ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (1.215)
  • Neueste Artikel (Zeitschrifteninhaltsverzeichnisse / in press)  (1.215)
  • Artikel: DFG Deutsche Nationallizenzen
  • Springer  (1.215)
  • Cambridge University Press
  • Wiley
  • 2010-2014  (965)
  • 1990-1994  (250)
  • 1950-1954
  • 1945-1949
  • 1935-1939
  • 1930-1934
  • 2014  (638)
  • 2010  (327)
  • 1994  (250)
  • 1947
  • 1938
  • 1937
  • Molecular and Cellular Biochemistry  (264)
  • 6701
  • Medizin  (1.215)
  • Ethnologie
  • Geschichte
  • Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
  • Architektur, Bauingenieurwesen, Vermessung
  • Elektrotechnik, Elektronik, Nachrichtentechnik
  • Energietechnik
Sammlung
  • Artikel  (1.215)
Datenquelle
  • Neueste Artikel (Zeitschrifteninhaltsverzeichnisse / in press)  (1.215)
  • Artikel: DFG Deutsche Nationallizenzen
Verlag/Herausgeber
  • Springer  (1.215)
  • Cambridge University Press
  • Wiley
Erscheinungszeitraum
  • 2010-2014  (965)
  • 1990-1994  (250)
  • 1950-1954
  • 1945-1949
  • 1935-1939
  • +
Jahr
Thema
  • Medizin  (1.215)
  • Ethnologie
  • Geschichte
  • Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
  • Architektur, Bauingenieurwesen, Vermessung
  • +
  • 1
    Publikationsdatum: 2014-12-12
    Beschreibung: Malignant glioma can be treated with radioiodine following transfection with human sodium iodide symporter (hNIS) gene. Ad-Tp-E1A-Gp-NIS is engineered with human telomerase reverse transcriptase (hTERT) and glial fibrillary acidic protein (GFAP) promoters to express early region 1A (E1A) and hNIS genes, which may be useful in targeted gene therapy. The Ad-Tp-E1A-Gp-NIS was constructed and purified using the E1A and hNIS genes regulated by the hTERT and GFAP promoters, respectively. Glioma cells were infected by Ad-Tp-E1A-Gp-NIS. Selective replication ability of Ad-Tp-E1A-Gp-NIS was then evaluated by plaque forming assay, transgene expression by Western blot, 125 I-iodide uptake and efflux, clonogenicity following 131 I-iodide treatment in the tumor cells, and radioiodine therapy using nude mouse model. The Ad-Tp-E1A-Gp-NIS could selectively replicate; the hNIS gene was successfully expressed under the GFAP promoter. Western blot analyses using E1A- and hNIS-specific antibodies revealed two bands of approximately 40 and 70 kDa. In addition, the cells showed about 93.4 and 107.1 times higher 125 I uptake in U251 and U87 cells than in the control cells, respectively. Clonogenic assay indicated that 〉90 % of cells transfected with Ad-Tp-E1A-Gp-NIS were killed. The Ad-Tp-E1A-Gp-NIS-transfected and 2 mCi 131 I-injected U87 xenograft nude mice survived the longest among the three groups. Ad-Tp-E1A-Gp-NIS has a good ability of selective replication and strong antitumor selectivity. An effective therapy of 131 I was achieved activity in malignant glioma cells after induction of tumor-specific iodide uptake activity by GFAP promoter-directed hNIS gene expression in vitro and in vivo.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2014-01-18
    Beschreibung: In the present study we explored glutathione S-transferase (GST) polymorphisms in selected patients who experienced accelerated myocardial injury following open heart surgery and compared these to a control group of patients without postoperative complications. 758 Patients were enrolled from which 132 patients were selected to genotype analysis according to exclusion criteria. Patients were divided into the following groups: Group I: control patients ( n  = 78) without and Group II.: study patients ( n  = 54) with evidence of perioperative myocardial infarction. Genotyping for GSTP1 A (Ile105Ile/Ala113Ala), B (Ile105Val/Ala113Ala) and C (Ile105Val/Ala113Val) alleles was performed by using real-time-PCR. The heterozygous AC allele was nearly three times elevated (18.5 vs. 7.7 %) in the patients who suffered postoperative myocardial infarction compared to controls. Contrary, we found allele frequency of 14.1 % for homozygous BB allele in the control group whereas no such allele combination was present in the study group. These preliminary results may suggest the protective role for the B and C alleles during myocardial oxidative stress whereas the A allele may represent predisposing risk for cellular injury in patients undergoing cardiac surgery.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2014-01-23
    Beschreibung: Controlled protein ubiquitination through E3 ubiquitin ligases and degradation via 26S proteasome machinery is required for orderly progression through cell cycle, chromatin remodeling, DNA repair, and development. Each cullin-dependent ubiquitin ligase (E3) complex can recruit various substrates for their degradation. Cullin 4A (CUL4A) and Cullin 4B (CUL4B) are members of cullin family proteins that mediate ubiquitin dependent proteolysis. Though, these two cul4 genes are functionally redundant, Cullin 4B is not a substitute for all the Cullin 4A functions. Published report has shown that CUL4A interacts with p53 and induces its decay. Although, CUL4A has been known to control several cellular processes, little is known about CUL4B functions. Therefore, in this study, we analyzed the role of CUL4B on p53 polyubiquitination. Our stable cell line and transient transfection studies show that CUL4B indeed interacts with p53 and induces its polyubiquitination. Importantly, both CUL4A and CUL4B overexpressing cells show almost equal levels of p53 polyubiquitination. Moreover, we observed an increased level of polyubiquitination on p53 in CUL4B overexpressing stable cell line upon treatment with siRNA specific for CUL4A indicating that CUL4B plays a vital role in p53 stability. In addition, we have observed the differential expression of CUL4B in various eukaryotic cell lines and mouse tissues suggesting the important role of CUL4B in various tissues. Together, these observations establish an important negative regulatory role of CUL4B on p53 stability.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2014-03-12
    Beschreibung: Thrombopoietin (TPO) can regulate hematopoiesis and megakaryopoiesis via activation of its receptor, c-Mpl, and multiple downstream signal transduction pathways. Using the cytoplasmic domain of Mpl as bait, we performed yeast two-hybrid screening, and found that the protein Atp5d might associate with Mpl. Atp5d is known as the δ subunit of mitochondrial ATP synthase, but little is known about the function of dissociative Atp5d. The interaction between Mpl and Atp5d was confirmed by the yeast two-hybrid system, mammalian two-hybrid assay, pull-down experiment, and co-immunoprecipitation study in vivo and in vitro. An additional immunofluorescence assay showed that the two proteins can colocalize along the plasma membrane in the cytoplasm. Using the yeast two-hybrid system, we tested a series of cytoplasmic truncated mutations for their ability to bind Atp5d and found an association between Atp5d and the Aa98-113 domain of Mpl. The dissociation of Atp5d from Mpl after TPO stimulation suggests that Atp5d may be a new component of TPO signaling.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2014-03-12
    Beschreibung: Chemoresistance is a challenge for clinician in management of tongue cancer. Therefore, it is necessary to explore alternative therapeutic methods to overcome drug resistance. miRNAs are endogenous −22nt RNAs that play important regulatory roles by targeting mRNAs. miR-21, an essential oncogenic molecule, is associated with chemosensitivity of several human cancer cells to anticancer agents. In this study, we investigated the effects and molecular mechanisms of miR-21 in chemosensitivity of tongue squamous cell carcinoma cells (TSCC) to cisplatin. miR-21 expression was detected in tongue cancer tissue using RT-PCR and PDCD4 protein expression was measured using immunohistochemistry. miR-21 and(or) PDCD4 depleted cell lines were generated using miR-21 inhibitor and(or) siRNA. The viabilities of treated cells were analyzed using MTT assay. RT-PCR was used to detect miR-21 expression and immunoblotting was used to detect protein levels. Cell cycle and apoptosis were analyzed using propidium iodide (PI) staining and Annexin V/PI staining, respectively. The expression of miR-21 in tumorous tissue was significantly higher compared with adjacent normal tissue and loss of PDCD4 expression was observed in TSCCs. Transfection of miR-21 inhibitor induced sensitivity of TSCC cells (Tca8113 and CAL-27) to cisplatin. TSCC cells transfected with PDCD4 siRNA became more resistant to cisplatin therapy. We found an increase PDCD4 protein level following the transfection of miR-21 inhibitor using Western blot analysis. In addition, the enhanced growth-inhibitory effect by miR-21 inhibitor was weakened after the addition of PDCD4 siRNA. Suppression of miR-21 or PDCD4 could significantly promote or reduce cisplatin-induced apoptosis, respectively. Our data suggest that miR-21 could modulate chemosensitivity of TSCC cells to cisplatin by targeting PDCD4, and miR-21 may serve as a potential target for TSCC therapy.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2014-03-13
    Beschreibung: In the recent decades, carotid angioplasty and stenting (CAS) has been developed into a credible option for the patients with carotid stenosis. However, restenosis remains a severe and unsolved issue after CAS treatment. Restenosis is characterized by neointimal hyperplasia, which is partially caused by vascular smooth muscle cells (VSMC) proliferation. However, the molecular mechanism involved in the restenosis is still unclear. In this study, we demonstrated a functional crosstalk between two TGF-β superfamily signaling pathway members, Smad3 and BMPR2, in VSMC proliferation. Smad3 plays an important role in the TGF-β/Smad3 signaling pathway, and is significantly upregulated in the carotid artery with restenosis to promote VSMC proliferation. In contrast, BMP receptor II (BMPR2), an inhibitor of VSMC proliferation is downregulated in carotid restenosis. We further found that BMPR2 downregulation is mediated by miR-17–92 cluster, which is transcriptionally regulated by Smad3. Thus, Smad3 upregulation and Smad3/miR-17–92 cluster-dependent BMPR2 downregulation are likely to promote VSMC proliferation and restenosis. Taken together, our results may provide novel clues for early diagnosis of carotid restenosis and developing new therapeutic strategy.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2014-03-13
    Beschreibung: Membrane blebs are round-shaped dynamic membrane protrusions that occur under many physiological conditions. Membrane bleb production is primarily controlled by actin cytoskeletal rearrangements mediated by RhoA. Tre2–Bub2–Cdc16 (TBC) domain-containing proteins are negative regulators of the Rab family of small GTPases and contain a highly conserved TBC domain. In this report, we show that the expression of TBC1D15 is associated with the activity of RhoA and the production of membrane blebs. Depletion of TBC1D15 induced activation of RhoA and membrane blebbing, which was abolished by the addition of an inhibitor for RhoA signaling. In addition, we show that TBC1D15 is required for the accumulation of RhoA at the equatorial cortex for the ingression of the cytokinetic furrow during cytokinesis. Our results demonstrate a novel role for TBC1D15 in the regulation of RhoA during membrane blebbing and cytokinesis.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2014-03-13
    Beschreibung: Superoxide (O 2 ·− ) overproduction, by decreasing the nitric oxide ( · NO) bioavailability, contributes to vascular complications in type 1 diabetes. In this disease, the vascular O 2 ·− can be produced by the NADPH oxidase (NOX), nitric oxide synthase (NOS), and xanthine oxidase (XO). This study aimed to determine the contribution of each enzymatic pathway in hyperglycemia-induced O 2 ·− overproduction, and the effects of an endurance training program and insulin therapy, associated or not, on the O 2 ·− production (amount and related enzymes) in diabetic rats. Forty male Wistar rats were divided into diabetic (D), diabetic treated with insulin (D-Ins), diabetic trained (D-Tr), or diabetic insulin-treated and trained (D-Ins + Tr) groups. An additional healthy group was used as control. Insulin therapy (Glargine Lantus, Sanofi) and endurance training (treadmill run: 60 min/day, 25 m/min, 5 days/week) started 1 week after diabetes induction by streptozotocin (45 mg/kg), and lasted for 8 weeks. At the end of the protocol, the O 2 ·− production in aorta rings was evaluated by histochemical analyses (DHE staining). Each production pathway was studied by inhibiting NOX (apocynin), NOS (L-Name), or XO (allopurinol) before DHE staining. Diabetic rats exhibited hyperglycemia-induced O 2 ·− overproduction, resulting from NOX, NOS, and XO activation. Insulin therapy and endurance training, associated or not, decreased efficiently and similarly the O 2 ·− overproduction. Insulin therapy reduced the hyperglycemia and decreased the three enzymatic pathways implicated in the O 2 ·− production. Endurance training decreased directly the NOS and XO activity. While both therapeutic strategies activated different pathways, their association did not reduce the O 2 ·− overproduction more significantly.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2014-03-13
    Beschreibung: Malignant melanoma is highly aggressive, and always resistant to conventional chemo-radiotherapy, which results in poor prognosis. As a specific antagonist of neurotensin receptor 1 (NTSR1), emerging evidences confirmed that SR48692 can reverse the pro-growth effect of neurotensin (NTS) by interrupting the interaction between NTS and NTSR1. A375 melanoma cell line was used in this experiment, and SR48692 was employed as the inhibitor of NTS/NTSR1 pathway. We detected the expression of NTSR1 by NTSR1 immunofluorescence and Western blot. After SR48692 treatment, cell proliferation was determined by cell counting, MTT assay and BrdU incorporation study, the cell cycle and apoptosis were performed by flow cytometry. At last Soft Agar Clonogenic assay and xenograft cancer mice model in vivo were used to confirm our result. In this study, we showed that NTSR1 is commonly high expressed in melanoma cells, but low expressed in normal immortalized human keratinocyte line HaCaT. SR48692 not only reduced cell proliferation and self-renewal potential in vitro, but also inhibited the tumor growth derived from A375 cells in NOD/SCID mice in vivo. Further, we originally reported that SR48692 inhibited cell proliferation through cell cycle arrest and apoptosis. Considering the favorable toxicity profile in vitro and in vivo though targeting NTS/NTSR1, SR48692 is worthy of further study and exploitation in melanoma treatment.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2014-03-13
    Beschreibung: Dysregulation of miR-452 has been observed in many tumors, but its biological function in hepatocellular carcinoma (HCC) is still unknown. Our results showed that miR-452 expression is significantly increased in HCC tissues and HCC cell lines. We also found that overexpression of miR-452 dramatically accelerated proliferation, induced cell cycle from G1 to S transition, and blocked apoptosis of HCC cells. Migration and matrigel invasion assays indicated that miR-452 significantly promotes HepG2 and QGY-7703 cells migration and invasion in vitro. Further studies showed that miR-452 directly targets the 3′-untranslated region of cyclin-dependent kinase inhibitor 1B (CDKN1B), ectopic miR-452 expression suppressed CDKN1B expression on mRNA and protein level. Silencing CDKN1B by small interfering RNA resembled the phenotype resulting from ectopic miR-452 expression. This study provides new insights into the potential molecular mechanisms that miRNA-452 contributed to HCC.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2014-03-13
    Beschreibung: Toll-like receptors (TLRs) play important roles in activation of immunoreaction and tumor development. Toll-like receptor 7 (TLR7), one of the TLRs binding with single-stranded RNA, activates intracellular pathways and stimulates the release of proinflammatory cytokines, chemokines. In this study, we investigated the impact of the TLR7-signaling pathway on the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP2), tissue inhibitor of metalloproteinase 1 (TIMP1), interleukin 6 (IL-6), and interleukin 15 (IL-15), which have been testified to refer to the immunomodulating and tumor progression. We confirmed that the TLR7 was expressed by Hela cells, despite the abundance was weak. Gardiquimod, one of the TLR7 ligands, can promote these five genes expression in varying degrees. After stimulating with gardiquimod, the expression of the IL-15V1, 3 increased about 4.5 times on RNA level, the other expression was only up-regulated about 2 times. We also discovered that gardiquimod could activate the MAPK/ERK- and PI3K/AKT-signaling pathways, and the specific inhibitors studies indicate that, the effect of gardiquimod on these genes expression is mainly or partially dependent on the activation of these two signaling pathways. To sum up, the activation of TLR7 signaling pathway may modulate some genes expression in Hela cells and may contribute to the pathogenesis of the cervical cancer.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2014-03-13
    Beschreibung: In this work, we report the phenotypic and biochemical effects of deleting the C-terminal cytoplasmic portion of the NhaP2 cation/proton antiporter from Vibrio cholerae . While the deletion changed neither the expression nor targeting of the Vc-NhaP2 in an antiporter-less Escherichia coli strain, it resulted in a changed sensitivity of the host to sodium ions at neutral pH, indicating an altered Na + transport through the truncated variant. When assayed in inside-out sub-bacterial vesicles, the truncation was found to result in greatly reduced K + /H + and Na + /H + antiport activity at all pH values tested and a greater than fivefold decrease in the affinity for K + (measured as the apparent K m ) at pH 7.5. Being expressed in trans in a strain of V. cholerae bearing a chromosomal nhaP2 deletion, the truncated nhaP2 gene was able to complement its inability to grow in potassium-rich medium at pH 6.0. Thus the residual K + /H + antiport activity associated with the truncated Vc-NhaP2 was still sufficient to protect cells from an over-accumulation of K + ions in the cytoplasm. The presented data suggest that while the cytoplasmic portion of Vc-NhaP2 is not involved in ion translocation directly, it is necessary for optimal activity and substrate binding of the Vc-NhaP2 antiporter.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2014-03-13
