ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6,963)
  • Latest Papers from Table of Contents or Articles in Press  (6,963)
  • Articles: DFG German National Licenses
  • 2010-2014  (6,963)
  • Atmospheric Chemistry and Physics  (3,094)
  • 19026
  • Geosciences  (6,963)
  • Chemistry and Pharmacology
Collection
  • Articles  (6,963)
Source
  • Latest Papers from Table of Contents or Articles in Press  (6,963)
  • Articles: DFG German National Licenses
Publisher
Years
Year
Topic
  • Geosciences  (6,963)
  • Chemistry and Pharmacology
  • 1
    Publication Date: 2014-12-24
    Description: Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical Atmospheric Chemistry and Physics, 14, 13801-13816, 2014 Author(s): L. Yu, J. Smith, A. Laskin, C. Anastasio, J. Laskin, and Q. Zhang Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C 6 H 5 OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants – the triplet excited states of an aromatic carbonyl ( 3 C * ) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3 C * are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV–visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-24
    Description: Origin, variability and age of biomass burning plumes intercepted during BORTAS-B Atmospheric Chemistry and Physics, 14, 13789-13800, 2014 Author(s): D. P. Finch, P. I. Palmer, and M. Parrington We use the GEOS-Chem atmospheric chemistry transport model to interpret aircraft measurements of carbon monoxide (CO) in biomass burning outflow taken during the 2011 BORTAS-B campaign over eastern Canada. The model has some skill reproducing the observed variability, with a Spearman's rank correlation r s = 0.65, but has a positive negative bias for observations 300 ppb. We find that observed CO variations are largely due to fires over Ontario, as expected, with smaller and less variable contributions from fossil fuel combustion from eastern Asia and NE North America. To help interpret observed variations of CO we develop a Eulerian effective physical age of emissions ( A ) metric, accounting for mixing and chemical decay, which we apply to pyrogenic emissions of CO. We find that during BORTAS-B the age of emissions intercepted over Halifax, Nova Scotia is typically 4–11 days, and on occasion as young as two days. We show that A is typically 1–5 days older than the associated photochemical ages inferred from co-located measurements of different hydrocarbons. We find that the frequency distribution of differences between the age measures (Δτ) in plumes (defined by CH 3 CN 〉 150 ppt) peaks at 3 days. This corresponds to a chemical retardation of 50%. We find a strong relationship in biomass burning plumes between A and Δτ ( r 2 = 0.80), which is not present outwith these plumes ( r 2 = 0.28). We argue that these observed relationships, together with a robust observed relationship between CO and black carbon aerosol during BORTAS-B ( r 2 〉 0.7), form the basis of indirect evidence that aerosols co-emitted with gases during pyrolysis markedly slowed down the plume photochemistry during BORTAS-B with respect to photochemistry at the same latitude and altitude in clear skies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-23
    Description: Size-dependent wet removal of black carbon in Canadian biomass burning plumes Atmospheric Chemistry and Physics, 14, 13755-13771, 2014 Author(s): J. W. Taylor, J. D. Allan, G. Allen, H. Coe, P. I. Williams, M. J. Flynn, M. Le Breton, J. B. A. Muller, C. J. Percival, D. Oram, G. Forster, J. D. Lee, A. R. Rickard, M. Parrington, and P. I. Palmer Wet deposition is the dominant mechanism for removing black carbon (BC) from the atmosphere and is key in determining its atmospheric lifetime, vertical gradient and global transport. Despite the importance of BC in the climate system, especially in terms of its ability to modulate the radiative energy budget, there are few quantitative case studies of wet removal in ambient environments. We present a case study of BC wet removal by examining aerosol size distributions and BC coating properties sampled in three Canadian boreal biomass burning plumes, one of which passed through a precipitating cloud. This depleted the majority of the plume's BC mass, and the largest and most coated BC-containing particles were found to be preferentially removed, suggesting that nucleation scavenging was likely the dominant mechanism. Calculated single-scattering albedo (SSA) showed little variation, as a large number of non-BC particles were also present in the precipitation-affected plume. The remaining BC cores were smaller than those observed in previous studies of BC in post-precipitation outflow over Asia, possibly due to the thick coating by hydrophilic compounds associated with the Canadian biomass burning particles. This study provides measurements of BC size, mixing state and removal efficiency to constrain model parameterisations of BC wet removal in biomass burning regions, which will help to reduce uncertainty in radiative forcing calculations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-23
