ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (8)
  • Printed Books(GFZ-OPAC)  (8)
  • Berlin [u.a.] : Springer  (7)
  • Geneva : WMO
  • London : The Geological Society
  • English  (8)
  • 1995-1999  (6)
  • 1990-1994  (2)
  • AWI Reading room  (8)
  • 1
    Call number: AWI A3-96-0684
    In: NATO ASI Series, Voume 44
    Type of Medium: Monograph available for loan
    Pages: 493 Seiten , Illustrationen
    ISBN: 3540614591
    Series Statement: NATO ASI Series : Series I, Global Environmental Change 44
    Language: English
    Note: Contents Observed Climatic Variability: Time Dependence / J. M. WALLACE Observed Climatic Variability: Spatial Structure / J. M. WALLACE Predictability of the Atmosphere and Oceans: From Days to Decades / T. N. PALMER Mechanisms for Decadal-to-Centennial Climate Variability / E. S. SARACHIK, M. WINTON and F. L. YIN Long-Term Coordinated Changesin the Convective Activity of the North Atlantic / R. DICKSON, J. LAZIER, J. MEINCKE and P. RHINES Mechanism for Decadal Climate Variability / M. LATIF, A. GROTZNER, M. MUNNICH, E. MAIER-REIMER, S. VENZKE and T. P. BARNETTA The Climate Response to the Changing Greenhouse Gas Concentration in the Atmosphere / L. BENGTSSON Analysis of Thermohaline Feedbacks / J. MAROTZKE An Overview of Century Time-Scale Variability in the Climate System: Observations and Models / T. F. STOCKER Steady States and Variability in Oceanic Zonal Flows / D. OLBERS and C. VOLKER Spectral Methods: What They Can and Cannot Do for Climatic Time Series / M. GHIL and P. Yiou Subject Index List of Participants
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: AWI G9-96-0315
    In: Geological Society special publication, No. 108
    Description / Table of Contents: The Weddell Sea, part of the circumpolar Southern Ocean, is probably the most remote, least known and least accessible sea in the world. Difficult ice conditions have limited the acquisition of ship data, although this has been partly offset in recent years by access to satellite radar altimetry data. The Weddell Sea was originally defined by the Admiralty Hydrographic Department in 1932 and redefined by the Antarctic Place Names Committee in 1976 (Hattersley-Smith 1991). It is bounded on the western side by the east coast of the Antarctic Peninsula, on the southern side by the Ronne and Filchner ice fronts, and on the southeastern side by the Dronning Maud Land and Coats Land coasts of East Antarctica (Fig. 1). The South Scotia Ridge separates the Weddell Sea from the Scotia Sea to the north and a line joining Southern Thule in the South Sandwich Islands and Kapp Norvegia in Dronning Maud Land, separates it from the South Atlantic Ocean to the NE. Within this volume, papers relate to the Weddell Sea as defined above, together with part of the adjoining South Atlantic Ocean up to 50°E, and to the geology of the once neighbouring continents of Gondwana. The term Weddell Sea embayment is also used informally throughout this volume to include the embayment area to the south of the Weddell Sea now covered by the Ronne and Filchner ice shelves, including Berkner Island, and the continental shelf north of the Ronne and Filchner ice fronts (Figs 1 & 2).
    Type of Medium: Monograph available for loan
    Pages: 284 Seiten , Illustrationen , 25,5 cm
    Edition: First published
    ISBN: 1897799594 , 1-897799-59-4
    Series Statement: Geological Society special publication 108
    Language: English
    Note: Contents E. C. King, R. A. Livermore, and B. C. Storey: Weddell Sea tectonics and Gondwana break-up: an introduction / Geological Society, London, Special Publications, 108:1-10, doi:10.1144/GSL.SP.1996.108.01.01 --- Michael L. Curtis and Bryan C. Storey: A review of geological constraints on the pre-break-up position of the Ellsworth Mountains within Gondwana: implications for Weddell Sea evolution / Geological Society, London, Special Publications, 108:11-30, doi:10.1144/GSL.SP.1996.108.01.02 --- Vic Divenere, Dennis V. Kent, and Ian W. D. Dalziel: Summary of palaeomagnetic results from West Antarctica: implications for the tectonic evolution of the Pacific margin of Gondwana during the Mesozoic / Geological Society, London, Special Publications, 108:31-43, doi:10.1144/GSL.SP.1996.108.01.03 --- T. S. Brewer, D. Rex, P. G. Guise, and C. J. Hawkesworth: Geochronology of Mesozoic tholeiitic magmatism in Antarctica: implications for the development of the failed Weddell Sea rift system / Geological Society, London, Special Publications, 108:45-61, doi:10.1144/GSL.SP.1996.108.01.04 --- G. H. Grantham: Aspects of Jurassic magmatism and faulting in western Dronning Maud Land, Antarctica: implications for Gondwana break-up / Geological Society, London, Special Publications, 108:63-71, doi:10.1144/GSL.SP.1996.108.01.05 --- W. Reimer, H. Miller, and H. Mehl: Mesozoic and Cenozoic palaeo-stress fields of the South Patagonian Massif deduced from structural and remote sensing data / Geological Society, London, Special Publications, 108:73-85, doi:10.1144/GSL.SP.1996.108.01.06 --- Bryan C. Storey, Alan P. M. Vaughan, and Ian L. Millar: Geodynamic evolution of the Antarctic Peninsula during Mesozoic times and its bearing on Weddell Sea history / Geological Society, London, Special Publications, 108:87-103, doi:10.1144/GSL.SP.1996.108.01.07 --- P. C. Richards, R. W. Gatliff, M. F. Quinn, N. G. T. Fannin, and J. P. Williamson: The geological evolution of the Falkland Islands continental shelf / Geological Society, London, Special Publications, 108:105-128, doi:10.1144/GSL.SP.1996.108.01.08 --- W. Jokat, C. Hübscher, U. Meyer, L. Oszko, T. Schöne, W. Versteeg, and H. Miller: The continental margin off East Antarctica between 10°W and 30°W / Geological Society, London, Special Publications, 108:129-141, doi:10.1144/GSL.SP.1996.108.01.09 --- R. J. Hunter, A. C. Johnson, and N. D. Aleshkova: Aeromagnetic data from the southern Weddell Sea embayment and adjacent areas: synthesis and interpretation / Geological Society, London, Special Publications, 108:143-154, doi:10.1144/GSL.SP.1996.108.01.10 --- David C. McAdoo and Seymour W. Laxon: Marine gravity from Geosat and ERS-1 altimetry in the Weddell Sea / Geological Society, London, Special Publications, 108:155-164, doi:10.1144/GSL.SP.1996.108.01.11 --- W. Jokat, H. Miller, and C. Hübscher: Crustal structure of the Antarctic continental margin in the eastern Weddell Sea / Geological Society, London, Special Publications, 108:165-174, doi:10.1144/GSL.SP.1996.108.01.12 --- G. L. Leitchenkov, H. Miller, and E. N. Zatzepin: Structure and Mesozoic evolution of the eastern Weddell Sea, Antarctica: history of early Gondwana break-up / Geological Society, London, Special Publications, 108:175-190, doi:10.1144/GSL.SP.1996.108.01.13 --- Joachim Jacobs, Norbert Kaul, and Klaus Weber: The history of denudation and resedimentation at the continental margin of western Dronning Maud Land, Antarctica, during break-up of Gondwana / Geological Society, London, Special Publications, 108:191-199, doi:10.1144/GSL.SP.1996.108.01.14 --- W. Jokat, H. Miller, and C. Hübscher: Structure and origin of southern Weddell Sea crust: results and implications / Geological Society, London, Special Publications, 108:201-211, doi:10.1144/GSL.SP.1996.108.01.15 --- E. C. King and A. C. Bell: New seismic data from the Ronne Ice Shelf, Antarctica / Geological Society, London, Special Publications, 108:213-226, doi:10.1144/GSL.SP.1996.108.01.16 --- R. A. Livermore and R. J. Hunter: Mesozoic seafloor spreading in the southern Weddell Sea / Geological Society, London, Special Publications, 108:227-241, doi:10.1144/GSL.SP.1996.108.01.17 --- H. A. Roeser, J. Fritsch, and K. Hinz: The development of the crust off Dronning Maud Land, East Antarctica / Geological Society, London, Special Publications, 108:243-264, doi:10.1144/GSL.SP.1996.108.01.18 --- Yoshifumi Nogi, Nobukazu Seama, Nobuhiro Isezaki, and Yoichi Fukuda: Magnetic anomaly lineations and fracture zones deduced from vector magnetic anomalies in the West Enderby Basin / Geological Society, London, Special Publications, 108:265-273, doi:10.1144/GSL.SP.1996.108.01.19
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: M 92.0834 ; M 91.0343 ; AWI G6-92-0159 ; M 92.0293 ; M 92.0540
    Description / Table of Contents: The spectrum of physical and chemical dating methods now covers the entire range of earth history. But there are so many methods that it is becoming increasingly difficult to select those that are appropriate for solving a specific problem. The objective of this book is to cover the whole spectrum of methods and to give examples of their applications. Thus it is addressed to everybody interested in the application of physical and chemical dating methods to the geosciences and archeology. It is especially valuable as a concise, but comprehensive reference for students and practitioners.
    Type of Medium: Monograph available for loan
    Pages: XI, 503 S. : Ill., graph. Darst.
    ISBN: 3540512764
    Classification:
    Stratigraphy
    Classification:
    Stratigraphy
    Language: English
    Note: Contents: 1 Introduction. - 2 Time Scales and Ages. - 2.1 Absolute Time Scales. - 2.2 Relative Time Scales. - 2.3 Physical and Chemical Time Scales. - 3 Selection, Collection, Packing, Storage, Transport,and Description of the Samples. - 3.1 Selection and Collection of the Samples. - 3.2 Packing, Storage, and Transport of the Samples. - 3.3 Sample Description. - 4 Treatment and Interpretation of the Raw Data. - 4.1 Suitability of a Sample for Dating and Reliabilityof the Dates. - 4.1.1 Soft-Rock Dating. - 4.1.2 Hard-Rock Dating. - 4.1.3 Isotope Geochemistry. - 4.2 Mathematical Evaluation of Physical and Chemical Age Data. - 4.2.1 Rules for Simple Calculations with the Dating Results; Statistical Tests. - 4.2.2 Comparison of Age Values. - 4.2.3 Numerical and Graphical Evaluation of Age Values. - 4.3 Publication of the Age Values. - 5 Physical Dating Methods. - 5.1 Principles. - 5.2 Sample Treatment and Measurement Techniques. - 5.2.1 Sample Treatment. - 5.2.1.1 Hard-Rock Samples. - 