection of plasma across the cusp, the action of the mirror force, and the injection of the magnetosheath plasma, and (2) wave-particle interactions which produce the actual coupling between the magnetosheath and ionospheric plasmas. It is shown that, because the thermal speed of the electrons is higher than the bulk motion of the magnetosheath plasma, an upward current is formed on the equatorward edge of the injection region with return currents on either side. However, the poleward return currents are the stronger due to the convection and mirroring of many of the magnetosheath electrons. The electron distribution in this latter region evolves from upward directed streams to single-sided loss cones or possibly electron conics. The ion distribution also shows a variety of distinct features that are produced by spatial and/or temporal effects associated with varying convection patterns and wave-particle interactions. On the equatorward edge the distribution has a downflowing magnetosheath component and an upflowing cold ionospheric component due to continuous convection of ionospheric plasma into the region. In the center of the magnetosheath region, heating from the development of an ion-ion streaming instability causes the suppression of the cold ionospheric component and the formation of downward ionospheric streams. Further poleward there is velocity filtering of ions with low pitch angles, so that the magnetosheath ions develop a ring-beam distribution and the ensuing wave instabilities generate downward ionospheric conics. These downward ionospheric components are eventually turned by the mirror force, leading to the production of upward conics at elevated energies throughout the region.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 19,331-19,347
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: We analyze simultaneous, or near-simultaneous, coregistered, digital, photometric images of solar photospheric intensity and line-of-sight magnetic field. Images were made with the Lockheed tunable filter instrument at the Swedish Solar Observatory, La Palma, with the video spectra-spectroheliograph system at the San Fernando Observatory and with the new NASA spectromagnetograph at the National Solar Observatory at Kitt Peak. We study the disk center contrasts of small magnetic elements. While active region faculae are dark at disk center quiet Sun network features are bright. The populations of magnetic field elements that make up these two kinds of features are quite different. Different contrast center-limb functions must be used when estimating their irradiance or luminosity contributions. The disk center contrasts of active region faculae are colar dependent and indicate a depth effect related to the H(-) opacity of the facular atmopshere. This results is important for calibration of monochromatic observations of faculae to bolometric irradiance fluctuations. We emphasize the value of cooperative observations among installations whose differing strengths are complementary.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 18,911-18,918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: The consequences of electric field acceleration and an inhomogeneous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one-dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogeneous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of O(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function is investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogeneous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 19,223-19,234
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: A conference on spaceflight dynamics produced papers in the areas of orbit determination, spacecraft tracking, autonomous navigation, the Deep Space Program Science Experiment Mission (DSPSE), the Global Positioning System, attitude control, geostationary satellites, interplanetary missions and trajectories, applications of estimation theory, flight dynamics systems, low-Earth orbit missions, orbital mechanics, mission experience in attitude dynamics, mission experience in sensor studies, attitude dynamics theory and simulations, and orbit-related experience. These papaers covered NASA, European, Russian, Japanese, Chinese, and Brazilian space programs and hardware.
    Keywords: ASTRODYNAMICS
    Type: (ISSN 0065-3438); 1431 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: Shoaling wave fields generated in laboratory experiments were analyzed to determine the sensitivity of nonlinear interactions to the directional distributions of incident waves. Peaks in the directional spectra observed in shallow water were consistent with near resonating, quadratic interactions between two primary waves transferring energy to a third wave with the sum frequency and vector sum wavenumber of the primary waves. Directionally colinear waves forced a higher-frequency wave propagating in the same direction as the primary waves, while directionally spread (i.e., noncolinear) primary waves forced a higher-frequency wave that propagated in a direction between those of the interacting primary waves. Deepwater wave fields with similar frequency spectra but different directional spectra evolved to different shallow-water directional spectra, yet their shallow-water frequency spectra were remarkably similar. This result suggests that the shape of the directional spectrum of the incident wave field has only a small effect on the magnitudes of nonlinear energy transfer during shoaling. The principal effect of directionality in the incident wave field is on the directions, not the amplitudes, of the nonlinearly generated waves. The laboratory data demonstrate clearly the importance of triad interactions between noncolinear and colinear shoaling waves.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; C11; p. 20,299-20,305
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...