    Description: A two-habit model for the microphysical and optical properties of ice clouds Atmospheric Chemistry and Physics, 14, 13719-13737, 2014 Author(s): C. Liu, P. Yang, P. Minnis, N. Loeb, S. Kato, A. Heymsfield, and C. Schmitt To provide a better representation of natural ice clouds, a novel ice cloud model is developed by assuming an ice cloud to consist of an ensemble of hexagonal columns and 20-element aggregates with specific habit fractions at each particle size bin. The microphysical and optical properties of this two-habit model (THM) are compared with both laboratory and in situ measurements, and its performance in downstream satellite remote sensing applications is assessed. The ice water contents and median mass diameters calculated based on the THM closely agree with in situ measurements made during 11 field campaigns. In this study, the scattering, absorption, and polarization properties of ice crystals are calculated with a combination of the invariant imbedding T matrix, pseudo-spectral time domain, and improved geometric-optics methods over an entire practical range of particle sizes. The phase functions, calculated based on the THM, show close agreement with counterparts from laboratory and in situ measurements and from satellite-based retrievals. When the THM is applied to the retrievals of cloud microphysical and optical properties from MODIS (the Moderate Resolution Imaging Spectroradiometer) observations, excellent spectral consistency is achieved; specifically, the retrieved cloud optical thicknesses based on the visible/near infrared bands and the thermal infrared bands agree quite well. Furthermore, a comparison between the polarized reflectivities observed by the PARASOL satellite and from theoretical simulations illustrates that the THM can be used to represent ice cloud polarization properties.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-23
    Description: The impact of polar stratospheric ozone loss on Southern Hemisphere stratospheric circulation and climate Atmospheric Chemistry and Physics, 14, 13705-13717, 2014 Author(s): J. Keeble, P. Braesicke, N. L. Abraham, H. K. Roscoe, and J. A. Pyle The impact of polar stratospheric ozone loss resulting from chlorine activation on polar stratospheric clouds is examined using a pair of model integrations run with the fully coupled chemistry climate model UM-UKCA. Suppressing chlorine activation through heterogeneous reactions is found to produce modelled ozone differences consistent with observed ozone differences between the present and pre-ozone hole period. Statistically significant high-latitude Southern Hemisphere (SH) ozone loss begins in August and peaks in October–November, with 〉 75% of ozone destroyed at 50 hPa. Associated with this ozone destruction is a 〉 12 K decrease of the lower polar stratospheric temperatures and an increase of 〉 6 K in the upper stratosphere. The heating components of this temperature change are diagnosed and it is found that the temperature dipole is the result of decreased short-wave heating in the lower stratosphere and increased dynamical heating in the upper stratosphere. The cooling of the polar lower stratosphere leads, through thermal wind balance, to an acceleration of the polar vortex and delays its breakdown by ~ 2 weeks. A link between lower stratospheric zonal wind speed, the vertical component of the Eliassen–Palm (EP) flux, F z and the residual mean vertical circulation, w *, is identified. In November and December, increased westerly winds and a delay in the breakup of the polar vortex lead to increases in F z , indicating increased wave activity entering the stratosphere and propagating to higher altitudes. The resulting increase in wave breaking, diagnosed by decreases to the EP flux divergence, drives enhanced downwelling over the polar cap. Many of the stratospheric signals modelled in this study propagate down to the troposphere, and lead to significant surface changes in December.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-23