5.2.1.2 Soft-Rock Samples. - 5.2.2 Radioactivity Measurements: Decay Counting Methods. - 5.2.2.1 Gas-Filled Proportional and Geiger-Müller Counters. - 5.2.2.2 Scintillation Counters. - 5.2.2.3 Semiconductor Detectors. - 5.2.3 Measurement of Stable and Long-Lived Isotopes: Atom Counting Methods. - 5.2.3.1 Mass Spectrometry (MS). - 5.2.3.2 Accelerator Mass Spectrometry (AMS). - 5.2.3.3 Resonance-Ionization Spectrometry (RIS). - 5.2.4 Other Analytical Techniques. - 5.2.4.1 Isotope Dilution Analysis (ID). - 5.2.4.2 Neutron Activation Analysis (NAA). - 5.2.4.3 Flame Photometry, Atomic Absorption Spectrometry (AA) and Inductive Coupled Plasma Analysis (ICP). - 5.2.4.4 Ion-Microprobe (IMP) and Laser Microprobe Mass Analysis (LAMMA). - 5.2.4.5 X-Ray Fluorescence Analysis (XRF) . - 6 Radiometric Dating Methods. - 6.1 Parent/Daughter Isotope Ratios as a Geochronometer. - 6.1.1 Potassium/Argon (40K/40Ar) Method. - 6.1.1.1 Conventional Potassium/Argon (40K/40Ar) Method. - 6.1.1.2 Argon/Argon (39Ar/40Ar) Method. - 6.1.2 Potassium/Calcium (40K/40Ca) Method. - 6.1.3 Rubidium/Strontium (87Rb/87Sr) Method. - 6.1.4 Lanthanum/Cerium (138La/138Ce) Method. - 6.1.5 Lanthanum/Barium (138La/138Ba) Method. - 6.1.6 Samarium/Neodymium (147Sm/143Nd) Method. - 6.1.7 Lutetium/Hafnium (176Lu/176Hf) Method. - 6.1.8 Rhenium/Osmium (187Re/187Os) Method. - 6.1.9 Uranium/Thorium/Lead Methods (238U/206Pb, 235U/207Pb and 232Th/208Pb Methods). - 6.1.10 Common Lead Method. - 6.1.11 Lead/Lead (207Pb/206Pb) Method. - 6.1.12 Chemical Lead Method. - 6.1.13 Lead/Alpha Method (Larsen Method). - 6.1.14 Krypton/Krypton (Krsf/Krn) Method. - 6.1.15 Xenon Methods. - 6.1.15.1 Uranium/Xenon (U/Xesf) Method. - 6.1.15.2 Xenon/Xenon (Xesf/Xen) Method. - 6.2 Dating with Cosmogenic Radionuclides. - 6.2.1 Radiocarbon (14C) Method. - 6.2.2 Tritium (3H) Methods. - 6.2.2.1 Classical Tritium (3H) Method. - 6.2.2.2 Tritium/Helium-3 (3H/3He) and Helium-3 (3He)Methods. - 6.2.3 Beryllium-10 (10Be) Method. - 6.2.4 Sodium-22 (22Na) Method. - 6.2.5 Aluminium-26 (26Al) Method. - 6.2.6 Silicon-32 (32Si) Method. - 6.2.7 Chlorine-36 (36Cl) Method. - 6.2.8 Argon-39 (39Ar) Method. - 6.2.9 Calcium-41 (41Ca) Method. - 6.2.10 Manganese-53 (53Mn) Method. - 6.2.11 Krypton-81 (81Kr) Method. - 6.2.12 Iodine-129 (129I) Method. - 6.2.13 Aluminium-26/Beryllium-10 (26Al/10Be) Method. - 6.2.14 Beryllium-10/Chlorine-36 (10Be/36Cl) Method. - 6.3 Dating Based on Radioactive Disequilibrium of the Uranium, Thorium, and Protactinium Decay Series: The Uranium/Thorium/Protactinium Methods. - 6.3.1 230Th/234U Method. - 6.3.2 231Pa/235U Method. - 6.3.3 231Pa/230Th Method. - 6.3.4 234U/238U Method. - 6.3.5 230Th-excess Method. - 6.3.6 231Pa-excess Method. - 6.3.7 230Th-excess/232Th or 230Th/238U Method. - 6.3.8 231Pa-excess/23Th-excess Method. - 6.3.9 234Th-excess Method. - 6.3.10 228Th-excess/232Th Method. - 6.3.11 Dating Methods Based on Supported 226Ra and Unsupported 226Ra. - 6.3.12 224Ra and 228Ra Methods. - 6.3.13 210Pb Method. - 6.3.14 Uranium/Helium (U/He) Method. - 6.3.15 Radium/Radon Method. - 6.4 Age Determination Using Radiation Damage. - 6.4.1 Thermoluminescence (TL) Method. - 6.4.2 Optical Dating (OSL) Method. - 6.4.3 Electron Spin Resonance (ESR or EPR) Method. - 6.4.4 Exo-Electron Method (TSEE Method). - 6.4.5 Thermally Stimulated Current (TSC) Method. - 6.4.6 Differential Thermoanalysis (DTA). - 6.4.7 Fission Track Method (FT Method). - 6.4.8 Alpha-Recoil Track Method. - 6.4.9 Age Determination Using Pleochroic Haloes. - 6.5 Dating Meteorites and Lunar Rocks. - 6.5.1 Introduction. - 6.5.2 Sample Preparation and Measurement. - 6.5.3 Formation Interval. - 6.5.4 Solidification Ages. - 6.5.5 Gas Retention Ages. - 6.5.6 Cosmic Ray Exposure Ages. - 6.5.7 Terrestrial Ages of Meteorites. - 7 Chronostratigraphic Methods Using Global Time Markers. - 7.1 Paleomagnetic Dating Methods. - 7.2 Chronostratigraphic Time-Scale Using [Delta] 18O Values. - 7.3 Chronostratigraphic Time-Scale Using [Delta] 34S and [Delta] 13C Values and 87Sr/86Sr Ratios. - 7.4 Artificial Radionuclides as Time Markers. - 7.5 Geochemical Time Markers. - 7.6 Chemical Pollution as Time Markers. - 8 Chemical Dating Methods. - 8.1 Amino-Acid Racemization Method (AAR). - 8.2 Amino-Acid Degradation Method. - 8.3 Dating of Bones Using the Nitrogen or Collagen Content. - 8.4 Chemical Electron-Spin-Resonance (ESR) Dating. - 8.5 Molecular (Protein and DNA) Clocks. - 8.6 Obsidian Hydration Method. - 8.7 Dating of Man-Made Glass. - 8.8 Calcium Diffusion and Cation-Ratio Methods. - 8.9 Dating of Bones Using the Fluorine or Uranium Content. - 9 Phanerozoic Time-Scale. - 9.1 Objectives and History of Geochronolgy. - 9.2 Geological Time-Scales. - 9.3 The Future. - 10 Literature. - 10.1 Journals that Frequently Publish Geochronological Papers. - 10.2 Geochronology Textbooks. - 10.3 References. - Acknowledgments. - Appendix A: Geochronology Glossary. - Appendix B: Radioactive and Stable Isotopes in Geochronology. - Appendix C: List of Addresses. - Subject Index. - Foldout Table: Dating Methods, Ranges, and Materials.