    Beschreibung: Diabetic cardiomyopathy (DCM) has become a major cause of diabetes-related morbidity and mortality. Increasing evidences have proved that hydrogen sulfide (H 2 S) fulfills a positive role in regulating diabetic myocardial injury. The present study was designed to determine whether GYY4137, a novel H 2 S-releasing molecule, protected H9c2 cells against high glucose (HG)-induced cytotoxicity by activation of the AMPK/mTOR signal pathway. H9c2 cells were incubated in normal glucose (5.5 mM), 22, 33, and 44 mM glucose for 24 h to mimic the hyperglycemia in DCM in vitro. Then we added 50, 100, and 200 μM GYY4137, and measured the cell viability, lactate dehydrogenase (LDH) enzyme activity, and mitochondrial membrane potential (MMP). 0.5 mM 5-amino-4-imidazole-carboxamide riboside (AICAR, an AMPK activator) and 1 mM adenine 9-β- d -arabinofuranoside (Ara-A, an AMPK inhibitor) were used to identity whether the AMPK/mTOR signal pathway was involved in GYY4137-mediated cardioprotection. We demonstrated that HG decreased cell viability and increased LDH enzyme activity in a concentration-dependent manner. 33 mM HG treatment for 24 h was chosen as our model group for further study. Both 100 and 200 μM GYY4137 treatments significantly attenuated HG-induced cell viability decrement, LDH enzyme activity increase, and MMP collapse. AICAR had similar effects to GYY4137 treatment while Ara-A attenuated GYY4137-mediated cardioprotection. Importantly, both GYY4137 and AICAR increased AMPK phosphorylation and decreased mTOR phosphorylation compared with the HG model group while Ara-A attenuated GYY4137-mediated AMPK phosphorylation increase and mTOR phosphorylation decrement. In conclusion, we propose that GYY4137 likely protects against HG-induced cytotoxicity by activation of the AMPK/mTOR signal pathway in H9c2 cells.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2014-03-13
    Beschreibung: Migration and invasion comprise key steps in cancer metastasis. Through the migration and invasion into and out of lymphatic and/or blood vessels, cancer cells can be spread out into the tissues in remote site from the origin. Degradation of extracellular matrix (ECM) must be preceded prior to the metastasis of cancer cells. Matrix metalloproteinases (MMP) can degrade ECM, thus allow cells to migrate from the original site. Among MMPs, two gelatinase MMP-2 and MMP-9 play particularly important roles in ECM degradation. Here, we report that recently developed p21-activated kinase 4 inhibitor PF-3758309 shows anti-metastatic effect in A549 human lung cancer cell. PF-3758309 suppresses CREB, NF-κB, and β-catenin pathways, which are well known to be closely related with cell migration. This leads to the downregulation of MMP-2/MMP-9 expressions and the inhibition of A549 lung cancer metastasis.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2014-03-13
    Beschreibung: Doxorubicin has displayed significant cytotoxic effects against the lung cancer cells; however, the underlying mechanisms remain inconclusive. In the current study, we provided evidence to show that mitochondrial p53 and cyclophilin D (Cyp-D) complexation is required for doxorubicin-induced death of lung cancer A549 cells. Doxorubicin induced both apoptotic and non-apoptotic death of A549 cells. Cyclosporine A (CsA), the Cyp-D inhibitor, and Cyp-D silencing were prevented doxorubicin-induced non-apoptotic death of A549 cells, while cells overexpressing Cyp-D were hyper-sensitive to doxorubicin. In A549 cells, doxorubicin-activated p53, the latter translocated to mitochondria and physically interacted with Cyp-D. The p53/Cyp-D mitochondrial complexation was prevented by CsA or Cyp-D silencing, or by p53 inhibitor pifithrin-α. Significantly, doxorubicin-induced anti-tumor ability in vivo was also compromised by CsA, or when Cyp-D was silenced. Together, these data suggested that Dox-induced non-apoptotic death of A549 cells requires mitochondrial Cyp-D–p53 complexation.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2014-03-13
    Beschreibung: S100P has been shown to be overexpressed in various cancers and to have putative involvement in the metastatic process. However, Clinical and pathological significance of S100P expression in colorectal cancer still needs to be further studied. In the present study, the method of immunohistochemistry was utilized to investigate S100P protein expression in 91 cases of colorectal cancer. Also, the influence of ectopic expression of S100P on the biologic behavior in SW480 colorectal cancer cells was studied. We found that S100P expression of colorectal cancer tissue was significantly higher than that of normal colorectal mucosal tissues. S100P expression showed to be significantly correlated with clinical staging, lymph node metastasis and recurrence. Ectopic expression of S100P promotes SW480 cancer cells migration and invasion, decreases chemosensitivity to 5-FU in vitro. These findings suggested that S100P could serve as a promising candidate for colorectal cancer marker, prognostic indicator, and therapeutic target.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2014-05-01
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2014-05-01
    Beschreibung: Hepatocyte cell adhesion molecule (HepaCAM) plays a crucial role in tumor progression and has been recognized as a novel tumor suppressor gene. The high protein expression level of protein kinase Cε (PKCε) has been discovered in many tumor types. In the present study, we determined HepaCAM and PKCε protein levels in human clear cell renal cell carcinoma (ccRCC) tissues and analyzed the correlation between them. We observed an inverse relationship in the expression of HepaCAM and PKCε in ccRCC and adjacent normal tissues. In ccRCC tissue, HepaCAM expression was undetectable while PKCε expression was high; the opposite was found in the adjacent normal tissue. Western blot analysis demonstrated that PKCε cytosolic protein levels increased while plasma membrane protein levels decreased without any change in total protein following infection of the ccRCC cell line 786-0 with adenovirus-GFP-HepaCAM (Ad-GFP-HepaCAM). Moreover, the application of Ad-GFP-HepaCAM combined with a PKCε-specific translocation inhibitor (εV1-2) effectively inhibited 786-0 cell growth. Ad-mediated expression of HepaCAM in 786-0 cells reduced the levels of phosphorylated AKT and cyclin D1 and inhibited cell proliferation. In summary, our studies point to interesting connections between HepaCAM and PKCε in tissues and in vitro. HepaCAM may prevent the translocation of PKCε from cytosolic to particulate fractions, resulting in the inhibition of 786-0 cell proliferation. Therapeutic manipulation of these novel protein targets may provide new ways of treating ccRCC.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2014-05-01
    Beschreibung: It has been reported that methylated analog of resveratrol, 3,4,5,4′- trans -tetramethoxystilbene (DMU-212), demonstrates strong antiproliferative, and proapoptotic activity. The aim of this study was to evaluate the effect of DMU-212 on the activation of nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and signal transducer and activator of transcription 3 (STAT3) transcription factors, using a two-stage model of rat hepatocarcinogenesis (HCC) in Wistar rats. Initiation was performed by a single intraperitoneal injection of N-nitrosodiethylamine (NDEA) (200 mg/kg) followed by promotion with phenobarbital (PB) (0.05 %) in drinking water. DMU-212 was administered by gavage in a dose of 20 or 50 mg/kg b.w. two times a week for 16 weeks. There was a significant increase in the activation of all investigated hepatic transcription factors in the NDEA/PB-induced rats. The activation of NF-κB induced by NDEA/PB treatment was suppressed by DMU-212 as evidenced by a reduction of p65 and p50 subunits translocation, DNA binding capacity, increased retention of IκB, and the reduced IKK activity. Moreover, DMU-212 reduced the level of iNOS protein induced by NDEA/PB. Treatment with DMU-212 alone increased the constitutive AP-1 subunits c-Jun and c-Fos levels and c-Jun binding to TRE consensus site. The combined treatment diminished c-Fos level and DNA binding. At a dose of 50 mg/kg, DMU-212 decreased also the STAT3 activation induced by NDEA/PB. These data indicate that DMU-212 may suppress pro-inflammatory transcription factors, particularly NF-κB, and in consequence iNOS expression in rat model of HCC which makes DMU-212 a good candidate for the development of HCC chemopreventive agent.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2014-05-01
    Beschreibung: The aim of this study is to investigate the dynamic alterations of cardiac connexin 43 (Cx43), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) in the setting of different ventricular fibrillation (VF) duration. In this study, thirty-two dogs were randomly divided into sham control group, 8-min VF group, 12-min VF group, and 30-min VF group. Cx43 and phosphorylated Cx43 (p-Cx43) in tissues were detected by western blot and immunofluorescence analysis. MMP-2 and TIMP-2 were detected by western blot and immunohistochemistry analysis. The results showed that Cx43 levels in three VF groups were significantly decreased compared with sham control group. p-Cx43 levels in 12-min and 30-min VF groups were significantly reduced compared with sham control group. The ratio of p-Cx43/Cx43 was also decreased in VF groups. Compared with sham controls, no significant difference was observed between the sham control group and 8-min VF group in MMP-2 level, but MMP-2 level increased in 12-min and 30-min VF groups. The ratios of MMP-2/TIMP-2 were higher in VF groups, and were correlated with the duration of VF. A remarkable correlation was observed between the ratio of p-Cx43/Cx43 and MMP-2/TIMP-2 ( r  = −0.93, P  〈 0.01). In conclusion, the alteration of Cx43 and/or p-Cx43 levels and the imbalance of MMP-2 and TIMP-2 may contribute to the initiation and/or persistence of VF. Maneuvers managed to modulate Cx43 level or normalize the balance of MMP-2/TIMP-2 are promising to ameliorate prognosis of VF.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2014-05-01
    Beschreibung: The development of atherosclerosis (AS) is a multifactorial process, in which elevated plasma resistin (a key factor leading to insulin resistance) levels play an important role. Emerging evidence indicate that microRNAs (miRNAs) are involved in AS; However, the regulation and function of miRNAs in response to AS remain poorly understood. Our study analyzed the effects of miR-492 on insulin resistance, endothelial activation, and resistin expression in apoE knock-out mice and human umbilical vein endothelial cells after high-glucose treatment and miR-492 mimics transfection. We also investigated the underlying molecular mechanisms. Our results showed that high glucose stress induced a significant decrease in miR-492 expression, with a remarkable upregulation of resistin expression. We then identified resistin as a novel direct target of miR-492 using 3′-UTR luciferase reporter assay. Histopathologic examination demonstrated that upregulation of miR-492 attenuated endothelial cells migration and lipid accumulation induced by high glucose stress. Further investigation demonstrated that the upregulation of p-STAT3, SOCS, and P-selectin activation induced by high glucose stress was attenuated by upregulation of miR-492. Together, our findings indicate that miR-492 contributes to insulin resistance and endothelial dysfunction induced by high glucose, via directly downregulating resistin expression, and involving STAT3 phosphorylation, SOCS, and P-selectin activation.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2014-05-01
    Beschreibung: Tumor necrosis factor alpha (TNFα) is an adipokine involved in the regulation of cell differentiation and lipid metabolism, but its specific role has not been clearly understood. We validated a hypothesis that loss of TNFα function would inhibit Wnt/β-catenin signaling and accelerate adipogenesis in adolescent genetic obese mice. Epididymal white adipose tissues (eWAT) from TNFα deficient (TNFα −/− ), leptin receptor deficient ( db/db) and double gene mutant ( db/db /TNFα −/− , DT) male mice were used for comparative analysis of key molecules in Wnt/β-catenin signaling and adipogenic markers by qRT-PCR and western blot techniques. Compared with TNFα −/− and WT mice of 28 days old, an obese trait was observed in both db/db and DT mice, while the latter showed more significant body weight gain and eWAT hypertrophy. The mRNA level of key molecules in Wnt/β-catenin pathway was reduced in both obese groups, while the DT group was the lowest. Expression of adipocyte-specific genes was up-regulated during obese development in the two obese groups, while the DT group revealed more correlation than that of db/db group. At the protein level, a down regulation of Wnt10b and β-catenin in obese eWAT showed similar tendency with that of mRNA level. Compared with the lean groups, the levels of adiponectin and PPARγ2 for the obese groups were down-regulated at 21-day-old age, while they were elevated at older age. Our results suggested that deficiency in TNFα inhibited Wnt/β-catenin signaling of the obese eWAT and up-regulated expression of adipokines, and accelerated adipogenesis in genetic obese mice on a chow diet.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 23
    Publikationsdatum: 2014-05-01
    Beschreibung: Spindle and kinetochore-associated protein 1 (SKA1) is a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation. SKA1 is required for timely anaphase onset during mitosis, when chromosomes undergo bipolar attachment on spindle microtubules leading to silencing of the spindle checkpoint. Recently, SKA1 has been highlighted as a biomarker in some types of cancers, however, the precise role of SKA1 in gastric cancer remains unknown. In order to investigate the role of SKA1 in gastric cancer, the expression levels of SKA1 were analyzed in 56 gastric cancer samples and 54 non-neoplastic samples by immunohistochemistry, and we found SKA1 was significantly overexpressed in gastric cancer tissues. Moreover, we employed lentivirus-mediated short hairpin RNA to knockdown SKA1 in the human gastric cancer cell line MGC80-3. Functional analysis indicated that SKA1 silencing significantly inhibited cell proliferation and colony formation, as determined by MTT and colony formation assays. The depletion of SKA1 in MGC80-3 cells also led to S phase cell cycle arrest. These results suggest that SKA1 could be used for gastric cancer early diagnosis as a biomarker. It is possible to enable a potential therapy based on targeting SKA1.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 24
    Publikationsdatum: 2014-05-01
    Beschreibung: Hydrogen sulfide (H 2 S) protects cardiomyoblasts against high glucose (HG)-induced injury by inhibiting the activation of p38 mitogen-activated protein kinase (MAPK). This study aims to determine whether the leptin–p38 MAPK pathway is involved in HG-induced injury and whether exogenous H 2 S prevents the HG-induced insult through inhibition of the leptin–p38 MAPK pathway in H9c2 cells. H9c2 cells were treated with 35 mM glucose (HG) for 24 h to establish a HG-induced cardiomyocyte injury model. Cell viability; mitochondrial membrane potential (Δ Ψ m ); apoptosis; reactive oxygen species (ROS) level; and leptin, leptin receptor, and p38 MAPK expression level were measured by the methods indicated. The results showed pretreatment of H9c2 cells with NaHS before exposure to HG led to an increase in cell viability, decrease in apoptotic cells, ROS generation, and a loss of Δ Ψ m . Exposure of H9c2 cells to 35 mM glucose for 24 h significantly upregulated the expression levels of leptin and leptin receptors. The increased expression levels of leptin and leptin receptors were markedly attenuated by pretreatment with 400 μM NaHS. In addition, the HG-induced increase in phosphorylated (p) p38 MAPK expression was ameliorated by pretreatment with 50 ng/ml leptin antagonist. In conclusion, the present study has demonstrated for the first time that the leptin–p38 MAPK pathway contributes to the HG-induced injury in H9c2 cells and that exogenous H 2 S protects H9c2 cells against HG-induced injury at least in part by inhibiting the activation of leptin–p38 MAPK pathway.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 25
    Publikationsdatum: 2014-05-01
    Beschreibung: The developmental origins of health and disease refer to the theory that adverse maternal environments influence fetal development and the risk of cardiovascular disease in adulthood. We used the chronically hypertensive atrial natriuretic peptide knockout (ANP−/−) mouse as a model of gestational hypertension, and attempted to determine the effect of gestational hypertension on left ventricular (LV) structure and function in adult offspring. We crossed normotensive ANP+/+ females with ANP−/− males (yielding ANP+/− WT offspring) and hypertensive ANP−/− females with ANP+/+ males (yielding ANP+/− KO offspring). Cardiac gene expression was measured using real-time quantitative PCR. Cardiac function was assessed using echocardiography. Daily injections of isoproterenol (ISO) were used to induce cardiac stress. Collagen deposition was assessed using picrosirius red staining. All mice were 10 weeks of age. Gestational hypertension resulted in significant LV hypertrophy in offspring, with no change in LV function. Treatment with ISO resulted in significant LV diastolic dysfunction with a restrictive filling pattern (increased E / A ratio and E / e ′) and interstitial myocardial fibrosis only in ANP+/− KO and not ANP+/− WT offspring. Gestational hypertension programs adverse LV structural and functional remodeling in offspring. These data suggest that adverse maternal environments may increase the risk of heart failure in offspring later in life.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 26
