ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (810)
  • Articles: DFG German National Licenses  (810)
  • Annual Reviews  (519)
  • Blackwell Science Inc  (146)
  • Emerald  (144)
  • Blackwell Publishers Inc  (1)
  • Energy, Environment Protection, Nuclear Power Engineering  (810)
Collection
  • Articles  (810)
Source
Publisher
  • 1
    Electronic Resource
    Electronic Resource
    Boston, USA and Oxford, UK : Blackwell Publishers Inc
    Risk analysis 22 (2002), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Inc
    Ground water 43 (2005), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: A convolution integral is developed to evaluate transient, drilling speed–dependent discharge rates into a tunnel gradually excavated in a homogeneous infinite aquifer. Comparison with the classical instantaneous-drilling evaluation commonly used in practice reveals drastically reduced early-time discharge rates, higher maximum rates, and similar long-term rates. Dimensionless-type curves are provided to help assess total discharge sensitivity to drilling time and predict safer maximum flow rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Inc
    Ground water 43 (2005), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Conceptual geological models based on geophysical data can elucidate aquifer architecture and heterogeneity at meter and smaller scales, which can lead to better predictions of preferential flow pathways. The macrodispersion experiment (MADE) site, with 〉2000 measurements of hydraulic conductivity obtained and three tracer tests conducted, serves as an ideal natural laboratory for examining relationships between subsurface flow characteristics and geophysical attributes in fluvial aquifers. The spatial variation of hydraulic conductivity measurements indicates a large degree of site heterogeneity. To evaluate the usefulness of geophysical methods for better delineating fluvial aquifer heterogeneities and distribution of preferential flow paths, a surface grid of two-dimensional ground penetrating radar (GPR) and direct current (DC) resistivity data were collected. A geological model was developed from these data that delineate four stratigraphic units with distinct electrical and radar properties including (from top to bottom) (1) a meandering fluvial system (MFS); (2) a braided fluvial system (BFS); (3) fine-grained sands; and (4) a clay-rich interval. A paleochannel, inferred by other authors to affect flow, was mapped in the MFS with both DC resistivity and GPR data. The channel is 2 to 4 m deep and, based on resistivity values, is predominantly filled with clay and silt. Comparing previously collected hydraulic conductivity measurements and tracer-plume migration patterns to the geological model indicates that flow primarily occurs in the BFS and that the channel mapped in the MFS has no influence on plume migration patterns.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Inc
    Ground water 43 (2005), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Inc
    Ground water 43 (2005), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Discrete-fracture and dual-porosity models are infrequently used to simulate solute transport through fractured unconsolidated deposits, despite their more common application in fractured rock where distinct flow regimes are hypothesized. In this study, we apply four fracture transport models—the mobile-immobile model (MIM), parallel-plate discrete-fracture model (PDFM), and stochastic and deterministic discrete-fracture models (DFMs)—to demonstrate their utility for simulating solute transport through fractured till. Model results were compared to breakthrough curves (BTCs) for the conservative tracers potassium bromide (KBr), pentafluorobenzoic acid (PFBA), and 1,4-piperazinediethanesulfonic acid (PIPES) in a large-diameter column of fractured till. Input parameters were determined from independent field and laboratory methods. Predictions of Br BTCs were not significantly different among models; however, the stochastic and deterministic DFMs were more accurate than the MIM or PDFM when predicting PFBA and PIPES BTCs. DFMs may be more applicable than the MIM for tracers with small effective diffusion coefficients (De) or for short timescales due to differences in how these models simulate diffusion or incorporate heterogeneities by their fracture networks. At large scales of investigation, the more computationally efficient MIM and PDFM may be more practical to implement than the three-dimensional DFMs, or a combination of model approaches could be employed. Regardless of the modeling approach used, fractures should be incorporated routinely into solute transport models in glaciated terrain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Inc
    Ground water 43 (2005), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multipurpose national laboratory managed by the Department of Energy, has developed a system dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River basin, a transboundary basin that includes portions of Idaho, Utah, and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and ground water data and for simulating the interactions between these sources within a given basin. In addition, we also found that system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory, and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or ground water modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause-effect relationships in large-scale hydrological systems, for integrating disparate data, for incorporating output from traditional hydraulic/hydrologic models, and for integration of interdisciplinary data, information, and criteria to support better management decisions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Inc