    Location: Upper compact magazine
    Location: Upper compact magazine
    Location: AWI Reading room
    Location: Upper compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: 12/M 93.0473 ; 12/M 92.1243 ; AWI G6-93-0058 ; AWI G6-05-0111
    In: NATO ASI Series
    Type of Medium: Monograph available for loan
    Pages: XIV, 344 S. , Ill. , 24 cm
    ISBN: 3540531238
    Series Statement: NATO ASI series : I, Global and environmental change 2
    Classification:
    Historical Geology
    Language: English
    Note: Table of Contents: Prologue. - List of authors and participants. - I. RADIOCARBON AND ABSOLUTE CHRONOLOGIES. - Tree-ring 14C calibration at 10.000 BP / B. Kromer and B. Becker. - On flow model dating of stable isotope records from Greenland ice cores 7 S. J. Johnsen and W. Dansgaard. - The clay-varve based Swedish time scale and its relation to the Late Weichselian radiocarbon chronology / S. björck, I. Cato, L. Brunnberg, B. Strömberg. - A step towards an absolute time-scale for the Late-Glacial: annually laminated sediments from Soppensee (Switzerland) / A. F. Lotter. - B. Ammann, J. Beer, I. Hajdas, M. Sturm. - The late glacial-holocene transition in central Europe derived from isotope studies of laminated sediments from Lake Gościaź (Poland) / K. Rozanski, T. Goslar, M. Dulinski, T. Kuc, M. F. Pazdur, A. Walanus. - Younger Dryas oscillation - varve dated microstratigraphic, palynological and palaeomagnetic records from Lake Holzmaar, Germany / B. Zolitschka, B. Haverkamp, J. F. W. Negendank. - 230Th/234U and 14C ages obtained by mass spectrometry on corals from Barbados (West Indies), Isabela (Galapagos) and Mururoa (French Polynesia) / E. Bard, R. G. Fairbanks, M. Arnold, B. Hamelin. - II. COSMONUCLIDE PRODUCTION CHANGES DURING THE PAST. - Expected secular variations in the global terrestrial production rate of radiocarbon / D. Lal. - 10Be deposition at Vostok, Antarctica, during the last 50,000 years and its relationship to possible cosmogenic production variations during this period / G. M. Raisbeck, F. Yiou, J. Jouzel, J. R. Petit, N. I. Barkov, E. Bard. - 10Be peaks as time markers in polar ice cores / J. Beer, S. J. Johnsen, G. Bonani, R. C. Finkel, C. C. Langway, H. Oeschger, B. Stauffer, M. Suter, W. Woelfli. - Variation of geomagnetic field intensity from 8-60 Ky BP, Massif Central France / J. Salis and N. Bonhommet. - A geomagnetic calibration of the radiocarbon time-scale / A. Mazaud, C. Laj, E. Bard, M. Arnold, E. Tric. - III. CLIMATIC CHANGES DURING THE LAST DEGLACIATION. - The strength of the nordic heat pump / W. S. Broecker. - δ18O time-slice reconstruction of meltwater anomalies at Termination 1 in the North Atlantic between 50 and 80°N / M. Sarnthein, E. Jansen, M. Arnold, J. C. Duplessy, H. Erlenkeuser, A. Flatoy, T. Veum, E. Vogelsang, M. S. Weinelt. - A new method to reconstruct sea surface salinity: application to the North Atlantic ocean during the Younger Dryas / J.-C. Duplessy, L. Labeyrie, A. Juillet-Leclerc, J. Duprat. - The determination of past ocean-atmosphere radiocarbon differences / J. R. Southon, D. E. Nelson, J. S. Vogel. - The last deglaciation in Antarctica: further evidence of a "Younger Dryas" type climatic event / J. Jouzel, J. R. Petit, N. I. Barkov, J. M. Barnola, J. Chappellaz, P. Ciais, V. M. Kotkyakov, C. Lorius, V. N. Petrov, D. Raynaud, C. Ritz. - Possible ice-core evidence for a fresh melt water cap over the Atlantic ocean in the early Holocene / D. A. Fisher. - Climatic changes in Northwest Africa during the last deglaciation (16-7 ka BP) / F. Gasse, J. Ch. Fontes. - The palynological expression and timing of the Younger Dryas event - Europe versus Eastern North America / D. M. Peteet.
    Location: Reading room
    Location: Reading room
    Location: AWI Reading room
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: 10/M 01.0013 ; AWI G6-97-0035
    Type of Medium: Monograph available for loan
    Pages: 201 S.
    Edition: 4th, completely rev., update, and enl. ed.
    ISBN: 3540611266
    Classification:
    Geochemistry
    Language: English
    Location: Reading room
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: AWI G3-99-0175 ; AWI G3-11-0026
    Description / Table of Contents: The Arctic is considered to be one of the most sensitive environmental elements on Earth, which may respond rapidly to climate change. However, our knowledge of the present and past processes of the Arctic system is still relatively sparse. Based on a multidisciplinary approach, German and Russian scientists describe in this book the natural processes behind short- and long-term changes in the Laptev Sea and its hinterland (Arctic Siberia), using modern climate data and paleorecords which were collected over the past 6 years. These marine and terrestrial datasets provide important new insights into the causes, impacts, and feedback mechanisms of this extreme environment.
    Type of Medium: Monograph available for loan
    Pages: XI, 711 S. , Ill., graph. Darst., Kt.