    Publikationsdatum: 2014-05-01
    Beschreibung: This study investigated the roles of Ras, ERK, and Akt in the glucocorticoid-induced differentiation of growth hormone-producing pituitary cells in vitro. Pituicytes isolated from day-18 rat embryos were cultured with 50 mM dexamethasone in addition to specific inhibitors of Ras (manumycin; 0.5, 5, 50 nM), ERK (U0126, 10 μM), or Akt (LY294002, 25 μM). Differentiation was assessed using immunofluorescent staining of intracellular growth hormone. Radioimmunoassay and Western blot analyses were used to determine levels of secreted and intracellular growth hormone, respectively. Manumycin reduced the fraction of growth hormone-positive cells and dexamethasone-induced growth hormone secretion in a dose-dependent manner (both P  〈 0.001). In the absence of dexamethasone, LY294002 and U0126 did not alter the fraction of growth hormone-positive cells or intracellular growth hormone protein expression or secretion. Both LY294002 and U0126 alone significantly attenuated the fraction of dexamethasone-treated GH-positive cells and the secretion of GH compared to those of cells treated only with dexamethasone (50 nM for 44 h or 48 h) (all P  〈 0.05). Dexamethasone treatment alone did not change GH protein levels. Treatment of cells with a combination of LY294402 and U0126 significantly attenuated the fraction of dexamethasone-treated GH-positive cells, GH protein levels, and GH secretion compared to cells treated with dexamethasone alone (all P  〈 0.05). Moreover, dexamethasone-induced phosphorylation of GTP-Ras, ERK, and Akt was significantly attenuated by exposure to the respective inhibitors ( P  〈 0.05). Taken together, our results indicate that Ras, ERK, and Akt are key effectors in the glucocorticoid-induced differentiation of growth hormone-secreting cells.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 27
    Publikationsdatum: 2014-05-01
    Beschreibung: Type 1 diabetic (T1D) patients are hyperglycemic and also show elevated blood levels of ketone bodies, particularly acetoacetate (AA) and β-hydroxybutyrate (BHB). T1D patients have a greater risk of developing endothelial dysfunction and cardiovascular disease (CVD). Supplementation with cysteine-rich milk proteins has been shown to be beneficial in improving various biomarkers of endothelial dysfunction and CVD. This study examines whether l -cysteine (LC) per se prevents monocyte adhesion to endothelial cells, a critical step in endothelial dysfunction. Human umbilical vein endothelial cells and THP-1 monocytes were pretreated with and without LC (500 μM) for 2 h and then exposed to ketones (AA or BHB, 0–4 mM) and/or high glucose (HG) (25 mM) for 24 h. This study shows that LC reduces HG and ketone-induced ROS production, ICAM-1 expression, and the adhesion of monocytes to endothelial cells. This study provides a biochemical mechanism by which milk protein supplementation can be beneficial in preventing the excess endothelial dysfunction and CVD seen in diabetic patients.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 28
    Publikationsdatum: 2014-05-01
    Beschreibung: MicroRNAs (miRNAs) are small noncoding RNAs that have important roles in cancer. The altered expressions of miRNAs and their target genes are frequently detected in various tumors. In this study, downregulation of miR-15a-16 in nonsmall cell lung cancer (NSCLC) was found to be inversely correlated with Cripto. Results from the Luciferase reporter assay and Western blot analysis also confirmed that Cripto is a direct target of miR-15a-16. In addition, transfection of miR-15a-16 expression plasmid inhibited the invasion ability and promoted the apoptosis of NCI-H23 and NCI-H358 cells. Moreover, miR-15a-16 overexpression suppressed tumor growth in vivo. These findings clearly suggest that the downregulation of miR-15a-16 with Cripto amplification may be involved in the development of NSCLC.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 29
    Publikationsdatum: 2014-01-29
    Beschreibung: MicroRNA (miRNA) is a small noncoding RNA molecule, 19–25 nucleotides in length, which regulates several pathways including cell development, cell proliferation, carcinogenesis, apoptosis, etc. In this study, the over-expression of microRNA-205 (miR-205) increased the number of apoptotic cells by at least 4 times compared to the control. In addition, over-expressed miRNA in KB oral cancer cells triggered apoptosis via the caspase cascade, including the cleavage of caspase-9, caspase-7, caspase-3, and PARP. Flow cytometry showed that apoptotic cell death was increased significantly by 35.33 % in KB oral cancer cells with over-expressed miR-205 compared to the control. The microarray data showed that axis inhibitor protein 2 (Axin2) was down-regulated in KB oral cancer cells transfected with miR-205. In addition, Axin2 was down-regulated by approximately 50 % by over-expressed miR-205 at both the mRNA and protein levels. Interestingly, Axin2 was up-regulated in KB oral cancer compared to human normal oral keratinocytes. Furthermore, the cell cytotoxicity and apoptotic population of KB oral cancer cells were increased significantly after Axin2 siRNA transfection. These results suggest that Axin2 is might be as potential oncogene in KB oral cancer cells. The luciferase assay showed that over-expressed miR-205 in KB oral cancer cells suppressed AXIN2 expression through an interaction with its own binding site at AXIN2 3′UTR (64–92). These results suggest that miR-205 is a novel anti-oncogenic miRNA in KB oral cancer cells, and may have potential applications in oral cancer therapy.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 30
    Publikationsdatum: 2014-01-29
    Beschreibung: In our previous study, the mouse double minute 2 (MDM2) was identified as one of the leading genes that promote the metastasis of pancreatic cancer (PC). However, the mechanism by which MDM2 promotes metastasis of PC is not understood. In this study, we show that down-regulation of MDM2 through lentivirus-mediated RNA interference could also suppress in vitro proliferation and in vivo tumor growth, and led to an obvious inhibition of both in vitro invasion and in vivo live metastases of SW1990HM cells which had an over-expression of MDM2 and a higher metastatic potential. Moreover, we also show that the down-regulation of MDM2 induced a significant decrease in MMP9, Ki-67 and increase in P53, E-Cadherin expression, and results in an altered expression of genes involved in metastasis, apoptosis, and cell proliferation. Our results suggest that MDM2 plays an important role in metastasis as well as tumor growth of PC. MDM2 could be a hopeful target for the control of PC.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 31
    Publikationsdatum: 2014-01-29
    Beschreibung: Naphtho[1,2- b ]furan-4,5-dione (NFD), a bioactive component of Avicennia marina , has been demonstrated to display anti-cancer activity. Breast cancer is a highly malignant carcinoma and most deaths of breast cancer are caused by metastasis. In this study, we showed that NFD blocked migration and invasion of MDA-MB-231 breast cancer cells without affecting apoptosis or growth arrest. NFD caused significant block of Src kinase activity in MDA-MB-231 cells. Moreover, NFD treatment was correlated with reduced phosphorylation of FAK at Tyr 576/577, 861 and 925 sites, p130 Cas at Tyr 410, and paxillin at Tyr 118. NFD also suppressed the activation of phosphatidylinositol 3-kinase/Akt. Consistent with inhibition of these signaling pathways and invasion, NFD reduced the expression of matrix metalloproteinase-9. Furthermore, Src antagonist PP2 caused a significant decrease in the phosphorylation of FAK, p130 Cas , paxillin, and PI3K/Akt. Our findings provide evidences that NFD inhibits Src-mediated signaling pathways involved in controlling breast cancer migration and invasion, suggesting that it has a therapeutic potential in breast cancer treatment.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 32
    Publikationsdatum: 2014-01-29
    Beschreibung: MicroRNAs play critical roles in the development and progression of colorectal cancer (CRC). miR-154 acts as a tumor suppressor in several tumors; however, its role in CRC is poorly understood. Herein, we found that miR-154 was decreased in CRC tissues and cell lines. Ectopic expression of miR-154 remarkably suppressed cell proliferation and colony formation, migration and invasion in CRC cells. The toll-like receptor 2 (TLR2) was found to be a direct target of miR-154 in CRC cells. Inhibition of TLR2 performed similar effects with miR-154 overexpression on CRC cells, and overexpression of TLR2 could significantly reverse the tumor suppressive effects of miR-154 on CRC cells. This study suggests an essential role for miR-154 in CRC.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 33
    Publikationsdatum: 2014-01-29
    Beschreibung: Peroxiredoxin 2 (Prdx2) is a member of the peroxiredoxin family, which is responsible for neutralizing reactive oxygen species. Prdx2 has been found to be elevated in several human cancer cells and tissues, including colorectal cancer (CRC), and it influences diverse cellular processes involving cells’ survival, proliferation, and apoptosis, which suggests a possible role for Prdx2 in the maintenance of cancer cell. However, the mechanism by which Prdx2 modulates CRC cells’ survival is unknown. The current study aimed to determine the effect of elevated Prdx2 on CRC cells and to further understand the underlying mechanisms. The results of this study showed that Prdx2 was upregulated in CRC tissues compared with the matched noncancer colorectal mucosa tissues and that Prdx2 expression was positively associated with tumor metastasis and the TNM stage. In the LoVo CRC cell line, Prdx2 was upregulated at both the RNA and protein levels compared with the normal FHC colorectal mucosa cell line. In addition, the LoVo CRC cell line was significantly more resistant to hydrogen peroxide (H 2 O 2 )-induced apoptosis because of a failure to activate pro-apoptotic pathways in contrast to Prdx2 knockdown cells. Suppression of Prdx2 using a lentiviral vector-mediated Prdx2-specific shRNA in the LoVo cell line restored H 2 O 2 sensitivity. Our results suggested that Prdx2 has an essential role in regulating oxidation-induced apoptosis in CRC cells. Prdx2 may have potential as a therapeutic target in CRC.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 34
    Publikationsdatum: 2014-01-29
    Beschreibung: microRNAs play critical roles in the progression and metastasis of nonsmall cell lung cancer (NSCLC). miR-92b acts as an oncogene in some malignancies; however, its role in NSCLC remains poorly understood. Here, we found that miR-92b was significantly increased in human NSCLC tissues and cell lines. Inhibition of miR-92b remarkably suppressed cell proliferation, migration, and invasion of NSCLC cells. Reversion-inducing-cysteine-rich protein with kazal motifs (RECK) was identified to be a target of miR-92b. Expression of miR-92b was negatively correlated with RECK in NSCLC tissues. Collectively, miR-92b might promote NSCLC cell growth and motility partially by inhibiting RECK.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 35
    Publikationsdatum: 2014-01-29
    Beschreibung: In the past decades, a greater understanding of acute pancreatitis has led to improvement in mortality rates. Nevertheless, this disease continues to be a health care system problem due to its economical costs. Future strategies such as antioxidant supplementation could be very promising, regarding to beginning and progression of the disease. For this reason, this study was aimed at assessing the effect of exogenous administration of resveratrol during the induction process of acute pancreatitis caused by the cholecystokinin analog cerulein in rats. Resveratrol pretreatment reduced histological damage induced by cerulein treatment, as well as hyperamylasemia and hyperlipidemia. Altered levels of corticosterone, total antioxidant status, and glutathione peroxidase were significantly reverted to control levels by the administration of resveratrol. Lipid peroxidation was also counteracted; nevertheless, superoxide dismutase enzyme was overexpressed due to resveratrol pretreatment. Related to immune response, resveratrol pretreatment reduced pro-inflammatory cytokine IL-1β levels and increased anti-inflammatory cytokine IL-10 levels. In addition, pretreatment with resveratrol in cerulein-induced pancreatitis rats was able to reverse, at least partially, the abnormal calcium signal induced by treatment with cerulein. In conclusion, this study confirms antioxidant and immunomodulatory properties of resveratrol as chemopreventive in cerulein-induced acute pancreatitis.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 36
    Publikationsdatum: 2014-01-29
    Beschreibung: Type II phosphatidylinositol 4-kinases are implicated in FcεRI-mediated signaling cascades leading to release of inflammatory molecules. Cross-linking of FcεRI on RBL 2H3 cells results in protein tyrosine phosphorylation and activation of type II PtdIns 4-kinase activity. Protein tyrosine kinase(s) that phosphorylate type II PtdIns 4-kinase(s) in RBL 2H3 cells remains elusive and is being addressed in this manuscript. Anti-Fyn kinase antibodies co-immunoprecipitated type II PtdIns 4-kinase activity from FcεRI cross-linked RBL 2H3 cells. In reciprocal assays, His-tagged types II PtdIns 4-kinases were shown to pull down Fyn kinase. Further, anti-Fyn immunoprecipitates were shown to phosphorylate type II PtdIns 4-kinase α and β in in vitro assays. Pull down studies with GST-Fyn-SH2 and GST-Fyn-SH3 domains showed that type II PtdIns 4-kinases associate with Fyn-SH2 domain. Knockdown of Fyn kinase in RBL 2H3 cells abrogated activation of type II PtdIns 4-kinase activity in response to FcεRI cross-linking and type II PtdIns 4-kinase activity in anti-phosphotyrosine immunoprecipitates. Knockdown of Fyn kinase was also strongly correlated with a reduction in β-hexosaminidase release in response to FcεRI cross-linking. These results suggest that type II PtdIns 4-kinases act downstream of Fyn kinase in FcεRI signaling cascades and are regulated by Fyn kinase.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 37
    Publikationsdatum: 2014-01-29
    Beschreibung: Although normally folic acid is given during pregnancy, presumably to prevent neural tube defects, the mechanisms of this protection are unknown. More importantly it is unclear whether folic acid has other function during development. It is known that folic acid re-methylates homocysteine (Hcy) to methionine by methylene tetrahydrofolate reductase-dependent pathways. Folic acid also generates high-energy phosphates, behaves as an antioxidant and improves nitric oxide (NO) production by endothelial NO synthase. Interestingly, during epigenetic modification, methylation of DNA/RNA generate homocysteine unequivocally. The enhanced overexpression of methyl transferase lead to increased yield of Hcy. The accumulation of Hcy causes vascular dysfunction, reduces perfusion in the muscles thereby causing musculopathy. Another interesting fact is that children with severe hyperhomocysteinaemia (HHcy) have skeletal deformities, and do not live past teenage. HHcy is also associated with the progeria syndrome. Epilepsy is primarily caused by inhibition of gamma-amino-butyric-acid (GABA) receptor, an inhibitory neurotransmitter in the neuronal synapse. Folate deficiency leads to HHcy which then competes with GABA for binding on the GABA receptors. With so many genetic and clinical manifestations associated with folate deficiency, we propose that folate deficiency induces epigenetic alterations in the genes and thereby results in disease.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 38
    Publikationsdatum: 2014-01-29
    Beschreibung: Isoniazid (INH) can cause serious idiosyncratic liver injury. An animal model would greatly facilitate mechanistic studies, but it is essential that the mechanism in the model be similar to the liver injury that can occur in humans. We attempted to replicate a previous study in which Wistar rats treated with INH and rifampicin (RMP) developed liver injury, which was promising because of its delayed onset similar to the liver injury that can occur in humans. Wistar rats were treated with either a high dose of INH (150 mg/kg/day) or a combination of INH and RMP (75 mg/kg/day and 50 mg/kg/day, respectively) for up to 4 weeks. However, we did not observe any liver injury or evidence of an inflammatory infiltrate as had been reported; rather, we observed an increase in CTLA4-positive cells in the cervical lymph nodes as well as a decrease in serum CXCL1 and MCP-1. In short, we were unable to reproduce a previously reported model of delayed onset INH-induced liver injury in Wistar rats.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 39
    Publikationsdatum: 2014-01-29
    Beschreibung: The intestinal Ca 2+ absorption is inhibited by menadione (MEN) through oxidative stress and apoptosis. The aim of this study was to elucidate whether the antioxidant and antiapoptotic properties of melatonin (MEL) could protect the gut against the oxidant MEN. For this purpose, 4-week-old chicks were divided into four groups: (1) controls, (2) treated i.p. with MEN (2.5 μmol/kg of b.w.), (3) treated i.p. with MEL (10 mg/kg of b.w.), and (4) treated with 10 mg MEL/kg of b.w after 2.5 μmol MEN/kg of b.w. Oxidative stress was assessed by determination of glutathione (GSH) and protein carbonyl contents as well as antioxidant enzyme activities. Apoptosis was assayed by the TUNEL technique, protein expression, and activity of caspase 3. The data show that MEL restores the intestinal Ca 2+ absorption altered by MEN. In addition, MEL reversed the effects caused by MEN such as decrease in GSH levels, increase in the carbonyl content, alteration in mitochondrial membrane permeability, and enhancement of superoxide dismutase and catalase activities. Apoptosis triggered by MEN in the intestinal cells was arrested by MEL, as indicated by normalization of the mitochondrial membrane permeability, caspase 3 activity, and DNA fragmentation. In conclusion, MEL reverses the inhibition of intestinal Ca 2+ absorption produced by MEN counteracting oxidative stress and apoptosis. These findings suggest that MEL could be a potential drug of choice for the reversal of impaired intestinal Ca 2+ absorption in certain gut disorders that occur with oxidative stress and apoptosis.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 40