    Description: Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF 2 ) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength Aethalometer Atmospheric Chemistry and Physics, 14, 13773-13787, 2014 Author(s): J.-E. Petit, O. Favez, J. Sciare, F. Canonaco, P. Croteau, G. Močnik, J. Jayne, D. Worsnop, and E. Leoz-Garziandia Online non-refractory submicron aerosol mass spectrometer (AMS) measurements in urban areas have successfully allowed the apportionment of specific sources and/or physical and chemical properties of the organic fraction. However, in order to be fully representative of PM pollution, a comprehensive source apportionment analysis is needed by taking into account all major components of submicron aerosols, creating strengthened bonds between the organic components and pollution sources. We present here a novel two-step methodology to perform such an analysis, by taking advantage of high time resolution of monitoring instruments: the aerosol chemical speciation monitor (ACSM) and the multi-wavelength absorption measurements (Aethalometer AE31) in Paris, France. As a first step, organic aerosols (OA) were deconvolved to hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and oxygenated OA (OOA) with positive matrix factorization (PMF), and black carbon was deconvolved into its wood burning and fossil fuel combustion fractions. A second PMF analysis was then carried out with organic factors, BC fractions and inorganic species (nitrate, sulfate, ammonium, chloride), leading to a four-factor solution allowing highly time-resolved characterization of the major sources of PM 1 . Outputs of this PMF 2 include two dominant combustion sources (wood burning and traffic) as well as semi-volatile and low-volatile secondary aerosols. While HOA is found to be emitted by both wood burning and traffic, the latter sources occurred to significantly contribute also to OOA.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-23
    Description: Satellite-inferred European carbon sink larger than expected Atmospheric Chemistry and Physics, 14, 13739-13753, 2014 Author(s): M. Reuter, M. Buchwitz, M. Hilker, J. Heymann, O. Schneising, D. Pillai, H. Bovensmann, J. P. Burrows, H. Bösch, R. Parker, A. Butz, O. Hasekamp, C. W. O'Dell, Y. Yoshida, C. Gerbig, T. Nehrkorn, N. M. Deutscher, T. Warneke, J. Notholt, F. Hase, R. Kivi, R. Sussmann, T. Machida, H. Matsueda, and Y. Sawa Current knowledge about the European terrestrial biospheric carbon sink, from the Atlantic to the Urals, relies upon bottom-up inventory and surface flux inverse model estimates (e.g. 0.27±0.16 GtC a −1 for 2000–2005 (Schulze et al., 2009), 0.17±0.44 GtC a −1 for 2001–2007 (Peters et al., 2010), 0.45±0.40 GtC a −1 for 2010 (Chevallier et al., 2014), 0.40±0.42 GtC a −1 for 2001–2004 (Peylin et al., 2013)). Inverse models assimilate in situ CO 2 atmospheric concentrations measured by surface-based air sampling networks. The intrinsic sparseness of these networks is one reason for the relatively large flux uncertainties (Peters et al., 2010; Bruhwiler et al., 2011). Satellite-based CO 2 measurements have the potential to reduce these uncertainties (Miller et al., 2007; Chevallier et al., 2007). Global inversion experiments using independent models and independent GOSAT satellite data products consistently derived a considerably larger European sink (1.0–1.3 GtC a −1 for 09/2009–08/2010 (Basu et al., 2013), 1.2–1.8 GtC a −1 in 2010 (Chevallier et al., 2014)). However, these results have been considered unrealistic due to potential retrieval biases and/or transport errors (Chevallier et al., 2014) or have not been discussed at all (Basu et al., 2013; Takagi et al., 2014). Our analysis comprises a regional inversion approach using STILT (Gerbig et al., 2003; Lin et al., 2003) short-range (days) particle dispersion modelling, rendering it insensitive to large-scale retrieval biases and less sensitive to long-range transport errors. We show that the satellite-derived European terrestrial carbon sink is indeed much larger (1.02±0.30 GtC a −1 in 2010) than previously expected. This is qualitatively consistent among an ensemble of five different inversion set-ups and five independent satellite retrievals (BESD (Reuter et al., 2011) 2003–2010, ACOS (O’Dell et al., 2012) 2010, UoL-FP (Cogan et al., 2012) 2010, RemoTeC (Butz et al., 2011) 