    ISBN: 3540656766
    Language: English
    Note: Table of Contents: SECTION A: MODERN OCEAN AND SEA-ICE PROCESSES. - Features of Seasonal and Interannual Variability of the Sea Level and Water Circulation in the Laptev Sea / V. K. Pavlov and P. V. Pavlov. - Numerical Modelling of Storm Surges in the Laptev Sea Based on the Finite Element Method / I. Ashik and A. Novakov. - Large-Scale Variations of Sea Level in the Laptev Sea / G. N. Voinov and E. A. Zakharchuk. - Extreme Oscillations of the Sea Level in the Laptev Sea / I. Ashik, Y. Dvorkin and Y. Vanda. - Internal Waves in the Laptev Sea / E. A. Zakharchuk. - The Composition of the Coarse Fraction of Aerosols in the Marine Boundary Layer over the Laptev, Kara and Barents Seas / V. P. Shevchenko, A. P. Lisitzin, R. Stein, V. V. Serova, A. B. Isaeva and N. V. Politova. - New Data on Sea-Ice Albedo in the Laptev and Barents Seas / B. V. Ivanov. - Possible Causes of Radioactive Contamination in the Laptev Sea / V. K. Pavlov, V. V. Stanovoy and A. I. Nikitin. - Oceanographic Causes for Transarctic Ice Transport of River Discharge / I. Dmitrenko, P. Golovin, V. Gribanov and H. Kassens. - Step-Like Vertical Structure Formation Due to Turbulent Mixing of Initially Continuous Density Gradients / A. Zatsepin, S. Dikarev, S. Poyarkov, N. Sheremet, I. Dmitrenko, P. Golovin and H. Kassens. - Dissolved and Paniculate Major and Trace Elements in Newly Formed Ice from the Laptev Sea (Transdrift III, October 1995) / J. A. Hölemann, M. Schirmacher and A. Prange. - Particle Entrainment into Newly Forming Sea Ice - Freeze-Up Studies in October 1995 / F. Lindemann, J. A. Holemann, A. Korablev and A. Zachek. - Frazil Ice Formation during the Spring Flood and its Role in Transport of Sediments to the Ice Cover / P. Golovin, I. Dmitrenko, H. Kassens and J. A. Hölemann. - SECTION B: THE MARINE ECOSYSTEM. - Pelagic-Benthic Coupling in the Laptev Sea Affected by Ice Cover / C. Grahl, A. Boetius and E.-M. Nöthig. - Chlorophyll a Distribution in Water Column and Sea Ice during the Laptev Sea Freeze-Up Study in Autumn 1995 / K. v. Juterzenka and K. Knickmeier. - Composition, Abundance and Population Structure of Spring-Time Zooplankton in the Shelf-Zone of Laptev Sea / E. N. Abramova. - Macrobenthos Distribution in the Laptev Sea in Relation to Hydrology / V. V. Petryashov, B. I. Sirenko, A. A. Golikov, A. V. Novozhilov, E. Rachor, D. Piepenburg and M. K. Schmid. - Carepoctus solidus sp.n., a New Species of Liparid Fish (Scorpaeniformes, Liparidae) from the Lower Bathyal of the Polar Basin / N. V. Chernova. - Spring Stopover of Birds on the Laptev Sea Polynya / D. V. Solovieva. - SECTION C: LAND-OCEAN INTERACTIONS AND PATHWAYS. - Major, Trace and Rare Earth Element Geochemistry of Suspended Particulate Material of East Siberian Rivers Draining to the Arctic Ocean / V. Rachold. - Carbon Isotope Composition of Particulate Organic Material in East Siberian Rivers / V. Rachold and H.-W. Hubberten. - Distribution of River Water and Suspended Sediment Loads in the Deltas of Rivers in the Basins of The Laptev and East-Siberian Seas / V. V. Ivanov and A. A. Piskun. - Dissolved Oxygen, Silicon, Phosphorous and Suspended Matter Concentrations During the Spring Breakup of The Lena River / S. V. Pivovarov, J. A. Hölemann, H. Kassens, M. Antonow and I. Dmitrenko. - Distribution Patterns of Heavy Minerals in Siberian Rivers, the Laptev Sea and the eastern Arctic Ocean: An Approach to Identify Sources, Transport and Pathways of Terrigenous Matter / M. Behrends, E. Hoops and B. Peregovich. - The Role of Coastal Retreat for Sedimentation in the Laptev Sea / F. E. Are. - SECTION D: TERRESTRIAL ENVIRONMENT - PAST AND PRESENT. - Seasonal Changes in Hydrology, Energy Balance and Chemistry in the Active Layers of Arctic Tundra Soils in Taymyr Peninsula, Russia / J. Boike and P. P. Overduin. - The Landscape and Geobotanical Characteristics of the Levinson-Lessing Lake Basin, Byrranga Mountains, Central Taimyr / M. A. Anisimov and I. N. Pospelov. - Studies of Methane Production and Emission in Relation to the Microrelief of a Polygonal Tundra in Northern Siberia / V. A. Samarkin, A. Gundelwein and E.-M. Pfeiffer. - Carbon Dioxide and Methane Emmissions at Arctic Tundra Sites in North Siberia / M. Sommerkom, A. Gundelwein, E.-M. Pfeiffer and M. Bolter. - The Features of the Hydrological Regime of the Lake-River Systems of the Byrranga Mountains (by the Example of the Levinson-Lessing Lake) / V. P. Zimichev, D. Yu. Bolschyanov, V. G. Mesheryakov and D. Gintz. - Lead-210 Dating and Heavy Metal Concentration in Recent Sediments of Lama Lake (Norilsk Area, Siberia) / B. Hagedorn, S. Harwart, M. M. R. van der Loeff and M. Melles. - Late Weichselian to Holocene Diatom Succession in a Sediment Core from Lama Lake, Siberia and Presumed Ecological Implications / U. Kienel. - Climate and Vegetation History of the Taymyr Peninsula since Middle Weichselian Time - Palynological Evidence from Lake Sediments / J. Hahne and M. Melles. - Laminated Sediments from Levinson-Lessing Lake, Northern Central Siberia - A 30,000 Year Record of Environmental History? / T. Ebel, M. Melles and F. Niessen. - High-Resolution Seismic Stratigraphy of Lake Sediments on the Taymyr Peninsula, Central Siberia / F. Niessen, T. Ebel, C. Kopsch and G. B. Fedorov. - Archaeological Survey in Central Taymyr / V. V. Pitul'ko. - Marine Pleistocene Deposits of the Taymyr Peninsula and their Age from ESR Dating / D. Bolshiyanov and A. Molodkov. - Paleoclimatic Indicators from Permafrost Sequences in the Eastern Taymyr Lowland / C. Siegert, A. Yu. Derevyagin, G.N. Shilova, W.