    Publikationsdatum: 2014-01-29
    Beschreibung: Urodele amphibians and teleost fish are capable of nearly perfect regeneration of lost appendages. The fin constitutes an important model for studying the molecular basis of tissue regeneration. It has been known that heat shock protein 60 (Hsp60) is a multifunctional protein of the heat shock protein family. The purpose of this study is to investigate the role of hsp60 as a part of a stress response system after fin injury or in fin regeneration. We firstly cloned full-length cDNA of hsp60 from Misgurnus anguillicaudatus (designated as MaHsp60 ) by RACE method. The cDNA contains a 83-bp 5′UTR, a 1,728-bp open reading frame encoding 492 amino acids and a 542-bp 3′UTR (Accession No.: KF537340). The phylogenetic tree shows that the MaHsp60 fits within the hsp60 clade. Then quantitative RT-PCR detected that MaHsp60 began to increase rapidly its expression at 1 dpa and reached its peak at 2 dpa. Next, spatial distribution analysis of MaHsp60 in fins showed that MaHsp60 located mainly in the deeper layer of regenerated epidermis when MaHsp60 expressed most. After the MaHsp60 had been cloned into the pET-32a vector, SDS-PAGE analysis confirmed that the MaHsp60 protein was efficiently expressed in Escherichia coli BL21 and adjustable with the temperature. These findings have revealed that MaHsp60 , a highly conserved gene during vertebrate evolution as well as related to stress response, is involved in the formation of wound epidermis which occurs as the first phase of fin regeneration after fin amputation in caudal fin regeneration.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 41
    Publikationsdatum: 2014-01-29
    Beschreibung: Type 2 diabetic (T2DM) patients are immune-compromised having a higher susceptibility to infections and long-term complications in different parts of the body contributing to increased morbidity and mortality. A derangement in the homeostasis of intracellular free calcium concentration [Ca 2+ ] i is known to be associated with several diseases in the body including T2DM. Both neutrophils and lymphocytes play active protective roles in host immune response to infection showing impairment in microbicidal functions including phagocytosis and chemotaxis which are calcium-dependent processes. This study evaluated the process of [Ca 2+ ] i mobilization from both neutrophils and lymphocytes taken from blood of both T2DM patients and healthy age-matched control subjects investigating the effect of N -formyl-methionyl-leucyl-phenylalanine (fMLP), thapsigargin (TG), and hydrogen peroxide (H 2 O 2 ) on [Ca 2+ ] i homeostasis. This study employed isolated peripheral blood neutrophils and lymphocytes from 24 T2DM patients and 24 healthy volunteers. Either neutrophils or lymphocytes were stimulated separately with fMLP, TG, or H 2 O 2 . Induced changes in [Ca 2+ ] in both neutrophils and lymphocytes were evaluated using spectrofluorometric methods. Stimulation of human neutrophils and lymphocytes with fMLP, TG, or H 2 O 2 in the presence of [Ca 2+ ] o resulted in significant decreases in [Ca 2+ ] i mobilization from T2DM patients compared with healthy controls. These data indicate that neutrophils and lymphocytes from T2DM patients are less responsive to calcium mobilizing agents compared with granulocytes from healthy controls and this is possibly due to the hyperglycemia. The results suggest that agonist-evoked decrease in [Ca 2+ ] i in immune cells might be one of the possible mechanisms of impaired immunity in diabetic patients.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 42
    Publikationsdatum: 2014-02-01
    Beschreibung: Ligation of high-affinity IgE receptor I (FcεRI) on RBL-2H3 cells leads to recruitment of FcεRI and type II phosphatidylinositol 4-kinases (PtdIns 4-kinases) into lipid rafts. Lipid raft integrity is required for the activation of type II PtdIns 4-kinases and signal transduction through FcεRIγ during RBL-2H3 cell activation. However, the molecular mechanism by which PtdIns 4-kinases are coupled to FcεRI signaling is elusive. Here, we report association of type II PtdIns 4-kinase activity with FcεRIγ subunit in anti-FcεRIγ immunoprecipitates. FcεRIγ-associated PtdIns 4-kinase activity increases threefold upon FcεRI ligation in anti-FcεRIγ immunoprecipitates. Biochemical characterization of PtdIns 4-kinase activity associated with FcεRIγ reveals that it is a type II PtdIns 4-kinases. Canonical tyrosine residues mutation in FcεRIγ ITAM (Y65 and Y76) reveals that these two tyrosine residues in γ subunit are required for its interaction with type II PtdIns 4-kinases.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 43
    Publikationsdatum: 2014-04-01
    Beschreibung: Bladder cancer is among the most aggressive human malignant carcinoma and always showed resistance to traditional chemotherapy based on DNA damaging drugs. Unlike the existing drugs that damage nuclear acid molecules, maslinic acid (MA) displays anti-tumor function in various types of cancers by targeting specific intracellular signaling pathways and is regarded as a promising agent for future clinical cancer therapy. However, its effect on bladder cancer is still unknown. In this study, we assessed the influence of MA on survival of bladder cancer cells and the involved mechanisms. MTT assay showed that MA suppressed the viability of bladder cancer cells. We further confirmed the growth-suppressing activity of MA on T24 and 253J xenograft tumor in mouse models. Subsequently, we found that MA induced apoptosis in bladder cancer cells. Based on immunoblotting assay, we determined that p38 MAPK pathway was greatly activated in MA-treated bladder cancer cells. SB203580 inhibition of p38 MAPK rescued the MA-induced apoptosis of bladder cancer cells. In conclusion, we provided evidences that MA efficiently suppressed activation of p38 MAPK pathways and induced apoptosis of bladder cancer cells.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 44
    Publikationsdatum: 2014-04-02
    Beschreibung: The objective of this study was to examine the role of heat shock protein 27 (HSP27) in proliferation and migration of vascular smooth muscle cells (VSMCs). Three complementary DNA sequences targeting rat HSP27 gene were designed, synthesized, and subcloned into lentiviral vector. The interfering efficiency was detected by reverse transcriptase-polymerase chain reaction and Western blot. Methyl thiazolyl tetrazolium bromide assay was used for examining cell proliferation. F-actin polymerization was detected by FITC-Phalloidin staining using confocal microscopy. Modified Boyden chamber technique was used to assess VSMCs migration. The recombinant lentivirus containing RNAi targeting HSP27 gene significantly inhibited expression of HSP27 at both mRNA and protein levels. The interfering efficiencies of pNL-HSP27-EGFP-1, pNL-HSP27-EGFP-2, and pNL-HSP27-EGFP-3 were 71 %, 77 %, and 43 %, respectively. Reorganization of actin stimulated by PDGF-BB was markedly blocked by pretreatment with pNL-HSP27-EGFP-2. Proliferation and migration rates of VSMCs induced by PDGF-BB were inhibited by 30.8 % and 45.6 %, respectively, by pNL-HSP27-EGFP-2 (all P  〈 0.01). To conclude, these data indicate that HSP27 may regulate the proliferation, actin reorganization, and the migration of VSMCs. RNAi targeting at HSP27 may be a potential approach for inhibition of cell migration involved in pathogenesis of proliferative vascular diseases.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 45
    Publikationsdatum: 2014-04-02
    Beschreibung: A water-soluble complex of fullerene [C 60 ]:polyethylene glycol (PEG) (1:350 wt/wt) (C 60 –PEG), but not PEG alone, was found in the present study by ESR/DMPO spin-trap method to generate hydroxyl radicals 6.5-fold as abundant as the non-irradiation level, when irradiated with visible light (400–600 nm, 140 J/cm 2 : 450-fold as intense as in average outdoor), but not to generate without irradiation. At 3 h after irradiation with C 60 –PEG, human fibrosarcoma cells HT1080 were obviously degenerated together with diminished microvilli, cell shrinkage and cell fragmentation as observed by SEM and were shown either for increased cytotoxicity by dual stains with calcein-AM and propidium iodide or for nuclear condensation and fragmentation by Hoechst 33342 stain, any of which were, in contrast, scarcely changed in normal human fibroblastic cells DUMS16 derived from the same connective tissue type as HT1080 cells. Under the conditions, the maximum intracellular uptake amount was more abundant for HT1080 cells than for DUMS16 cells, either by immunostain/fluorography using polyclonal antibody against fullerene [C 60 ], or by HPLC method indicating the 2.4-fold preferential uptake of C 60 –PEG into HT1080 cells, suggested to greater phagocytotic ability characteristic of cancer cells, over DUMS16 cells being non-macrophage-like normal cells. Thus, C 60 –PEG is expected as a photosensitizer for photodynamic therapy with scarce side effects to normal cells and preferential reactive oxygen species generation in cancer cells.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 46
    Publikationsdatum: 2014-04-02
    Beschreibung: In this study, we investigated the role of glucocorticoid receptor (GR) in epidermal keratinocytes. In adult normal human skin, GR was highly expressed in the upper layers of the epidermis. Consistent with normal skin, GR expression was increased after calcium treatment of HaCaT keratinocytes cultured in vitro, suggesting that GR is involved in keratinocyte differentiation process. Overexpression of GR using an adenovirus showed that expression of involucrin, an early differentiation marker of keratinocytes, was markedly increased due to GR overexpression. However, treatment with dexamethasone, a GR agonist, did not increase involucrin expression. Overexpression of GR led to phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinases (ERK) in the absence of glucocorticoid, suggesting that the GR effect on involucrin expression is related to activation of intracellular signaling cascades. This idea was supported by the fact that GR-mediated involucrin induction was abolished after treatment with JNK and ERK inhibitors. In addition, GR mutants lacking the ligand-binding domain increased involucrin expression concomitantly with increase of ERK phosphorylation. Together, these results suggest that GR modulates involucrin expression of keratinocytes by regulating the intracellular signaling network in a ligand-independent manner.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 47
    Publikationsdatum: 2014-04-02
    Beschreibung: High mobility group protein box1 (HMGB1) and its receptor—receptor for advanced glycation end products (RAGE) are pivotal factors in the development and progression of many types of tumor, but the role of HMGB1-RAGE axis in hepatocellular carcinoma (HCC) especially its effects on metastasis and recurrence remains obscure. Here, we report the role of HMGB1-RAGE axis in the biological behaviors of HCC cell lines and the underlying molecular mechanism. We show that the expressions of HMGB1, RAGE, and extracellular HMGB1 increase consistently according to cell metastasis potentials, while the concentration of soluble form of RAGE (sRAGE) is inversely related to metastasis potential of HCC cells. Furthermore, our data show that rhHMGB1 promotes cellular proliferation, migration, and invasion, and increases the level of nuclear factor kappa B (NF-κB), while administrations of HMGB1-siRNA, RAGE-siRNA, anti-HMGB1 neutralizing antibody, anti-RAGE neutralizing antibody, and sRAGE inhibit cellular proliferation, migration, and invasion. Moreover, we also demonstrate that the expression of NF-кB is inhibited by knockdown of HMGB1 or RAGE. Collectively, these data demonstrate that HMGB1 activates RAGE signaling pathways and induces NF-кB activation to promote cellular proliferation, invasion, and metastasis, in HCC cell lines. Taken together, HMGB1-RAGE axis may become a potential target in HCC therapy.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 48
    Publikationsdatum: 2014-04-02
    Beschreibung: NF-E2-related factor 2 (Nrf2) has been demonstrated to be a key transcription factor regulating the anti-inflammatory genes including heme oxygenase-1 (HO-1) in experimental sepsis models. Based on the fact that 3,4,5-trihydorxycinnamic acid (THC) has been reported to possess anti-inflammatory properties in BV2 microglial cells, the possible effects of THC and its underlying mechanism was examined against lipopolysaccharide (LPS)-induced RAW 264.7 cell culture and septic mouse models. Pretreatment of RAW 264.7 cells with THC significantly attenuated LPS-induced NO, PGE 2 production, and expression of iNOS and COX-2. THC also significantly suppressed LPS-induced release of pro-inflammatory cytokines and degradation of IκB-α. Increased phosphorylation of Nrf2 and nuclear translocation of Nrf2 were observed with THC treatment with consequent expression of HO-1. The data demonstrated that multiple signaling pathways including Akt, p38, and PKC are involved in the THC-induced activation of Nrf2/HO-1 pathway. Treatment of THC resulted in significantly increased survival of LPS-induced septic mice. THC also significantly ameliorated LPS-induced septic features such as hypothermia and increased vascular leakage. In accordance with the data from cell culture model, THC exhibited increased expression of HO-1 in kidney and decreased serum level of pro-inflammatory mediators such as TNF-α, IL-1β, and NO. Taken together, the present study for the first time demonstrates that THC inhibits inflammation in LPS-induced RAW264.7 cells by Nrf2 activation and improves survival of mice in LPS-induced endotoxemia model.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 49
    Publikationsdatum: 2014-04-02
    Beschreibung: Spinal cord injury (SCI) results in a loss of normal motor and sensory function, leading to severe disability and reduced quality of life. The aim of this work was to investigate the effect of receptor for advanced glycation end products (RAGE) deficiency on the function recovery in a mouse model of SCI. Mice received a mid-thoracic spinal contusion injury. Upregulation of RAGE protein expression in spinal cord tissue was evident at 12 h after SCI and continued at 2 and 5 days. Furthermore, we showed that locomotor recovery was improved and lesion pathology was reduced after SCI in RAGE-deficient mice. RAGE deficiency in mice attenuated apoptosis after SCI through inhibiting p53/Bax/caspase-3 pathway. RAGE deficiency in mice inhibited inflammation after SCI, marked by reduced myeloperoxidase activity, NFκB nuclear translocation, and TNF-α, IL-1β, and IL-6 mRNA and protein levels. RAGE deficiency in mice exposed to SCI suppressed the upregulation of inducible nitric oxide synthase (iNOS) and gp91-phox and attenuated oxidative and nitrosative stresses, marked by reduced formation of malondialdehyde, reactive oxygen species, peroxynitrite (OONO − ), and 3-nitrotyrosine. RAGE deficiency in mice exposed to SCI attenuated glial scar at the injury site, marked by decreased expression of glial fibrillary acidic protein. These data indicate that the RAGE plays an important role in the development of SCI and might provide a therapeutic target to promote recovery from SCI.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 50
    Publikationsdatum: 2014-04-02
    Beschreibung: Breast cancer is one of the common tumors occurring in woman and despite treatment, the prognostic is poor. Genistein, a soy isoflavone, has been reported to have chemopreventive\chemotherapeutic potential in multiple tumor types. Here, we investigated the genistein antiproliferative effect in MCF-7 breast cancer, underlying the molecular mechanisms involved in this effect. MCF-7 cancer and CCD1059sK fibroblast cells were treated with estradiol (10 nM) or genistein (0.01–100 μM) for 24, 48, and 72 h and the cell proliferation was investigated by MTT; membrane cell permeability was evaluated by LDH and PI incorporation; apoptosis was investigated by externalization of phosphatidylserine by FACS; and presence of autophagy was detected by LC3A/B immunostaining. The expression of apoptotic proteins and antioxidant enzymes was evaluated by qPCR. The results demonstrate that genistein (100 μM) for 72 h of treatment selectively reduced MCF-7 cell proliferation independent of estrogen receptor activation, while no cytotoxicity was observed in fibroblast cells. Further experiments showed that genistein induced phosphatidylserine externalization and LC3A/B immunopositivity in MCF-7 cells, indicating apoptosis and autophagy cell death. Genistein increased in three times proapoptotic BAX/Bcl-2 ratio and promoted a parallel downregulation of 20 times of antiapoptotic survivin. In addition, genistein promoted a decrease of 5.5, 9.3, and 3.6 times of MnSOD, CuZnSOD, and TrxR mRNA expression, respectively, while the GPx expression was increased by 6.5 times. These results suggest that the antitumor effect of genistein involved the modulation of antioxidant enzyme and apoptotic signaling expression, which resulted in apoptosis and progression of autophagy.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 51
    Publikationsdatum: 2014-04-02