2010, and NIES (Yoshida et al., 2013) 2010) using data from two different instruments (SCIAMACHY (Bovensmann et al., 1999) and GOSAT (Kuze et al., 2009)). The difference to in situ based inversions (Peylin et al., 2013), whilst large with respect to the mean reported European carbon sink (0.4 GtC a −1 for 2001–2004), is similar in magnitude to the reported uncertainty (0.42 GtC a −1 ). The highest gain in information is obtained during the growing season when satellite observation conditions are advantageous, a priori uncertainties are largest, and the surface sink maximises; during the dormant season, the results are dominated by the a priori. Our results provide evidence that the current understanding of the European carbon sink has to be revisited.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-23
    Description: Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C6H5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV–visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-23
    Description: We use the GEOS-Chem atmospheric chemistry transport model to interpret aircraft measurements of carbon monoxide (CO) in biomass burning outflow taken during the 2011 BORTAS-B campaign over eastern Canada. The model has some skill reproducing the observed variability, with a Spearman's rank correlation rs = 0.65, but has a positive negative bias for observations 300 ppb. We find that observed CO variations are largely due to fires over Ontario, as expected, with smaller and less variable contributions from fossil fuel combustion from eastern Asia and NE North America. To help interpret observed variations of CO we develop a Eulerian effective physical age of emissions (A) metric, accounting for mixing and chemical decay, which we apply to pyrogenic emissions of CO. We find that during BORTAS-B the age of emissions intercepted over Halifax, Nova Scotia is typically 4–11 days, and on occasion as young as two days. We show that A is typically 1–5 days older than the associated photochemical ages inferred from co-located measurements of different hydrocarbons. We find that the frequency distribution of differences between the age measures (Δτ) in plumes (defined by CH3CN 〉 150 ppt) peaks at 3 days. This corresponds to a chemical retardation of 50%. We find a strong relationship in biomass burning plumes between A and Δτ (r2 = 0.80), which is not present outwith these plumes (r2 = 0.28). We argue that these observed relationships, together with a robust observed relationship between CO and black carbon aerosol during BORTAS-B (r2 〉 0.7), form the basis of indirect evidence that aerosols co-emitted with gases during pyrolysis markedly slowed down the plume photochemistry during BORTAS-B with respect to photochemistry at the same latitude and altitude in clear skies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-22
    Description: Online non-refractory submicron aerosol mass spectrometer (AMS) measurements in urban areas have successfully allowed the apportionment of specific sources and/or physical and chemical properties of the organic fraction. However, in order to be fully representative of PM pollution, a comprehensive source apportionment analysis is needed by taking into account all major components of submicron aerosols, creating strengthened bonds between the organic components and pollution sources. We present here a novel two-step methodology to perform such an analysis, by taking advantage of high time resolution of monitoring instruments: the aerosol chemical speciation monitor (ACSM) and the multi-wavelength absorption measurements (Aethalometer AE31) in Paris, France. As a first step, organic aerosols (OA) were deconvolved to hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and oxygenated OA (OOA) with positive matrix factorization (PMF), and black carbon was deconvolved into its wood burning and fossil fuel combustion fractions. A second PMF analysis was then carried out with organic factors, BC fractions and inorganic species (nitrate, sulfate, ammonium, chloride), leading to a four-factor solution allowing highly time-resolved characterization of the major sources of PM1. Outputs of this PMF2 include two dominant combustion sources (wood burning and traffic) as well as semi-volatile and low-volatile secondary aerosols. While HOA is found to be emitted by both wood burning and traffic, the latter sources occurred to significantly contribute also to OOA.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...