-D. Hermichen and A. Hiller. - SECTION E: MARINE DEPOSITIONAL ENVIRONMENT - PAST AND PRESENT. - Stable Oxygen Isotope Ratios in Benthic Carbonate Shells of Ostracoda, Foraminifera, and Bivalvia from Surface Sediments of the Laptev Sea, Summer 1993 and 1994 / H. Erlenkeuser and U. von Grafenstein. - Determination of Depositional Beryllium-10 Fluxes in the Area of the Laptev Sea and Beryllium-10 Concentrations in Water Samples of High Northern Latitudes / C. Strobl, V. Schulz, S. Vogler, S. Baumann, H. Kassens, P. W. Kubik, M. Suter and A. Mangini. - Spatial Distribution of Diatom Surface Sediment Assemblages on the Laptev Sea Shelf (Russian Arctic) / H. Cremer. - Diatoms from Surface Sediments of the Saint Anna Trough (Kara Sea) / R. N. Djinoridze, G. I. Ivanov, E. N. Djinoridze, and R. F. Spielhagen. - Distribution of Aquatic Palynomorphs in Surface Sediments from the Laptev Sea, Eastern Arctic Ocean / M. Kunz-Pirrung. - Distribution of Pollen and Spores in Surface Sediments of the Laptev Sea / O. D. Naidina and H. A. Bauch. - Clay Mineral Distribution in Surface Sediments of the Laptev Sea: Indicator for Sediment Provinces, Dynamics and Sources / B. T. Rossak, H. Kassens, H. Lange and J. Thiede. - Planktic Foraminifera in Holocene Sediments from the Laptev Sea and the Central Arctic Ocean: Species Distribution and Paleobiogeographical Implication / H. A. Bauch. - Holocene Diatom Stratigraphy and Paleoceanography of the Eurasian Arctic Seas / Y. Polyakova. - Late Quaternary Organic Carbon and Biomarker Records from the Laptev Sea Continental Margin (Arctic Ocean): Implications for Organic Carbon Flux and Composition / R. Stein, K. Fahl, F. Niessen and M. Siebold. - Late Pleistocene Paleoriver Channels on the Laptev Sea Shelf - Implications from Sub-Bottom Profiling / H. P. Kleiber and F. Niessen. - Main Structural Elements of Eastern Russian Arctic Continental Margin Derived from Satellite Gravity and Multichannel Seismic Reflection Data / S. S. Drachev, G. L. Johnson, S. W. Laxon, D. C. McAdoo and H. Kassens. - High Resolution Seismic Studies in the Laptev Sea Shelf: First Results and Future Needs / B. Kim, G. Grikurov and V. Soloviev. - SECTION F: SUMMARY. - Dynamics and History of the Laptev Sea and its Continental Hinterland: A Summary / J. Thiede, L. Timokhov, H. A. Bauch, D. Bolshiyanov, I. Dmitrenko
    Location: AWI Reading room
    Location: AWI Reading room
    Branch Library: AWI Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: AWI G3-96-0166
    In: Ecological studies, 120
    Description / Table of Contents: The discovery of large petroleum reserves in northern Alaska prompted the US National Research Council to recommend priorities for ecological research on disturbance effects in the Arctic. Subsequently, this led to the implementation of a field study by the Department of Energy in a small watershed on the North Slope of Alaska. This volume describes results by a research team charged with seeking answers to a number of questions related to disturbance in tundra regions: will short-term disturbances have long-term ecological consequences? Will localized effects be transferred to adjacent systems, e.g., from terrestrial to aquatic? Is it possible to extrapolate understanding of impacts from one landscape to another? The results reported in this volume are an important contribution towards the goal of implementing ecosystem-based management in arctic tundra landscapes. Landscape function and disturbance in Arctic Tundra covers a broad array of topics, from ecosystem physiology to landscape modeling. It is an important source for researchers and students interested in arctic ecology, as well as for environmental managers concerned with practical issues of disturbance.
    Type of Medium: Monograph available for loan
    Pages: XX, 437 Seiten , Illustrationen , 24 cm
    ISBN: 3-540-59263-6
    Series Statement: Ecological Studies 120
    Language: English
    Note: Contents: I INTRODUCTION. - 1 Ecosystem Response, Resistance, Resilience, and Recovery in Arctic Landscapes: Introduction / J. F. Reynolds and J. D. Tenhunen. - 1.1 Introduction. - 1.2 NRC Committee Report. - 1.3 The R4D Program. - 1.3.1 Objectives and Conceptual Framework. - 1.3.2 Program Implementation. - 1.3.3 Landscape Function. - 1.4 Summary. - References. - 2 Integrated Ecosystem Research in Northern Alaska, 1947-1994 / G. R. Shaver. - 2.1 Introduction. - 2.2 Early Days at NARL. - 2.3 The U.S. Tundra Biome Program. - 2.4 The Meade River RATE Program. - 2.5 Eagle Creek and Eagle Summit. - 2.6 The Arctic LTER Program at Toolik Lake. - 2.7 Other Studies In Alaska and Elsewhere. - 2.8 Summary and Prospects. - References. - 3 Disturbance and Recovery of Arctic Alaskan Vegetation / D. A. Walker. - 3.1 Introduction. - 3.2 Disturbance and Recovery. - 3.3Typical Disturbance and Recovery Patterns. - 3.3.1 Small Disturbed Patches. - 3.3.2 Contaminants. - 3.3.2.1 Hydrocarbon Spills. - 3.3.2.2 Seawater and Reserve-Pit Spills. - 3.3.3 Fire. - 3.3.4 Transportation Corridors. - 3.3.4.1 Bulldozed Tundra and Related Disturbances. - 3.3.4.2 