    Beschreibung: Interest in biochemistry of organoselenium compound has increased in the last decades, mainly due to their chemical and biological activities. Here, we investigated the protective effect of diphenyl diselenide (PhSe) 2 (5 μmol/kg), in a mouse model of methylmercury (MeHg)-induced brain toxicity. Swiss male mice were divided into four experimental groups: control, (PhSe) 2 (5 μmol/kg, subcutaneous administration), MeHg (40 mg/L, in tap water), and MeHg + (PhSe) 2 . After the treatment (21 days), the animals were killed and the cerebral cortex was analyzed. Electron microscopy indicated an enlarged and fused mitochondria leading to a reduced number of organelles, in the MeHg-exposed mice. Furthermore, cortical creatine kinase activity, a sensitive mitochondrial oxidative stress sensor, was almost abolished by MeHg. Subcutaneous (PhSe) 2 co-treatment rescued from MeHg-induced mitochondrial alterations. (PhSe) 2 also behaved as an enhancer of mitochondrial biogenesis, by increasing cortical mitochondria content in mouse-receiving (PhSe) 2 alone. Mechanistically, (PhSe) 2 (1 μM; 24 h) would trigger the cytoprotective Nrf-2 pathway for activating target genes, since astroglial cells exposed to the chalcogen showed increased content of hemeoxygenase type 1, a sensitive marker of the activation of this via. Thus, it is proposed that the (PhSe) 2 -neuroprotective effect might be linked to its mitoprotective activity.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 52
    Publikationsdatum: 2014-04-02
    Beschreibung: MicroRNAs play critical roles in the development and progression of non-small cell lung cancer (NSCLC). miR-96 acts as an oncogene in some malignancies, while its role in NSCLC is unclear. Here, we validated that miR-96 was significantly increased in both human NSCLC tissues and cell lines. Inhibition of miR-96 expression remarkably reduced cell proliferation, colony formation, migration, and invasion of NSCLC cells. Reversion-inducing-cysteine-rich protein with kazal motifs (RECK) was identified as a target of miR-96 in NSCLC cells. In addition, the expression of RECK was found to be negatively correlated with the expression of miR-96 in NSCLC tissues. Our data suggest that miR-96 might promote the growth and motility of NSCLC cells partially by targeting RECK.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 53
    Publikationsdatum: 2014-04-02
    Beschreibung: Maslinic acid (MA) is a natural triterpenoid widely distributed in edible and medicinal plants and has been demonstrated to possess bioactivity. However, its effect on vascular smooth muscle cells (VSMC) has not been explored yet. In this study, we found that heme oxygenase-1 (HO-1) expression was increased in VSMCs treated with MA. Furthermore, MA was found to induce Akt activation in a dose- and time-dependent manner. Wortmannin suppression of Akt was able to abolish HO-1 upregulation in VSMCs, suggesting the requirement of Akt activation for MA effect on HO-1. Further investigation indicated that Akt activation resulted in the elevated expression of Nrf2, a HO-1 promoter, in MA-treated VMSCs. Finally, we found that MA was able to protect VSMCs from oxidative stress induced by H 2 O 2 . Blocking the activation of Akt/Nrf2/HO-1 was able to compromise the protective effect of MA on VSMCs. Collectively, we provided evidence that MA protected VMSCs from oxidative stress through Akt/Nrf2/HO-1 pathway.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 54
    Publikationsdatum: 2014-04-02
    Beschreibung: Bone marrow-derived mesenchymal stem cells (MSCs), the most widely used cell source for cartilage tissue engineering, are multipotent cells which have been shown to differentiate into various mesenchyme-lineage cell types including chondrocytes. However, the molecular mechanisms controlling the chondrogenic differentiation of MSCs remain to be fully elucidated. It has been demonstrated that Wnt signaling involves regulating chondrogenesis and MSC differentiation. The aim of the present study was to investigate the role of Wnt11, a member of noncanonical Wnts, in MSCs during chondrogenic differentiation. We observed that overexpression of Wnt11 inhibited proliferation of MSCs and caused a G0/G1 cell cycle arrest. The expression level of chondrogenic markers, aggrecan and Collagen II, was significantly increased in MSCs transduced with Wnt11 as compared with non-transduced cells or MSCs transduced with the empty lentiviral vector. Furthermore, ectopic expression of Wnt11 stimulated gene expression of chondrogenic regulators, SRY-related gene 9, Runt-related transcription factor 2, and Indian hedgehog. Finally, Wnt11 overexpression promoted chondrogenic differentiation of MSCs in synergism with TGF-β. Collectively, these results indicate that Wnt11 plays a crucial role in regulating MSC chondrogenic differentiation.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 55
    Publikationsdatum: 2014-04-02
    Beschreibung: High glucose and increased oxidative stress levels are the known important mediators of diabetic nephropathy. However, the effects of these mediators on tissue damage basically due to extracellular matrix expansion in mesangial cells have yet to be fully examined within the context of early stage diabetic nephropathy. In this study, we attempted to characterize changes in mesangial cells of streptozotocin-induced diabetic rats with a comparative investigation of kidney tissue by using different microscopy techniques. The serum levels of urea and creatinine of diabetic rats, as biomarkers of kidney degeneration, decreased significantly compared to those of age-matched controls. In diabetic rats, there are increased malondialdehyde and oxidized-glutathione levels as well as reduced-glutathione and glutathione-peroxidase activity levels in renal tissue compared to those of the controls. By using light and electron microscopies, we showed that there were marked thickening in Bowman’s membrane and glomerular capillary wall, increased amount of extracellular matrix often occupying Bowman’s space, degenerations in tubules, an increased number of mesangial cells in the network of glomerular capillary walls, and increased amount of lipid accumulation in proximal tubules in the renal tissue of diabetic rats. Our confocal microscopy data confirmed also the presence of irregularity and widened in glomerular capillaries, their attachment to the Bowman’s capsule, degenerated heterochromatin, thickening in foci of glomerular basement membrane, and marked increase in mesangial cells. These results suggest that a detailed structural investigation of kidney tissue provides further information on the important role of mesangial cells in pathogenesis of diabetic nephropathy.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 56
    Publikationsdatum: 2014-10-29
    Beschreibung: Upregulation of matrix metalloproteinases (MMPs) is a hallmark of osteoarthritis progression; along with the role reactive oxygen species (ROS) may play in this process. Moreover, mitochondrial DNA damage and dysfunction are also present in osteoarthritic chondrocytes. However, there are no studies published investigating the direct relationship between mitochondrial ROS, mitochondrial DNA damage, and MMP expression. Therefore, the purpose of the present study was to evaluate whether mitochondrial DNA damage and mitochondrial-originated oxidative stress modulates matrix destruction through the upregulation of MMP protein levels. MitoSox red was utilized to observe mitochondrial ROS production while a Quantitative Southern blot technique was conducted to analyze mitochondrial DNA damage. Additionally, Western blot analysis was used to determine MMP protein levels. The results of the present study show that menadione augmented mitochondrial-generated ROS and increased mitochondrial DNA damage. This increase in mitochondrial-generated ROS led to an increase in MMP levels. When a mitochondrial ROS scavenger was added, there was a subsequent reduction in MMP levels. These studies reveal that mitochondrial integrity is essential for maintaining the cartilage matrix by altering MMP levels. This provides new and important insights into the role of mitochondria in chondrocyte function and its potential importance in therapeutic approaches.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 57
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2014-10-29
    Beschreibung: Humanin, a short bioactive peptide, inhibits a variety of cell deaths. Humanin-mediated inhibition of neuronal cell death, caused by an Alzheimer’s disease (AD)-linked mutant gene occurs via binding of Humanin to its heterotrimeric Humanin receptor (htHNR), which results in the activation of the Janus-associated kinases (JAKs) and signal transducer and activator and transcription 3 (STAT3) signaling pathway. A previous study demonstrated that the Humanin-induced activation of the htHNR/JAK2/STAT3 signaling pathway leads to increased expression of SH3 domain-binding protein 5 (SH3BP5), which is an essential effector of Humanin’s anti-cell death activity in some cultured neuronal cells. However, it remains unknown whether SH3BP5 is the sole effector of the Humanin signaling pathway via htHNR/JAKs/STAT3. Here we show that the Humanin signaling pathway via htHNR/JAKs/STAT3 increased the expression levels of mRNA and protein of Apollon/Bruce, an unusual member of the inhibitors of apoptosis proteins, and that overexpression of Apollon/Bruce inhibits neuronal death, caused by a London-type familial AD-linked mutant (V642I) of amyloid β precursor protein. Overall, the results indicate that expression of Apollon/Bruce is upregulated by Humanin, and Apollon/Bruce could be an effector of Humanin in a context-dependent manner.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 58
    Publikationsdatum: 2014-10-29
    Beschreibung: Cellular FLICE-like inhibitory protein (Flip) is a negative regulator of nuclear factor κB signaling which has been shown previously to complicate with cardiac hypertrophy. In the present study, we tested the hypothesis that the knockout of Flip would increase cardiac hypertrophy in vivo and in vitro. The effects of Flip knockout on cardiac hypertrophy were investigated using in vitro and in vivo models. Flip was downregulated in transverse aortic constriction (TAC)-induced animal hearts and cardiomyocytes that had been treated with angiotensin II or phenylephrine for 1 h. An in vivo, heart hypertrophy model, was performed by TAC in Flip knockdown and sham mice. The extent of hypertrophy of heart was quantitated by echocardiography, and further confirmed by pathological and molecular examination of heart tissue samples. Conditional knockout of Flip in the murine heart increases the hypertrophic response induced by TAC, whereas cardiac function was preserved with reduced Flip levels in response to hypertrophic stimuli. Western blot experiments further showed Flip knockout activated markedly ASK1/P38 signaling cascades in vivo and in vitro. In conclusion, Flip preserves cardiac functions and inhibits cardiac hypertrophy partially by blocking ASK1/P38 signaling.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 59
    Publikationsdatum: 2014-10-29
    Beschreibung: Cardiac repair and remodeling occur following myocardial infarction (MI). Our previous study demonstrated that platelet-derived growth factor (PDGF)-A/-D and PDGF receptors (PDGFR) are increased in the infarcted heart, with cells expressing PDGFR primarily endothelial and fibroblast-like cells. In the present study, we tested the hypothesis that PDGF contributes to cardiac angiogenesis and fibrogenesis post-MI. Rats with experimental MI were treated with either a PDGFR antagonist (Imatinib, 40 mg/kg/day) or vehicle by gavage, and sham-operated rats served as the controls. Cardiac fibrogenesis, angiogenesis, and ventricular function were detected at weeks 1 and 4 post-MI. We found that (1) transforming growth factor (TGF)-β1, tissue inhibitors of metalloproteinases (TIMP)-1/-2, and type I collagen mRNA were all significantly increased in the infarcted heart at week 1 post-MI, while PDGFR blockade significantly reduced these fibrogenic mediators in the noninfarcted myocardium as compared to controls; (2) fibrosis developed in both the infarcted and noninfarcted myocardium at week 4 with PDGFR blockade significantly suppressing collagen volume in the noninfarcted myocardium; (3) angiogenesis was activated in the infarcted myocardium, particularly at week 1, and was not altered by treatment with imatinib; and (4) ventricular dysfunction was evident in MI rats at week 4, and mildly improved with imatinib treatment. These observations indicated that PDGF can contribute to the development of cardiac interstitial fibrosis in the noninfarcted myocardium, but does not alter scar formation in the infarcted myocardium. Further, this study suggests the potential therapeutic effects of PDGFR blockade on interstitial fibrosis of the infarcted heart.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 60
    Publikationsdatum: 2014-10-29
    Beschreibung: Stromal derived factor (SDF)-1 has been confirmed to regulate angiogenesis in choroidal neovascularization formation via its two receptors, CXC chemokine receptors 4 (CXCR4) and 7 (CXCR7). Previous studies found that there is cross-talk between the transforming growth factor beta (TGF-β) and SDF-1 pathways in some types of immune or tumor cells, but much less is known about this interaction in endothelial cells. This study investigated the effects of TGF-β1 on CXCR4 and CXCR7 expression as well as SDF-1-induced migration and tube formation in choroid-retinal endothelial (RF/6A) cells. RF/6A cells were treated with recombinant TGF-β1 at various concentrations and time points. Real-time PCR and Western blotting were used to examine the mRNA and protein levels of CXCR4 and CXCR7. In addition, transwell migration and Matrigel tube formation analyses were performed to investigate the role of TGF-β1 pretreatment in SDF-1-induced RF/6A cell migration and tube formation. Our results showed that treatment with recombinant human TGF-β1 enhanced the CXCR4 and CXCR7 levels in time- and dose-dependent manners. The increased CXCR4 and CXCR7 expression resulted in increased SDF-1-induced RF/6A cell migration and tube formation. In addition, the transcriptional regulation of CXCR4 and CXCR7 by TGF-β1 was found to be mediated by phosphorylation of the extracellular signal-related kinase1/2 pathway. Altogether, these results demonstrate that a cross-talk exists between the TGF-β1 and SDF-1 pathways in choroid-retinal endothelial cells, reflecting a novel molecular mechanism that explains the pro-angiogenic effects of TGF-β1 and possibly provides new perspectives for the treatment of CNV-associated diseases.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 61
    Publikationsdatum: 2014-10-29
    Beschreibung: Dengue is the most prevalent mosquito-borne viral disease in tropical regions. Severe cases may progress to Dengue hemorrhagic fever, suggesting vascular endothelial dysfunction in disease pathogenesis. In our previous study, we found that Dengue virus type 2 (DENV2) induced apoptosis of vascular endothelial cells via FasL/Fas- and XIAP-associated factor 1 (XAF1)-dependent pathways. In this paper, we demonstrate that DENV2 can induce autophagy in primary human umbilical vein endothelial cells (HUVECs) and the human umbilical vein endothelial cell line EA.hy926. Inhibition of autophagy with 3-methyl adenine promoted apoptosis, while inhibition of apoptosis with Z-VAD-FMK facilitated autophagy in DENV2-infected HUVECs and EA.hy926 cells. Interferon-alpha-inducible protein 6 (IFI6), a putative apoptosis regulator, inhibited DENV2-induced autophagy in EA.hy926 cells, while XAF1, an inhibitor of anti-apoptotic XIAP, facilitated autophagy. Molecular regulators of apoptosis and autophagy interact at multiple levels to determine cell fate. Our data suggest that XAF1 and IFI6 are involved in regulating the balance between autophagy and apoptosis in DENV2-infected endothelial cells.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 62
    Publikationsdatum: 2014-10-29
    Beschreibung: Gentamicin is a member of aminoglycosides, which has represented highly effective antimicrobial agents especially in Gram-negative infections despite their toxic effects in the kidney. Rapid diagnosis is vital to preserve renal function and to slow down renal injury. Owing to the poor sensitivity and specificity of serum creatinine (SCr) and blood urea nitrogen (BUN), new biomarkers for earlier and more accurate detection are needed. The aim of our study was to determine whether kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) may be useful biomarkers in the assessment of gentamicin-induced nephrotoxicity in rats. In this study, the two biomarkers of renal toxicity were assessed via ELISA, quantitative real-time PCR, and immunohistochemistry in rats treated with gentamicin for up to 7 days. Repeated administration of gentamicin to male SD rats for 1, 3, or 7 days resulted in a dose- and time-dependent increase in the expression of KIM-1 and NGAL. Changes in gene and protein expressions were found to correlate with the progressive histopathological alterations and preceded effects on traditional clinical parameters indicative of impaired kidney function. Both of the biomarkers are supported to be used as sensitive indicators of acute kidney injury caused by gentamicin.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 63
    Publikationsdatum: 2014-10-29
    Beschreibung: Accumulating data have shown that microRNAs are involved in the pathogenesis of cancer. miR-202 has been confirmed to be downregulated in several types of human cancer. However, the expression and biological role of miR-202 in osteosarcoma (OS) carcinogenesis and progression remain unclear. In this study, we demonstrated that miR-202 expression is significantly decreased in human OS cell lines and specimens. Restoration of miR-202 expression could inhibit OS cell proliferation, induce cell apoptosis, and suppress tumor growth in nude mice models. We subsequently identified the transcription factor Gli2 as a direct target of miR-202. Overexpression of Gli2 blocked the inhibitory function of miR-202. Taken together, our results indicate that miR-202 acts as a novel tumor suppressor to regulate OS cell proliferation and apoptosis through downregulating Gli2 expression.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 64
    Publikationsdatum: 2014-10-29
