ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (258)
  • NASA Technical Reports  (258)
  • 1925-1929  (258)
  • 1920-1924
  • 1929  (126)
  • 1927  (132)
Collection
  • Other Sources  (258)
Years
  • 1925-1929  (258)
  • 1920-1924
Year
  • 1
    Publication Date: 2019-06-28
    Type: NACA-TN-265
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-270
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The three engine Junkers commercial Airplane, type G 31 is a further development of the earlier G 24. It is an all metal low wing monoplane with a total engine output of 1100-1200 HP.
    Type: NACA-AC-54
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Part I describes vibration tests, in a wind tunnel, of simple airfoils and of the tail plane of an M0-1 airplane model; it also describes the air flow about this model. From these tests are drawn inferences as to the cause and cure of aerodynamic wing vibrations. Part II derives stability criteria for wing vibrations in pitch and roll, and gives design rules to obviate instability. Part III shows how to design spars to flex equally under a given wing loading and thereby economically minimize the twisting in pitch that permits cumulative flutter. Resonant flutter is not likely to ensue from turbulence of air flow along past wings and tail planes in usual flying conditions. To be flutterproof a wing must be void of reversible autorotation and not have its centroid far aft of its pitching axis, i. e., axis of pitching motion. Danger of flutter is minimized by so proportioning the wing's torsional resisting moment to the air pitching moment at high-speed angles that the torsional flexure is always small. (author)
    Type: NACA-TR-285
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.
    Type: NACA-TR-255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: This investigation, which is a continuation of Technical Report 154, follows very closely the earlier methods and covers a number of service airplanes, whereas the previous report covered but one, the JN-4H. In addition to the air speed, acceleration, and control positions as given in report no. 154, information is here given regarding the distance run and the ground speed for the various airplanes during the two maneuvers.
    Type: NACA-TR-249
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The tests on these model propellers were undertaken for the purpose of determining the performance coefficients and characteristics for certain selected series of propellers of form and type as commonly used in recent navy designs. The first series includes seven propellers of pitch ratio varying by 0.10 to 1.10, the area, form of blade, thickness, etc., representing an arbitrary standard propeller which had shown good results. The second series covers changes in thickness of blade section, other things equal, and the third series, changes in blade area, other things equal. These models are all of 36-inch diameter. Propellers A to G form the series on pitch ratio, C, N. I. J the series on thickness of section, and K, M, C, L the series on area. (author)
    Type: NACA-TR-237
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The purpose of this investigation was the determination of the character and amount of interaction between air propellers as usually mounted on airplanes and the adjacent parts of the airplane structure - or, more specifically, those parts of the airplane structure within the wash of the propeller, and capable of producing any significant effect on propeller performance. In report no. 177 such interaction between air propellers and certain simple geometrical forms was made the subject of investigation and report. The present investigation aims to carry this general study one stage further by substituting actual airplane structures for the simple geometrical forms. From the point of view of the present investigation, the airplane structures, viewed as an obstruction in the wake of the propeller, must also be viewed as a necessary part of the airplane and not as an appendage which might be installed or removed at will. (author)
    Type: NACA-TR-235
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: This report is a compilation of test data on airplane fuselages, nacelles, airship cars, seaplane floats, and seaplane hulls, prepared by the Bureau of Aeronautics, at the requests of the National Advisory Committee for Aeronautics. The discussion of the data includes the derivation of a scale correction curve to be used in obtaining the full scale drag. Composite curves of drag and L/D for floats and hulls are also given. (author)
    Type: NACA-TR-236
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: This report contains the aerodynamic properties of the wing sections U.S.A. 5, U.S.A. 27, U.S.A. 35 A, U.S.A. 35 B, Clark Y, R.A.F. 15, and Gottingen 387, as determined at various Reynolds numbers up to an approximately full scale value in the variable density wind tunnel of the National Advisory Committee for Aeronautics. It is shown that the characteristics of the wings investigated are affected greatly and in a somewhat erratic manner by variation of the Reynolds number. In general there is a small increase in maximum lift and an appreciable decrease in drag at all lifts.
    Type: NACA-TR-233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...