    Ground water 43 (2005), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: This paper presents a general model of optimal water management for a transboundary aquifer under three different management approaches: cooperative, noncooperative, and myopic. Comparing the results from the approaches, we find the cooperative solution, where a single management plan is executed for all parts of the aquifer, results in the highest level of net social welfare, followed by the noncooperative and then the myopic. The trade-offs we find for the higher levels of welfare are lower use levels in the earlier periods. We present a short discussion of factors that can increase the inefficiencies of the models and suggest directions for future research.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Inc
    Ground water 43 (2005), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: The goal for any property rights system is to achieve equity, efficiency, and certainty. Trying to achieve these goals for ground water is difficult because a ground water right is not exclusive. To make matters more complicated, ground water is often under the jurisdiction of more than one political unit. The result is transboundary conflicts. Two critical elements must be included in any system of ground water rights. The system must define how the ground water can be used and define the relationships that each user and each use has with the other users and uses in the system. Unfortunately, these relationships are seldom completely defined and are made more complex by the transboundary scales at which they operate. As ground water moves horizontally across boundaries, different users or different jurisdictions have sequential control, creating conflicts between the first users and subsequent ones. Other problems occur because of vertical relationships, with more than one person or entity having control over ground water at the same time. This simultaneous exercise of authority can create conflicts between an individual who possesses a right to use ground water and a state or federal agency that regulates the same water. Transboundary conflicts occur at different scales and include conflicts between neighboring property owners as well as conflicts between countries. Scale, the property rights structure, and the nature of the relationship between users influence the way transboundary ground water conflicts are resolved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Inc
    Ground water 43 (2005), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: In Europe, a long history of cooperation over transboundary rivers—most notably the Rhine and Danube rivers—exists. To help foster cooperation and communication vis-à-vis transboundary ground water, the United Nations Economic Commission for Europe (UNECE), as part of its ground water program, conducted a survey on transboundary aquifers in Europe. The survey produced 25 responses from 37 countries and identified 89 transboundary aquifers. Respondents reported on the degree of ground water use within their own boundaries, transboundary aspects (agreements, joint commissions, etc.) of ground water, and transboundary aquifers themselves. The inventory proved useful, but a number of problems were identified: different map scales and symbols, difficulty in identifying transboundary aquifers, inconsistent labeling of aquifers, and data discrepancies. The UNECE ground water program also drafted guidelines for monitoring and assessment of transboundary ground water. These guidelines are not legally binding but have been adopted by 25 countries, deal mainly with monitoring and assessment, and are being implemented through a number of pilot projects. Other organizations—the United Nations Scientific, Educational and Cultural Organization, the Food and Agriculture Organization, the International Association of Hydrogeologists, and the European Union—are all supporting the investigation of transboundary aquifers in an effort to facilitate data sharing and coordinated management of these valuable resources.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Inc
    Ground water 43 (2005), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: More than one-half of the world's population is dependent on ground water for everyday uses such as drinking, cooking, and hygiene. In fact, it is the most extracted natural resource in the world. As a result of growing populations and expanding economies, many aquifers today are being depleted while others are being contaminated. Notwithstanding the world's considerable reliance on this resource, ground water resources have long received only secondary attention as compared to surface water, especially among legislatures and policymakers. Today, while there are hundreds of treaties governing transboundary rivers and lakes, there is only one international agreement that directly addresses a transboundary aquifer. Given that many of the aquifers on which humanity so heavily relies cross international borders, there is a considerable gap in the sound management, allocation, and protection of such resources. In order to prevent future disputes over transboundary aquifers and to maximize the beneficial use of this resource, international law must be clarified as it applies to transboundary ground water resources. Moreover, it must be defined with a firm basis in sound scientific understanding. In this paper we offer six conceptual models is which ground water resources can have transboudary consequences. The models are intended to help in assessing the applicability and scientific soundness of existing and proposed rules governing transboundary ground water resources. In addition, we consider the development of international law as it applies to ground water resources and make recommendations based on the models and principles of hydrogeology. The objective is the development of clear, logical, and science-based norms of state conducts as they relate to aquifers that traverse political boundaries.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...