    Beschreibung: The aim of this study was to examine the possible impact of Cu,Zn-SOD deficiency on the level of epigenetic modifications in different mouse tissues, and the relationship between these modifications and the NF-κB transcription factor activity. Cu,Zn-SOD deficiency did not influence the level of 5mdC or 5hmdC in the analyzed tissues. Statistically significant organ-/tissue-specific differences between the levels of 5mdC and 5hmdC were demonstrated within each genotype. Also correlations between analyzed parameters pointed to wide tissue/genotype variety; we observed a positive correlation between 5mdC and NF-кB proteins, p50 and RelA, in the liver of wild mice, as well as an inverse correlation between 5mdC and p65 in the brain of Cu,Zn-SOD-deficient animals. Moreover, a positive correlation was revealed between 5mdC and 5hmdC in the liver and brain of knockout mice. As the highest levels of both 5mdC and 5hmdC were observed in the brains of analyzed animals regardless of their genotype, and lower, comparable to each other, levels of these modifications were shown in the kidney and liver, active demethylation process seems to be tissue-/organ-specific and does not necessarily rely solely on the redox/oxidation state of cells. According to the most likely scenario, various tissues may differ in terms of their metabolic rates, which has potential influence on cofactors, and consequently on the activity of TET enzymes or activation of TET-independent mechanisms.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 65
    Publikationsdatum: 2014-10-29
    Beschreibung: Calreticulin (CRT) is a calcium-buffering protein which is predominantly located in endoplasmic reticulum. In the previous mitochondria proteome analysis, we accidentally found that CRT may be also localized at myocardial mitochondria and was upregulated in a rat model of furazolidone-induced dilated cardiomyopathy. To our knowledge, there has not yet been any report of its presence in mitochondria of any cell types. The present study aimed to determine whether CRT was located at the mitochondria of rat cardiomyocytes and whether the mitochondrial CRT was affected by furazolidone. Mitochondrial preparations were isolated from primary cultured neonatal rat cardiomyocytes and purified by differential centrifugation. The purity of mitochondria was assessed by the reduction or elimination of the immunoreactivities of markers for cytosol, nucleus, sarcolemma, and endoplasmic reticulum. Western blot analysis demonstrated the presence of CRT in purified mitochondria of rat cardiomyocytes. The distribution of CRT to mitochondria was further confirmed by immuno-electron microscopy, flow cytometry, and laser scanning confocal microscopy (double staining with MitoTracker Red and CRT-Alexa Fluor 488). Western blot analysis also demonstrated that the mitochondrial content of CRT was significantly enhanced by furazolidone treatment by 2.73 ± 0.13 fold ( P  〈 0.05) in rat cardiomyocytes, which was verified by immuno-electron microscopy. In summary, the present results suggest that CRT is localized at mitochondria of rat cardiomyocytes and such localization is affected by furazolidone.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 66
    Publikationsdatum: 2014-10-29
    Beschreibung: Brain ischemia causes neuronal injury leading to stroke and other related brain diseases. However, the precise mechanism of the ischemia-induced neuronal death remains unclear yet. In this study, we showed that CIIA suppressed neuronal cell death induced by oxygen and glucose deprivation followed by reoxygenation (OGD/R), which mimics ischemia and reperfusion in vivo, in neuroblastoma cell lines as well as primary cortical neurons. Furthermore, CIIA inhibited the OGD/R-induced stimulation of apoptosis signal-regulating kinase 1 (ASK1) and its downstream kinases including c-Jun amino-terminal kinase and p38 kinase, concomitantly blocking ASK1 homo-oligomerization and the binding between ASK1 and TRAF2. CIIA also repressed the OGD/R-induced activation of caspase-3 in neuronal cells. Taken together, our results suggest that CIIA attenuates neurotoxicity caused by OGD/R through inhibiting ASK1-dependent signaling events.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 67
    Publikationsdatum: 2014-10-29
    Beschreibung: We previously demonstrated that 3,4,5-trihydorxycinnamic acid (THC), a derivative of hydroxycinnamic acids, possesses protective effect in lipopolysaccharide (LPS)-induced endotoxemia models. However, the effects of THC in LPS-induced septic kidney are still unclear. Therefore, the present study was carried out to examine the effects of THC in LPS-challenged septic kidney using mesangial cell line and Balb/c mice. THC pretreatment effectively inhibited LPS-induced macrophage infiltration and the secretion of pro-inflammatory cytokines in the kidney of LPS-challenged animals. Pretreatment of rat mesangial cells with THC significantly attenuated LPS-induced PGE 2 production and COX-2 expression. THC also significantly suppressed LPS-induced expression of MCP-1 in LPS-activated septic kidney and rat mesangial cells. In addition, THC significantly attenuated LPS-induced degradation of IκB-α in LPS-induced rat mesangial cells. THC also increased the expression of heme oxygenase-1 (HO-1) in LPS-challenged septic kidney and mesangial cells. Multiple signaling pathways including p38 and AKT have been observed to be involved in the THC-induced activation of HO-1 expression. The present data clearly demonstrate that THC protects LPS-challenged septic kidney by decreasing macrophage infiltration and increasing HO-1 expression, suggesting that THC might be a valuable therapeutic agent for compromised kidney in sepsis.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 68
    Publikationsdatum: 2014-10-29
    Beschreibung: The beneficial effects of mesenchymal stem cells (MSCs) in cardiac cell therapy are greatly limited due to poor survival after transplantation into ischemic hearts. Here, we investigated whether caspase 8 small hairpin RNA (shRNA) modification enhance human MSCs (hMSCs) survival and improve infarcted heart function. Recombinant adenovirus encoding pre-miRNA-155-designed caspase 8 shRNA was prepared to inhibit caspase 8 expression in hMSCs. The effect of caspase 8 shRNA modification on protecting hMSCs from apoptosis under the conditions of serum deprivation and hypoxia was tested by Annexin V/PI staining and caspase 8 activity assay. The caspase 8 shRNA-modified and superparamagnetic iron oxide (SPIO)-labeled hMSCs were injected into the border zone of the infarcted region of rat heart. Echocardiography and Masson trichrome staining were performed to assess heart function and cardiac fibrosis. Our results showed that adenovirus-mediated caspase 8 shRNA could efficiently inhibit caspase 8 expression in hMSCs. Knock-down of caspase 8 expression lead to inhibition of hMSCs apoptosis, reduction of caspase 8 activity and up-regulations of HGF, IGF-1 and Bcl-2. Transplantation of caspase 8 shRNA-modified hMSCs could significantly improve infracted heart function, attenuate cardiac fibrosis. Consistently, the rate of cardiomyocyte apoptosis and caspase 8 activity were significantly decreased, and the survival rate of transplanted hMSCs was markedly elevated in the myocardium receiving caspase 8 shRNA-modified hMSCs transplantation. Together, our findings implicated the therapeutic potential of caspase 8 shRNA-modified hMSCs in improving the infarcted heart function.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 69
    Publikationsdatum: 2014-10-29
    Beschreibung: Granulocyte colony-stimulating factor (G-CSF) is a controversial chemical in cardiac cell therapy. Myocardial homing of mobilized bone marrow-derived cells is thought to play a critical role in observed G-CSF-induced cardiac repair; meanwhile, the activation of proliferative potential of cardiac stem cells (CSCs) residing in the heart is a significant challenge. The present study aims to investigate whether G-CSF receptor is expressed in adult resident Sca-1 + CSCs and determine the effect of G-CSF treatment on the proliferation of CSCs. For cardiac cells isolation, 12-week-old male C57BL/6 mice were anesthetized in a chamber containing 2.5 % isoflurane in oxygen, euthanized by CO 2 inhalation and then sacrificed by cervical dislocation. Magnetic-activated cell sorting was employed to acquire highly purified Sca-1 + CSCs. We found that G-CSF receptor was expressed in adult resident Sca-1 + CSCs by immunofluorescence staining and Western blotting. Exposure of Sca-1 + cells to G-CSF in the culture medium for 72 h induced time-dependent but self-limiting cell cycle acceleration with a restricted effect on the CSC proliferation. As a result, it has provided a new insight to focus on the association between cardiac G-CSF therapy and adult resident stem cell activation. It may suggest gaining a deeper insight into the mechanisms of the interaction between CSCs and G-CSF to develop a synergistic strategy based on resident stem cell and G-CSF therapy for heart disease.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 70
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2014-10-29
    Beschreibung: Akirin2 is an important nuclear factor which plays functions in innate immune response, myogenesis, muscle development, and carcinogenesis. In this study, akirin2 genes were cloned from 4-day-old Sanhuang and AA + broiler, and its expression patterns were analyzed by RT-PCR. The results showed that there were four SNPs in the 5′-terminal region of akirin2 coding sequences. Expression profile analysis showed that the akirin2 transcripts were constitutively expressed in 15 tissues tested, and similar expression patterns were found between the two breeds of broilers. In addition, one of the interesting findings was that the akirin2 gene is highly expressed in blood and lowly expressed in heart, respectively. These data can serve as a foundation for further studying functions of akirin2 gene.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 71
    Publikationsdatum: 2014-10-29
    Beschreibung: Stem cells dwell at the “stem cell niche” to accomplish a series of biological processes. The composition of the niche should be determined because the insufficient understanding of this feature limits the development in the study of stem cells. We showed in our study on mesenchymal stem cells (MSCs) that the MSCs first neighbored to CD31 + cells, which proved to be endothelial progenitor cells (EPCs), and formed a group of cell colony before they exerted their biological functions. It was further proved that EPCs have close interactions with MSCs and promoted the self-renewal of the MSCs in vitro and in vivo. Together with these achievements, we hypothesized that EPCs may be a possible biological component of the MSC stem cell niche and affect the biological processes of MSCs.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 72
    Publikationsdatum: 2014-10-29
    Beschreibung: Pulmonary arterial remodeling is characterized by excessive proliferation, migration, and pro-differentiation and fibrotic activation of adventitial fibroblasts in pulmonary arterial hypertension (PAH) process. Several lines of evidence indicate that serotonin (5-HT) plays a central role in the pathogenesis of pulmonary arterial remodeling. In the present study, we investigated whether 5-HT is directly involved in the functional regulation of pulmonary artery adventitial fibroblasts (PAFs). Incubation of cultured rat PAFs with 5-HT caused a dose-dependent stimulation of cell proliferation, migration activity, and a time-dependent increase of α-SMA expression, a marker of fibroblast differentiation into myofibroblasts, and adventitia fibrosis, evaluating connective tissue growth factor (CTGF) and extracellular matrix (ECM) mRNAs and proteins. These effects were attenuated by the 5-HT 2A receptor antagonist, ketanserin and mimicked by the 5-HT 2A receptor agonist DOI. 5-HT-induced fibroblasts phenotypic alterations and ECM accumulation were dependent on stimulation of transforming growth factor (TGF)-β1 as demonstrated using a neutralizing antibody. 5-HT also caused Smad3 phosphorylation and ketanserin diminished 5-HT-induced Smad3 activation. These results demonstrated that 5-HT can directly activate PAFs through 5-HT 2A receptor and promote fibroblasts phenotypic alterations and adventitia fibrosis depending on the signaling of the TGF-β1/Smad3 pathway.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 73
    Publikationsdatum: 2014-10-29
    Beschreibung: Recent studies have revealed critical roles that nuclear receptors like LXR-α (Liver X Receptor- alpha) plays as a class of post-transcriptional gene regulator in skin development and diseases. Keeping in view the fact that LXR-α plays crucial role in keratinocyte proliferation and differentiation, it becomes imperative to dissect the pathways and role of LXR-α genomics in the pathogenesis of psoriasis with ultimate aim to explore novel preventive/therapeutic strategies as treatment options. To explore the effects of agonists and activators of LXR-α on its own gene expression and the putative targets in psoriatic keratinocytes. Identification of promoter sequences for (vitamin D receptor) VDR and Catalase were done using in silico analysis followed by β-galactosidase (β-gal) reporter plasmid assay in keratinocytes from clinically heathy subjects. Determination of relative levels of LXR-α,VDR and catalase in control versus treated cells upon activation of LXR-α with Atorvastatin + 22R hydroxycholestrol and Ascorbic acid + 22R hydroxycholestrol was done by PCR and Cell Proliferation Assay. The cells transfected with the reporter plasmid element for VDR and catalase showed more than 5 and 4 fold increase respectively in the β-gal activity compared to the control. An increase of 55 % in LXR-α gene expression at RNA level was observed in Atorvastatin + 22-R hydroxycholestrol compared to 24 % in Ascorbic acid + 22-ROH cholesterol. The expression of the VDR and Catalase was significantly increased in both treated keratinocytes compared to its normal counterpart.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 74
    Publikationsdatum: 2014-10-29
    Beschreibung: Alzheimer’s disease (AD) is a degenerative process of the brain, leading to increasing impairment of cognitive functions, and is associated with accumulation in the brain of several amyloid-beta (Aβ) peptides (as amyloid plaques), including Aβ 25–35 . Neutrophils, the most abundant immune cell type infiltrated in the brain of AD patients, accumulate behind amyloid plaques. Aβ peptides can trigger activation of chemotaxis and oxidative burst in neutrophils, suggesting a role in modulating the neuroinflammation process. We have shown that Aβ 25–35 can induce the release from human neutrophils of pro-MMP-9, a metalloprotease involved in the onset of inflammation, corroborating the hypothesis of the involvement of infiltrated neutrophils in the inflammatory processes, which occur in the AD brain.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 75
    Publikationsdatum: 2014-10-29
    Beschreibung: Decreased GLUT4 expression and impaired GLUT4 cell membrane translocation are involved in type 2 diabetes mellitus (T2DM) pathogenesis so the factors impacting GLUT4 expression may be associated with T2DM. In this study, we identified four miRNAs: miR-31, miR-93, miR-146a, and miR-199a which suppress GLUT4 expression in HEK293T cells. Subsequently, we determined expression of these four miRNAs in plasma samples of T2DM patients, T2DM susceptible individuals, and healthy controls and found miR-199a was overexpressed in patients’ plasma compared with healthy control. Because the miR-199a binding site in GLUT4 3′UTR is highly conserved among vertebrates, we detected the glucose uptake in rat L6 myoblast cells through gain- and loss-of-function of miR-199a. We found that miR-199a can repress glucose uptake in L6 cells, which was rescued by GLUT4 overexpression. These results indicate that T2DM patients may have a high level miR-199a that reduce GLUT4 expression and contribute to the insulin resistance. Hence, miR-199a may be a novel biomarker for risk estimation and classification in T2DM patients.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 76
    Publikationsdatum: 2014-09-26
    Beschreibung: Angiotensin II (Ang II) has been shown to induce receptor activator of nuclear factor-κB ligand (RANKL) expression in osteoblasts associated with its effect on reactive oxygen species (ROS) production. The objective of the present study was to investigate the potential pathways by which Ang II induces RANKL expression and the role of ROS in Ang II-induced RANKL expression in mouse osteoblastic MC3T3-E1 cells. Treatment with Ang IIinduced RANKL expression in a dose- and time-dependent manner in osteoblasts, which was attenuated by pre-treatment with an AT1 receptor antagonist (olmesartan), ROS scavenger ( N -acetylcysteine, NAC), or the ERK inhibitor (U0126), but not with AT2R antagonist (PD123319). Furthermore, Ang II enhanced AT1R and NAD(P)H oxidase (NOX) p22 phox and p67 phox expression and activity in osteoblasts. In addition, Ang II promoted ROS production, which was mitigated by pre-treatment with olmesartan or a NOX inhibitor (diphenyleneiodonium, DPI), but not with PD1123319 or U0126, in osteoblasts. Moreover, Ang II enhanced the ERK1/2 phosphorylation, which was abrogated by pre-treatment with olmesartan, NAC, DPI, or U0126 in osteoblasts. These results suggest that Ang II, through its AT1R, enhanced NOX activity and ROS production, and activated the ERK pathway to up-regulate RANKL expression in osteoblasts in vitro.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 77
    Publikationsdatum: 2014-09-26
    Beschreibung: The presence of oxidative stress in sperm cryopreservation induces sperm DNA damage. Our previous study has discovered that γH2AX, the DNA-damaged marker, was activated in the early mouse embryos fertilized with hydrogen peroxide (H 2 O 2 )-treated sperm. Furthermore, we found that checkpoint proteins ATM and Chk1 were phosphorylated and activated in the early mouse embryos. On the basis of previous researches, we examined the effects of sperm DNA damage on cell cycle arrest in mouse zygotes fertilized with H 2 O 2 -treated sperm. Development of fertilized eggs arrested at the PN disappearance stage. At 19 and 24 hours post-insemination (hpi), the percentage of zygotes at the PN disappearance stage was higher in H 2 O 2 -treated group compared to the control group. Immunofluorescence staining revealed Phospho-Cdc25C (Ser216) and Phospho-Cdc25B (Ser323) in or surrounding a single pronucleus, following insemination with H 2 O 2 -treated sperm. Our study suggests that fertilization with DNA-damaged sperm results in cell cycle arrest mediated by G2/M checkpoint activation in one of the pronuclei in mouse zygotes fertilized with H 2 O 2 -treated sperm; Phospho-Cdc25C and Phospho-Cdc25B correlate with activating G2/M checkpoint in zygotes fertilized with H 2 O 2 -treated sperm.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 78