Off-Road Vehicle Trails. - 3.3.4.2.1 Summer Travel. - 3.3.4.2.2 Winter Travel. - 3.3.4.3 Permanent Roads and Pads. - 3.3.4.4 Gravel Mines. - 3.3.4.5 Native Species in Revegetation of Gravel Pads and Mines. - 3.3.4.6 Road Dust. - 3.3.4.7 Roadside Impoundments. - 3.3.5 Cumulative Impacts. - 3.4 Conclusions. - References. - 4 Terrain and Vegetation of the Imnavait Creek Watershed / D. A. Walker and M. D. Walker. - 4.1 Introduction. - 4.2 Terrain. - 4.2.1 Glacial Deposits. - 4.2.2 Retransported Hillslope Deposits. - 4.2.3 Colluvial Basin Deposits. - 4.2.4 Floodplain Deposits. - 4.3 Vegetation. - 4.3.1 Flora. - 4.3.2 Vegetation Types. - 4.3.2.1 Lichen-Covered Rocks. - 4.3.2.2 Dry Heath. - 4.3.2.2.1 Exposed Sites. - 4.3.2.2.2 Snowbeds. - 4.3.2.3 Tussock Tundra. - 4.3.2.4 Riparian Areas. - 4.3.2.5 Mires. - 4.3.2.6 Beaded Ponds. - 4.4 West-Facing Toposequence. - 4.5 Terrain Sensitivity to Disturbance. - 4.6 Conclusions. - Appendix A. List of Plants for Imnavait Creek, Alaska. - References. - 5 Vegetation Structure and Aboveground Carbon and Nutrient Pools in the Imnavait Creek Watershed / S. C. Hahn, S. F. Oberbauer, R. Gebauer, N. E. Grulke, O. L. Lange, and J. D. Tenhunen. - 5.1 ntroduction. - 5.2 Description of Vegetation. - 5.3 Sampling Methods. - 5.3.1 Cover. - 5.3.2 Biomass and Nutrient Pools. - 5.4 Cover. - 5.5 Aboveground Biomass. - 5.5.1 Live Biomass. - 5.5.2 Photosynthetic Biomass. - 5.5.3 Lichen Biomass. - 5.5.4 Organic Litter. - 5.5.5 Watershed Patterns. - 5.6 Nutrient Pools. - 5.6.1 N and P in Heath Cryptogams. - 5.6.2 N and P in Communities. - 5.7 Discussion and Conclusions. - References. - II PHYSICAL ENVIRONMENT, HYDROLOGY, and TRANSPORT. - 6 Energy Balance and Hydrological Processes in an Arctic Watershed / L. Hinzmann, D. L. Kane, C. S. Benson, and K. R. Everett. - 6.1 Introduction. - 6.2 Radiation and Thermal Regimes. - 6.2.1 Surface Energy Balance. - 6.2.2 Snow Cover and Soil Thermal Regime. - 6.3 Hydrological Processes. - 6.3.1 Snowmelt. - 6.3.2 Plot and Basin Water Balance. - 6.3.3 Runoff and Basin Discharge. - 6.3.4 Precipitation, Evaporation, and Evapotranspiration. - 6.4 Energy Balance and Hydrology Models. - 6.4.1 Simulation of the Thermal Regime. - 6.4.2 Simulation of Snowmelt. - 6.4.3 Simulation of Catchment Runoff. - 6.5 Conclusions. - References. - 7 Shortwave Reflectance Properties of Arctic Tundra Landscapes / A. S. Hope and D. A. Stow. - 7.1 Introduction. - 7.2 Shortwave Reflectance Studies in Arctic Environments. - 7.2.1 Environmental Considerations. - 7.2.2 Radiometric Data. - 7.2.3 Image Data. - 7.3 Spectral Reflectance. - 7.3.1 Aboveground Biomass. - 7.3.2 Vegetation Composition. - 7.3.3 Landscape Patterns. - 7.3.4 Effects of Dust Deposition. - 7.4 Albedo. - 7.4.1 Undisturbed Tussock Tundra. - 7.4.2 Effects of Dust Deposition. - 7.5 Conclusions. - References. - 8 Isotopic Tracers for Investigating Hydrological Processes / L. W. Cooper, I. L. Larsen, C. Solis, J. M. Grebmeier, C. R. Olsen, D. K. Solomon, and R. B. Cook. - 8.1 Introduction. - 8.1.1 Units. - 8.1.2 Conservative vs Nonconservative Isotopes. - 8.2 Nonconservative Tracers. - 8.3 Sulfur-35. - 8.4 Oxygen-18. - 8.4.1 Oxygen-18 Content of Snowpack. - 8.4.2 Oxygen-18 Content of Imnavait Creek. - 8.4.3 Oxygen-18 Content of Soil Moisture. - 8.4.4 Covariance of Oxygen-18 and Deuterium in Watershed Compartments. - 8.4.5 Covariance of Oxygen-18 and Deuterium in Plant Water. - 8.5 Long-Lived Radioisotopes: Lead-210 and Cesium-137. - 8.5.1 Distribution of 137Cs on Tundra and in Lake Sediments. - 8.5.2 Cycling of 137Cs in Annual Berries. - 8.5.3 Distribution of 210Pb in Tundra. - 8.6 Conclusions. - References. - III NUTRIENT AND CARBON FLUXES. - 9 Surface Water Chemistry and Hydrology of a Small Arctic Drainage Basin / K. R. Everett, D. L. Kane, and L. D. Hinzman. - 9.1 Introduction. - 9.2 Watershed Instrumentation. - 9.3 Snowmelt Period. - 9.3.1 Snowmelt Hydrology. - 9.3.2 Snowmelt Chemistry . - 9.3.2.1 Overland Flow. - 9.3.2.2 Water Track Flow. - 9.3.2.3 Imnavait Creek Flow. - 9.4 Post Snowmelt Period. - 9.4.1 Atmospheric Inputs. - 9.4.1.1 Rainfall. - 9.4.1.2 Dry Deposition. - 9.4.1.3 Rime. - 9.4.2 Water Chemistry. - 9.4.2.1 Overland Flow. - 9.4.2.2 Active Layer Flow. - 9.4.2.3 Imnavait Creek Flow. - 9.5 Conclusions. - References. - 10 Nutrient Availability and Uptake by Tundra Plants / J. P. Schimel, K. Kielland, and F. S. Chapin III. - 10.1 Introduction. - 10.2 Controls on Mineralization and Nutrient Supply. - 10.2.1 Patterns of Nutrient Supply in the Soil. - 10.2.2 Patterns of Mineralization. - 10.2.3 Controls on N and P Mineralization. - 10.2.4 Controls on Decomposition and Mineralization. - 10.2.4.1 Temperature. - 10.2.4.1.1 Enzyme Activities. - 10.2.4.1.2 Microbial Activity at Low Temperatures. - 10.2.4.1.3 Freeze-Thaw Events. - 10.2.4.2 Effects of Low Oxygen on Microbial Activity and Mineralization. - 10.2.4.3 Substrate Quality. - 10.3 Fate of Available Nutrients. - 10.3.1 Microbial Nutrient Uptake and Competition with Plants. - 10.3.2 Plant Uptake. - 10.3.2.1 Soil Factors Controlling Nutrient Absorption. - 10.3.2.2 Rooting Strategies. - 10.3.2.3 Uptake Characteristics of Tundra Plants. - 10.3.2.4 Retranslocation vs Current Uptake. - 10.4 Disturbances. - 10.4.1 Vehicle Tracks. - 10.4.2 Road Dust. - 10.4.3 Gray Water. - 10.4.4 Climate Change. - References. - 11 Landscape Patterns of Carbon