    Publikationsdatum: 2014-09-26
    Beschreibung: Cellular adhesion molecules might be good markers in some types of malignant tumors, thus providing useful information in diagnosis and prognosis. The objective of this study was to determine the clinical significance of the serum levels of epithelial cell adhesion molecule (EPCAM) in lung cancer patients. One hundred and thirty lung cancer patients were enrolled in this study. Serum EPCAM levels were determined by the solid-phase sandwich ELISA method. Age- and sex-matched 34 healthy controls were included in the analysis. The median age was 58 years, ranging 35–80 years. The majority of the patients had NSCLC (83.8 %) and stage IV disease (60.8 %). There was no significant difference in the serum EPCAM levels between lung cancer patients and healthy controls ( p  = 0.16). Moreover, known clinical variables including age of patient, gender, histology, stage of disease, and response to chemotherapy were not found to be correlated with serum EPCAM concentrations ( p  〉 0.05). Similarly, no prognostic role was found for outcome (1-year survival rate 62 vs. 65.1 %, p  = 0.89). In conclusion, serum EPCAM concentrations have no diagnostic, predictive, and prognostic roles in lung cancer patients.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 79
    Publikationsdatum: 2014-09-26
    Beschreibung: Previously, we confirmed that taurine prevented diabetes-induced apoptosis in retinal glial cells via its anti-oxidation and anti-glutamate excitotoxicity mechanisms. The aim of this study is to investigate the effects of taurine on angiopoietin-2 (Ang-2)/Tie-2 system expressions and apoptosis in high glucose-treated retinal microvascular pericytes (RMPs). Also, the possible mechanism involved in the inhibition of taurine on RMPs apoptosis is investigated. The expressions of Ang-2, Tie-2 were detected by qRT-PCR and ELISA. The level of phosphorylated Tie-2 (P-Tie-2) was examined by ELISA. Hoechst 33342 and Annexin V/PI staining were used to detect RMPs apoptosis. The activity of caspase-3 was detected by assay kit. In 25 mM high glucose group, the expression of Ang-2 was increased significantly, taurine down-regulated Ang-2 in a dose (0.1, 1, and 10 mM)-dependent manner ( P  〈 0.05). The Tie-2 expression and P-Tie-2 level were decreased in high glucose group ( P  〈 0.05). Interestingly, taurine at 1 and 10 mM showed significant increase in Tie-2 expression and P-Tie-2 level ( P  〈 0.05). The number of apoptotic RMPs and the activity of caspase-3 increased in the presence of high glucose ( P  〈 0.05). Treatment with taurine at 1 mM decreased the number of apoptotic RMPs and the activity of caspase-3 ( P  〈 0.05). Blocking antibody and small interfering RNA (siRNA) treatment showed that taurine required Tie-2 to perform its anti-apoptotic effect. Taken together, our data suggest that high glucose-induced Ang-2/Tie-2 system expressions alteration can be reversed by taurine, and that taurine can inhibit high glucose-induced RMPs apoptosis via Tie-2.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 80
    Publikationsdatum: 2014-09-26
    Beschreibung: Methionine is the only endogenous precursor of homocysteine, sulfur—containing amino acid and well known as risk factor for various brain disorders. Acetylcholinesterase is a serine protease that rapidly hydrolyzes neurotransmitter acetylcholine. It is widely distributed in different brain regions. The aim of this study was to elucidate the effects of methionine nutritional overload on acetylcholinesterase activity in the rat brain. Males of Wistar rats were randomly divided into control and experimental group, fed from 30th to 60th postnatal day with standard or methionine-enriched diet (double content comparing to standard, 7.7 g/kg), respectively. On the 61st postnatal day, total homocysteine concentration was determined and showed that animals fed with methionine-enriched diet had significantly higher serum total homocysteine concentrations comparing to control rats ( p  〈 0.01). Acetylcholinesterase activity has been determined spectrophotometrically in homogenates of the cerebral cortex, hippocampus, thalamus, and nc. caudatus. Acetylcholinesterase activity showed tendency to decrease in all examined brain structures in experimental comparing to control rats, while statistical significance of this reduction was achieved in the cerebral cortex ( p  〈 0.05). Brain slices were stained with haematoxylin and eosin (H&E) and observed under light microscopy. Histological analysis of H&E-stained brain slices showed that there were no changes in the brain tissue of rats which were on methionine-enriched diet compared to control rats. Results of this study showed selective vulnerability of different brain regions on reduction of acetylcholinesterase activity induced by methionine-enriched diet and consecutive hyperhomocysteinemia.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 81
    Publikationsdatum: 2014-09-26
    Beschreibung: Tri- ortho -cresyl phosphate (TOCP) is an organophosphorus ester and has been widely used in industry. It is found that TOCP induced delayed neurotoxicity in humans and sensitive animal species. However, the mechanism of TOCP-induced neural cytotoxicity remains unclear. In this study, we studied whether autophagy is involved in TOCP-induced neural cytotoxicity in human neuroblastoma SH-SY5Y cells. We found that 0.5 and 1.0 mM TOCP treatment significantly increased the ectopic accumulation of microtubule-associated protein 1 light chain 3 (LC3)-immunopositive puncta, Beclin 1, and LC3-II/LC3-I levels in SH-SY5Y cells in a dose-dependent manner. Notably, by monodansylcadaverine staining method, we found abundant punctate fluorescent acidic vesicular organelles in TOCP-treated cells. Furthermore, ultrastructural observation under the transmission electron microscope indicated that the cytoplasm was occupied by autophagosomes in TOCP-treated SH-SY5Y cells. Thus, these results suggest that TOCP may induce autophagy, and autophagy may be involved in the development of TOCP-induced neural cytotoxicity.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 82
    Publikationsdatum: 2014-09-26
    Beschreibung: Helicobacter ( H. ) pylori strains that express the cagA and s1a vacA genes are associated with an increased risk for gastric cancer. Here, we examined the association between the products of these virulence genes with the development of gastric cancer by immunohistochemical staining of gastric biopsy specimens taken from 208 routine gastroscopies and 43 gastric cancer patients. The correlation was analyzed by multivariate logistic regression. CagA and VacA expressions in gastric mucosa were significantly associated with chronic gastritis (CG) and intestinal metaplasia (IM), respectively, accompanying CG independent of age. The association of CagA expression with IM accompanying CG was increased in patients over 50-year old ( p  〈 0.01) and that of VacA with CG was significant in patients younger than 50 year ( p  〈 0.05). VacA and CagA were associated with mild IM incidence ( p  = 0.025 and p  = 0.076, respectively) but not advanced IM. In the 43 gastric cancer patients, positivity for VacA was significantly higher in cases of CG and IM than carcinoma ( p  = 0.042), while that for CagA was slightly higher for individuals with carcinoma than those with CG and IM. These results indicate that CagA and VacA are critical factors for inducing CG and the subsequent progression of IM from CG with an increasing age.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 83
    Publikationsdatum: 2014-09-26
    Beschreibung: Aberrant expression of microRNAs (miRNAs) has been shown to play important roles in cancer progression as a result of changes in expression of their target genes. In this study, we investigated the roles of miR - 520d - 3p on gastric cancer (GC) cell proliferation, migration, and invasion, and confirmed that this miRNA regulates EphA2 expression. The mRNA expression levels of miR - 520d - 3p and EphA2 in GC tissues and cell lines were evaluated. The clinical and prognostic significance of miR - 520d - 3p was assessed. The biological function of miR - 520d - 3p in GC cells was investigated using a methylthiazolyldiphenyl-tetrazolium bromide assay, cell cycle assay, transwell invasion assay, and wound-healing assay. miR - 520d - 3p expression was down-regulated and inversely correlated with the expression of EphA2 in GC tissues and cell lines. Lower expression of miR - 520d - 3p was associated with tumor invasion ( P  = 0.0357), lymph nodes metastasis ( P  = 0.0272), a higher clinical stage ( P  = 0.0041), and poorer overall survival ( P  = 0.0105). Luciferase assays revealed that miR - 520d - 3p inhibited EphA2 expression by targeting the 3′-untranslated region of EphA2 mRNA. Overexpression of miR - 520d - 3p dramatically inhibited the proliferation, cell cycle progression, invasion, and migration of GC cells, while down-regulation substantially promoted these properties. Moreover, c-Myc, CyclinD1, and matrix metalloproteinase-9 expression levels were down-regulated in miR - 520d - 3p mimic-transfected cells and up-regulated in miR - 520d - 3p inhibitor-transfected cells. Taken together, our data showed that miR - 520d - 3p appears to contribute to GC progression via the regulation of EphA2 and could serve as a novel prognostic and potential therapeutic marker.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 84
    Publikationsdatum: 2014-09-26
    Beschreibung: This study examined the effect of nitric oxide on the production of soluble ECE-1. Activity of ECE-1 in media was measured using a quenched fluorescent substrate assay, and expressed as a percentage of control. Endothelial cells were incubated with the nitric oxide donor Diethylenetriamine NONOate (DETA; 250–800 µM), NOS substrate l -Arg (200–1,000 µM), a l -Arg transport inhibitor ( l -Lys; 10 µM) and NOS inhibitors ( l -Gln and N5-[imino(nitroamino)methyl]- l -ornithine, methyl ester, monohydrochloride ( l -NAME); 10–100 µM). The effect of l -Arg (1,000 µM) was also tested in the presence of l -Lys (10 µM), l -Gln (100 µM) and l -NAME (10–100 µM). Ultracentrifugation (100,000× g , 4 °C, 1 h) completely removed ECE-1 activity from the supernatant. In addition, fractionation of concentrated media on a sucrose density gradient indicated that ECE-1 activity was localised to the mid portion of the gradient, thus suggesting the possible role of exosomes in ECE-1 release. Production of soluble ECE-1 by Ea.hy926 cells was inhibited significantly ( P  〈 0.05, unpaired t test, n  = 4) in the presence of DETA (75.31 ± 3.59; 800 µM) and l -Arg (60.97 ± 9.22; 1,000 µM). l -Arg-mediated reduction in the release of soluble ECE-1 was blocked by the inhibition of NOS using l -NAME (100 µM; 99.19 ± 0.58) and l -Gln (100 µM; 104.41 ± 0.65). In addition, the presence of l -Lys (10 µM) significantly blocked the l -Arg (1,000 µM)-induced reduction in soluble ECE-1 levels (122.38 ± 13.16). These treatments had no effect on the expression of ECE-1 on the cell surface. Our data provide evidence that NO can inhibit the production of soluble ECE-1 by endothelial cells.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 85
    Publikationsdatum: 2014-09-26
    Beschreibung: Epidermal growth factor receptor (EGFR) interacting with Stat3 is considered to be an attractive therapeutic target. In the current study, we investigated the effect of resveratrol and its two 4′-methylthio- trans -stilbene derivatives (3-M-4′-MTS; S2) (3,5-DM-4″-MTS; S5) on EGFR and Stat3 activation in human immortalized HaCaT keratinocytes and epidermoid carcinoma A431 cells. In the HaCaT cells both derivatives, similarly as resveratrol, decreased the total level of the EGFR receptor. In the A431 cells, resveratrol in the higher dose significantly ( p  〈 0.05) reduced Y1173 and Y1068 EGFR residue phosphorylation, while S2 affected only the phosphorylation of the Y1068 residue. In this cell line, resveratrol in both tested doses and the S2 derivative in the lower concentration significantly diminished Stat3 binding capacity to the DNA consensus site. The effect of the tested compounds on Stat3 activation in HaCaT cells was only slightly affected. These results indicate that methylthiostilbenes are not more potent modulators of the EGFR/Stat3 complex than resveratrol and that introducing an additional methoxy group makes them less effective.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 86
    Publikationsdatum: 2014-09-26
    Beschreibung: Phenotype modulation of pulmonary artery smooth muscle cells (PASMCs) plays an important role during hypoxia-induced vascular remodeling and pulmonary hypertension (PAH). We had previously shown that calcium-sensing receptor (CaSR) is expressed in rat PASMCs. However, little is known about the role of CaSR in phenotypic modulation of PASMCs in hypoxia-induced PAH as well as the underlying mechanisms. In this study, we investigated whether CaSR induces the proliferation of PASMCs in small pulmonary arteries from both rats and human with PAH. PAH was induced by exposing rats to hypoxia for 7–21 days. The mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVI), the percentage of medial wall thickness to the external diameter (WT %), and cross-sectional total vessel wall area to the total area (WA %) of small pulmonary arteries were determined by hematoxylin and eosin (HE), masson trichrome and Weigert’s staining. The protein expressions of matrix metalloproteinase (MMP)-2 and MMP-9, the tissue inhibitors of metalloproteinase (TIMP)-3, CaSR, proliferating cell nuclear antigen (PCNA), phosphorylated extracellular signal-regulated kinase (p-ERK), and smooth muscle cell (SMC) phenotype marker proteins in rat small pulmonary arteries, including calponin, SMα-actin (SMAα), and osteopontin (OPN), were analyzed by immunohistochemistry and Western blotting, respectively. In addition, immunohistochemistry was applied to paraffin-embedded human tissues from lungs of normal human and PAH patients with chronic heart failure (PAH/CHF). Compared with the control group, mPAP, RVI, WT % and WA % in PAH rats were gradually increased with the prolonged hypoxia. At the same time, the expressions of CaSR, MMP-2, MMP-9, TIMP-3, PCNA, OPN, and p-ERK were markedly increased, while the expressions of SMAα and calponin were significantly reduced in lung tissues or small pulmonary arteries of PAH rats. Neomycin (an agonist of CaSR) enhanced but NPS2390 (an antagonist of CaSR) weakened these hypoxic effects. We further found that the expression change of CaSR, PCNA, and SMC phenotypic marker proteins in PAH/CHF lungs was similar to those in PAH rats. Our data suggest that CaSR is involved in the pulmonary vascular remodeling and PAH by promoting phenotypic modulation of small pulmonary arteries.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 87
    Publikationsdatum: 2014-09-26
    Beschreibung: The ex vivo and in vitro effects of quercetin on NTPDase, adenosine deaminase (ADA), and acetycholinesterase (AChE) activities in lymphocytes, as well as the effects of quercetin on butyrylcholinesterase (BChE) activity in serum and myeloperoxidase (MPO) activity in plasma were determined in rats. For the ex vivo experiment, animals were orally exposed to Cadmium (Cd) for 45 days. Animals were divided into eight groups: saline/ethanol, saline/Querc 5 mg/kg, saline/Querc 25 mg/kg, saline/Querc 50 mg/kg, Cd/ethanol, Cd/Querc 5 mg/kg, Cd/Querc 25 mg/kg, and Cd/Querc 50 mg/kg. The ex vivo data showed an increase in the ATP and ADP hydrolysis and ADA activity in Cd-exposed rats when compared to the control group. The treatment with quercetin 25 and 50 mg/kg prevented this increase in the ATP and ADP hydrolysis, while the treatment with quercetin 5, 25, and 50 mg/kg prevented the increase in the ADA activity. AChE, BChE, and MPO activities ex vivo presented an increase in the Cd-exposed group when compared to the control group, and the treatment with quercetin 5, 25, and 50 mg/kg prevented this increase caused by Cd exposure. The in vitro experiment showed that quercetin 5, 10, 25, or 50 µM decreased the ADA activity proportionally to the increase of the concentrations of quercetin when compared to the control group. Thus, we can suggest that the quercetin is able to modulate NTPDase, ADA, AChE, and MPO activities and contribute to maintain the levels of ATP, adenosine, and acetylcholine normal, respectively, exhibiting potent pro-inflammatory and anti-inflammatory actions.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 88
    Publikationsdatum: 2014-09-26
    Beschreibung: Ezrin is overexpressed in a variety of neoplastic cells and involved in the later stages of tumor progression and metastasis. Ezrin expression can be regulated at both the transcriptional and post-transcriptional levels. We used a combination of bioinformatics and experimental techniques to demonstrate that the miR-204 is a direct negative regulator of ezrin. Overexpression of miR-204 mimics decreased the activity of a luciferase reporter containing the ezrin 3′ UTR and led to repression of ezrin protein. In contrast, ectopic expression of miR-204 inhibitor elevated ezrin expression. We also show that miR-204 is down-regulated in a panel of glioma tissues and in high invasive glioma cell lines we examined. Moreover, miR-204 mimics significantly reduced glioma cell migration and invasion, while miR-204 inhibitor generated the opposite results. Finally, overexpression of miR-204 and knockdown of ezrin reduced glioma cell invasion, and these effects could be rescued by re-expression of ezrin. These findings reveal that miR-204 could be partly due to its inhibitory effects on glioma cell migration and invasion through regulating ezrin expression.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 89
    Publikationsdatum: 2014-09-26
    Beschreibung: Under some pathological conditions, the natural dicarbonyl compounds can accumulate in the blood. The examples are malonyldialdehyde (MDA) formed as a secondary product of lipid peroxidation of unsaturated fatty acids during atherosclerosis, and glyoxal (GOX), a homolog of MDA, which accumulates during glucose autoxidation in patients with diabetes mellitus. This study compared the influence of both dicarbonyl compounds on low-density lipoproteins (LDL) and the membrane of endotheliocytes. In comparison with GOX, MDA induced more pronounced changes in physical and chemical properties of LDL particles. On the other hand, GOX-modified LDL particles were more prone to oxidation and aggregation than MDA-modified LDL. Incubation of endotheliocytes with MDA increased cell mechanical stiffness in contrast to incubation with GOX, which decreased it.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 90
    Publikationsdatum: 2014-09-26
    Beschreibung: MicroRNAs (miRNAs) are a class of small endogenous gene regulators that play important roles in various developmental and pathological processes. However, little is known about the precise identity and functions of miR-26b in posterior capsule opacification (PCO). In this study, we report that the expression of miR-26b is decreased in human PCO-attached lens epithelial cells (LECs) and SRA01/04 cells in the presence of TGF-β2. Overexpression of miR-26b inhibited the proliferation of LECs based on MTT assays and BrdU incorporation assays. In addition, the overexpression of miR-26b inhibited the migration ability of LECs, as shown by wound-healing and transwell migration assays. The overexpression of miR-26b increased the level of the lens epithelial marker E-cadherin and reduced the levels of mesenchymal-related proteins, such as fibronectin, a-SMA, and type I collagen, in SRA01/04 cells in the presence of TGF-β2. Furthermore, the upregulation of E-cadherin and downregulation of mesenchymal-related proteins were induced in human PCO-attached LECs transfected with miR-26b mimics. We further demonstrated that Smad4 and COX-2 are targets of miR-26b in LECs using luciferase reporter assays. These data reveal that miR-26b can inhibit the proliferation, migration, and EMT of lens epithelial cells, and restoration of miRNA-26b may be a potential, novel therapeutic target for the prevention and treatment of posterior capsule opacification.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 91
    Publikationsdatum: 2014-09-26
    Beschreibung: Ionizing radiation (IR) is known to be a cause of telomere dysfunction in tumor cells; however, very few studies have investigated X-ray-related changes in telomere length and the telomerase activity in normal human cells, such as umbilical vein endothelial cells (HUVECs). The loss of a few hundred base pairs from a shortened telomere has been shown to be important with respect to cellular senescence, although it may not be detected according to traditional mean telomere length [assessed as the terminal restriction fragment (TRF)] analyses. In the present study, a continuous time window from irradiation was selected to examine changes in the telomere length, including the mean TRF length, percentage of the telomere length, telomerase activity, apoptotic rate, and survival rate in HUVECs from the first day to the fourth day after the administration of a 0.5-Gy dose of irradiation. The mean TRF length in the irradiated HUVECs showed shorter telomere length in first 3 days, but they were not statistically significant. On the other hand, according to the percentage analysis of the telomere length, a decreasing tendency was noted in the longer telomere lengths (9.4–4.4 kb), with a significant increase in the shortest telomeres (4.4–2.3 kb) among the irradiated cells versus the controls from the first day to the third after irradiation; no significant differences were noted on the fourth day. These results suggest that the shortest telomeres are sensitive to the late stage of radiation damage. The proliferation of irradiated cells was suppressed after IR in contrast to the non-irradiated cells. The apoptotic rate was elevated initially both in IR- and non-IR-cells, but that of IR-cells was maintained at an elevated level thereafter in contrast to that of non-IR-cells decreasing promptly. Therefore, a 0.5-Gy dose of IR induces persistent apoptosis leading to an apparent growth arrest of the normal HUVECs.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 92
    Publikationsdatum: 2014-09-26
    Beschreibung: Low blood levels of long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) have been reported to be associated with increased risk for cardiovascular disease (CVD) deaths. Systematic studies measuring LC n-3 PUFA blood levels (pre and post-treatment) in defined subjects, and monitoring the correction of nutritional deficiency with a pure LC n-3 PUFA formulation in sufficient doses, while monitoring CVD risk factors are lacking. We tested the efficacy of a novel LC n-3 PUFA Medical Food formulation (VASCAZEN ® , 〉 90 % pure with a 6:1 eicosapentaenoic acid-(EPA):docosahexaenoic acid-(DHA) ratio; 6:1-OM3), to correct such deficiency and determine the concomitant effects on lipid profiles. Of 655 subjects screened, 89 % were LC n-3 PUFA deficient (Omega-Score, (OS) = blood EPA + DHA + Docosapentaenoic acid 〈 6.1 %). From these, a study was conducted on 110 ambulatory cardiovascular subjects. Placebo: corn oil. Primary endpoint: change in OS. Secondary endpoint: changes in blood lipid profiles. At 8 weeks of treatment with 6:1-OM3 (4 g/day), placebo-adjusted median OS levels ( n  = 56) significantly improved (132 %, P  〈 0.0001) with a decrease in AA (arachidonic acid): EPA ratio (82 %, P  〈 0.0001). In hypertriglyceridemic subjects (TG 2.26–5.65 mmol/L), HDL-C improved (9 %, P  = 0.0069), TG-reduced (48 %, P  〈 0.0001), and VLDL-C reduced (30 %, P  = 0.0023), without significantly affecting LDL-C levels. This study confirms that LC n-3 PUFA deficiency is prevalent in the US population, and its correction with 6:1-OM3 in CVD subjects improves lipid profiles. The purity, EPA:DHA ratio and dose are determinant factors for optimal efficacy of a formulation in reducing CVD risk factors.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 93
    Publikationsdatum: 2014-09-26
    Beschreibung: Nin one binding-1 protein (NOB1) is a kind of zinc protein involved in ribosome biogenesis and controlled proteolysis. To explore the function of NOB1 in human prostate malignancy, we analyzed the expression of NOB1 in prostate cancer and found that NOB1 was elevated in prostate cancer tissues compared to the adjacent normal tissues. Knockdown of NOB1 by lentivirus-shRNA inhibited the proliferation and colony-formation ability of PC-3 and DU145 prostate cancer cells. Cell cycle analysis showed that silencing of NOB1 caused G0/G1 phase arrest and a slight decrease in S phase ( P  〈 0.05). Furthermore, knockdown of NOB1 significantly suppressed the mobility of PC-3 and DU145 prostate cancer cells ( P  〈 0.05). Collectively, these findings suggested that NOB1 might be involved in tumorigenecity of prostate cancer, and could be a potential molecular target for prostate cancer gene therapy.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 94
    Publikationsdatum: 2014-09-26
    Beschreibung: CD44 is a cell surface protein and it is widely used as a cancer stem cell marker in various cancer types including gastric cancer. We conducted proteomic analysis in CD44(+) and CD44(−) gastric cancer cells to understand characteristics of CD44(+) and CD44(−) cells. In the present study, we sorted cells from the gastric cancer cell line MKN45 according to CD44 expression to separate out CD44(+) and CD44(−) cells. And we conducted RT-PCR to identify mRNA expression of cancer stem cell markers in CD44(+) and CD44(−) cells. Cancer stem cell markers showed upregulated expression in CD44(+) cells. Next, we performed two-dimensional electrophoresis analysis to determine the differential expression pattern of proteins in each group; control, CD44(+), and CD44(−) MKN45 cells. We found a total of 113 spots that varied in expression between CD44(+) and CD44(−) cells, and subjected 20 of those protein spots to MALDI-MS. We selected the three proteins (HSPA8; heat shock cognate 71 kDa protein isoform 1, ezrin, α-enolase) upregulated in CD44(+) cells than CD44(−) cells and one protein (prohibitin) showed increased expression in CD44(−) cells. We validated the protein expression levels of four selected proteins by Western blot. We suggest that our study could be a helpful background to study CD44(+) cancer stem-like cells and differences between CD44(+) and CD44(−) cells in gastric cancer.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 95
    Publikationsdatum: 2014-09-26
    Beschreibung: In this study, the role of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK1/2), heparin-binding EGF-like growth factor (HB-EGF), general metalloproteinases, matrix metalloproteinases-2 (MMP-2) in mediating the mitogenic action of thrombin in rat vascular smooth muscle cells (VSMC) was investigated. The incubation of rat VSMC with thrombin (1 U/ml) for 5 min resulted in significant ( p  〈 0.001) increase of ERK1/2 phosphorylation by 8.7 ± 0.9-fold, EGFR phosphorylation by 8.5 ± 1.3-fold ( p  〈 0.001) and DNA synthesis by 3.6 ± 0.4-fold ( p  〈 0.001). Separate 30-min pretreatments with EGFR tyrosine kinase irreversible inhibitor, 10 µM PD169540 (PD), and 20 µM anti-HB-EGF antibody significantly reduced thrombin-stimulated EGFR and ERK1/2 phosphorylation by 81, 72 % and by 48 and 61 %, respectively. Furthermore, the same pretreatments with PD or anti-HB-EGF antibody reduced thrombin-induced VSMC proliferation by 44 and 45 %, respectively. In addition, 30-min pretreatments with 10 µM specific MMP-2 inhibitor significantly reduced thrombin-stimulated phosphorylation of both EGFR and ERK1/2 by 25 %. Moreover, the same pretreatment with MMP-2 inhibitor reduced thrombin-induced VSMC proliferation by 45 %. These results show that the thrombin-induced DNA synthesis correlates with the level of ERK1/2 activation rather than EGFR activation. These results further suggest that thrombin acts through EGFR and ERK 1/2 signaling pathways involving MMP-2 to upregulate proliferation of VSMC.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 96
    Publikationsdatum: 2014-12-12
    Beschreibung: Transforming growth factor (TGF-β) is associated with the progression of glioblastoma multiforme (GBM)—the most malignant of brain tumors. Since there is a structural homology between TGF-β and human chorionic gonadotropin (hCG) and as both TGF-β and hCG-β are known regulators of oxidative stress and survival responses in a variety of tumors, the role of TGF-β in the regulation of hCG-β and its consequences on redox modulation of glioblastoma cells was investigated. A heightened hCG-β level was observed in GBM tumors. TGF-β treatment increased hCG-β expression in glioma cell lines, and this heightened hCG-β was found to regulate redox homeostasis in TGF-β-treated glioma cells, as siRNA-mediated knockdown of hCG-β (i) elevated reactive oxygen species (ROS) generation, (ii) decreased thioredoxin Trx1 expression and thioredoxin reductase (TrxR) activity, and (iii) abrogated expression of TP53-induced glycolysis and apoptosis regulator (TIGAR). Silencing of hCG-β abrogated Smad2/3 levels, suggesting the existence of TGF-β–hCG-β cross-talk in glioma cells. siRNA-mediated inhibition of elevated TIGAR levels in TGF-β-treated glioma cells was accompanied by an increase in ROS levels. As a farnesyltransferase inhibitor, Manumycin is known to induce glioma cell apoptosis in a ROS-dependent manner, and we investigated whether Manumycin could induce apoptosis in TGF-β-treated cells with elevated hCG-β exhibiting ROS-scavenging property. Manumycin-induced apoptosis in TGF-β-treated cells was accompanied by elevated ROS levels and decreased expression of hCG-β, Trx1, Smad2/3, and TIGAR. These findings indicate the existence of a previously unknown TGF-β–hCG-β link that regulates redox homeostasis in glioma cells.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 97
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2014-12-12
    Beschreibung: The p53R2 gene encoding a small subunit of the ribonucleotide reductase has been identified as a p53-inducible gene. Although this gene is discovered as a target for p53 family proteins, the mechanism underlying p53R2 induction by DNA damage in p53-defiencient cells remains to be elucidated. In this study, we demonstrate that transcription factor E2F1 regulates the p53R2 gene expression in p53-deficient cells. We found that p53R2 was a target for E2F1 in DNA damage response (DDR), because ectopic expression of E2F1 in HCT116-p53 −/− cells resulted in the increase of p53R2 mRNA and protein expression, and silencing E2F1 diminished its basic expression. Combination of luciferase reporter assay with overexpression or knockdown of E2F1 revealed that E2F1 directly activates the p53R2 gene. Chromatin immunoprecipitation (ChIP) assay showed E2F1 directly bound to the site (TTTGGCGG) at position −684 to −677 of the promoter under E2F1 overexpression or adriamycin (ADR) exposure. Moreover, silencing p53R2 could enhance apoptotic cell death in both HCT116-p53 −/− and HCT116-p53 +/+ compared to ADR exposure, indicating that p53R2 may protect cancer cell from ADR-induced apoptosis. Together, we have identified a new role of E2F1 in the regulation of p53R2 expression in DDR, and silencing p53R2 may sensitize cancer cells to ADR-induced apoptosis. Our data support the notion that p53R2 is a potential target for cancer therapy. The involvement of E2F1-dependent p53R2 activation in DDR will provide further insight into the induction of p53R2 in p53-deficient cells. These data also give us a deeper understanding of E2F1 role in DDR.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 98
    Publikationsdatum: 2014-12-12
    Beschreibung: The ability of nicotine to induce aortic aneurysms has been shown in animal models; however, its underlying mechanisms remain elusive. In the present experiment, both the RAW264.7 and MOVAS cell lines were employed to examine the nicotine-induced modulation of VCAM-1, MMP-2, and MMP-9 expressions in macrophages and vascular smooth muscle cells. Our results showed that nicotine concentrations of both 0.5 and 5 ng/ml induced VCAM-1, MMP-2, and MMP-9 upregulation, while a concentration of 50 ng/ml had a slight inhibitory effect and a concentration of 500 ng/ml showed a significant inhibitory effect. When cells were pretreated with either SP600125 (JNK inhibitor) or PNU-282987 (α7-nAChR agonist) prior to nicotine exposure, the nicotine-induced upregulation of VCAM-1, MMP-2, MMP-9, and p-JNK was suppressed, with a joint treatment producing a more significant inhibitory effect. Moreover, PNU-282987 had a comparable inhibitory effect on VCAM-1, MMP-2, and MMP-9 expressions and JNK activation via phosphorylation as did SP600125. In conclusion, nicotine-induced VCAM-1, MMP-2, and MMP-9 expressions occur in a dose-dependent fashion in both of the cell lines tested. Furthermore, the nicotine exposure equivalent to plasma levels found in regular smokers can augment VCAM-1, MMP-2, and MMP-9 expressions through the α7-nAChR-JNK pathway.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 99
    Publikationsdatum: 2014-12-12
    Beschreibung: Porcine reproductive and respiratory syndrome virus (PRRSV) is considered as a significant contributor to porcine reproductive and respiratory syndrome, one of the most economically important diseases for the pig industry worldwide. Emerging evidence indicates that pattern recognition receptors play key roles in recognizing pathogen-associated molecular patterns. In the present study, we investigated the effects of a novel pattern recognition receptor LSM14A in regulating PRRSV replication. Results in Marc-145 cells and porcine alveolar macrophages (PAMs) indicated that overexpression of porcine LSM14A effectively inhibited the replication of PRRSV, and knockdown of LSM14A by siRNA enhanced the replication of PRRSV. Mechanistically, LSM14A up-regulated the activities of IFN - β and ISRE promoters, enhanced the production of IFN - β , RIG - I, and ISG s, and inhibited the production of the inflammatory cytokines of TNF - α and IL - 6 mRNA. Additionally, the expression pattern of LSM14A during the infection of PRRSV in Tongcheng and Large White pigs was suppressed by the PRRSV challenge. Taken together, our results suggest that LSM14A is an important PRR that inhibits PPRSV replication by inducing IFN-β signaling and restraining inflammatory responses. Furthermore, the down-regulation of LSM14A by PRRSV might represent an important mechanism by which PRRSV invades the host. Our study sheds light on the possibility of developing a new strategy to control this disease.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 100
    Publikationsdatum: 2014-12-12
    Beschreibung: In our previous studies, we have found that endoplasmic reticulum (ER) stress is associated with post-traumatic stress disorder (PTSD), however, the activation of ER stress sensors in PTSD remains unclear. ATF6 alpha (ATF6α) is an ER-membrane-bound transcription factor and functions as a critical sensor and regulator of ER stress in mammalian cells. The goal of this study is to detect whether there is activation of the transcription factor ATF6α branch of the unfolded protein response in the dorsal raphe nucleus neurons of the rats exposed to single-prolonged stress (SPS), which is a model employed extensively in PTSD study. Our results have demonstrated that SPS activated the ER transmembrane protein ATF6α via its cleavage; and induced the up-regulation of the downstream targets of ATF6α, the mRNA of XBP1 and GRP94. To the best of our knowledge, this is the first study to investigate the relationship between the ATF6α pathways and PTSD, and our results show that SPS activates the ATF6α branch of the ER stress response, which may be contributed to the pathogenesis of PTSD.
    Print ISSN: 0300-8177
    Digitale ISSN: 1573-4919
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...