Dioxide Exchange in Tundra Ecosytems / S. F. Oberbauer, W. Cheng, C. T. Gillespie, B. Ostendorf, A. Sala, R. Gebauer, R. A. Virginia, and J. D. Tenhunen. - 11.1 Introduction. - 11.2 Methods. - 11.2.1 Community Types. - 11.2.2 Leaf Photosynthesis. - 11.2.3 Ecosystem Efflux. - 11.2.4 Ecosystem Net CO2 Exchange. - 11.3 CO2 Uptake. - 11.3.1 Factors Affecting CO2 Uptake. - 11.3.1.1 Light. - 11.3.1.2 Temperature. - 11.3.1.3 Phenology. - 11.3.1.4 Water Availability. - 11.3.1.5 Nutrition. - 11.3.2 Landscape Patterns in Leaf Photosynthesis. - 11.4 CO2 Efflux. - 11.4.1 Factors Affecting CO2 Efflux. - 11.4.1.1 Live Plant Biomass. - 11.4.1.2 Soil Quality. - 11.4.1.3 Thaw Depth and Depth to Water Table. - 11.4.1.4 Soil Moisture. - 11.4.1.5 Soil Temperature. - 11.4.2 Landscape Patterns of CO2 Efflux. - 11.4.3 Daily and Seasonal Patterns of CO2 Efflux. - 11.4.4 Dust Deposition Effects on CO2 Efflux. - 11.5 Landscape Patterns in Net CO2 Exchange. - 11.6 Conclusions. - References. - 12 Control of Tundra Methane Emission by Microbial Oxidation / S. C. Whalen, W. S. Reeburgh, and C. E. Reimers. - 12.1 Introduction. - 12.2 Sampling Procedure. - 12.3 Results and Discussion. - 12.3.1 Methane Flux and Environmental Variables in Tundra and Taiga. - 12.3.2 Physiology, Controls, and Potential for Microbial CH4 Oxidation. - 12.3.3 Methane Oxidation by Tundra Soils in a Warmer Climate. - 12.4 Conclusions. - References. - 13 Dynamics of Dissolved and Particulate Car
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: M 96.0550 ; AWI G6-96-0128
    Description / Table of Contents: A lake, as a body of water, is in continuous interaction with the rocks and soils in its drainage basin, the atmosphere, and surface and groundwaters. Human industrial and agricultural activities introduce new inputs and processes into lake systems. This volume is a selection of ten contributions dealing with diverse aspects of lake systems, including such subjects as the geological controls of lake basins and their histories, mixing and circulation patterns in lakes, gaseous exchange between the water and atmosphere, and human input to lakes through atmospheric precipitation and surficial runoff. This work was written with a dual goal in mind: to serve as a textbook and to provide professionals with in-depth expositions and discussions of the more important aspects of lake systems.
    Type of Medium: Monograph available for loan
    Pages: XVI, 334 Seiten , Illustrationen
    Edition: 2. ed.
    ISBN: 3540578919
    Classification:
    Sedimentology
    Language: English
    Note: Contents: 1 Global Distribution of Lakes / M. MEYBECK. - 1 Introduction. - 2 Background Material and Approaches to Global Lake Census. - 2.1 Data Used. - 2.2 Approaches to Global Lake Census. - 3 General Laws of Lake Distribution. - 3.1 Lake Density . - 3.2 Limnic Ratio. - 4 Distribution of Lakes of Tectonic Origin. - 5 Lakes of Glacial Origin. - 5.1 Lake Densities. - 5.2 Global Deglaciated Area. - 5.3 Total Number of Glacial Lakes. - 6 Fluvial Lakes. - 7 Global Distribution of Crater Lakes. - 8 Global Distribution of Saline Lakes. - 8.1 Coastal Lagoons. - 8.2 Salinized Lakes due to Evaporation. - 9 Global Lake Distribution. - 9.1 Extrapolation Approach. - 9.2 Lake Type Approach. - 9.3 Climatic Typology Approach. - 9.4 Lake Distribution in Endorheic Areas. - 9.5 Global Dissolved Salt Distribution in Lakes. - 10 Major Changes in Global Lake Distribution in the Geological Past. - 10.1 Lake Ages. - 10.2 Historical Changes. - 10.3 Postglacial Changes. - 11 Discussion and Conclusions. - References. - 2 Hydrological Processes and the Water Budget of Lakes / T. C. WINTER. - 1 Introduction. - 2 Hydrological System with Regard to Lakes. - 2.1 Interaction of Lakes with Atmospheric Water. - 2.2 Interaction of Lakes with Surface Water. - 2.3 Interaction of Lakes with Subsurface Water. - 2.4 Change in Lake Volume. - 3 Summary. - References. - 3 Hydrological and Thermal Response of Lakes to Climate: Description and Modeling / S. W. HOSTETLER. - 1 Introduction. - 2 Hydrological Response. - 3 The Hydrological Budget. - 4 Hydrological Models. - 5 Thermal Response. - 5.1 Energy Budget and Energy Budget Models. - 5.2 Models and Modeling. - 6 Use of Models to Link Lakes with Climate Change. - 7 Input Data Sets. - 8 Sample Applications. - 9 Summary. - References. - 4 Mixing Mechanisms in Lakes / D. M. IMBODEN and A. WÜEST. - 1 Transport and Mixing. - 2 Lakes as Physical Systems. - 3 Fluid Dynamics: Mathematical Description of Advection and Diffusion. - 3.1 Equations of Fluid Motion. - 3.2 Turbulence, Reynolds' Stress, and Eddy Diffusion. - 3.3 Vertical Momentum Equation. - 3.4 Nonlocal Diffusion and Transilient Mixing. - 4 Density and Stability of Water Column. - 4.1 Equation of State of Water. - 4.2 Potential Temperature and Local Vertical Stability. - 5 Energy Fluxes: Driving Forces Behind Transport and Mixing. - 5.1 Thermal Energy. - 5.2 Potential Energy. - 5.3 Kinetic Energy. - 5.4 Turbulent Kinetic Energy Balance in Stratified Water. - 5.5 Internal Turbulent Energy Fluxes: Turbulence Cascade. - 6 Mixing Processes in Lakes. - 6.1 Waves and Mixing. - 6.2 Mixing in the Surface Layer. - 6.3 Diapycnal Mixing. - 6.4 Boundary Mixing. - 6.5 Double Diffusion. - 6.6 Isopycnal Mixing. - 7 Mixing and Its Ecological Relevance. - 7.1 Time Scales of Mixing. - 7.2 Reactive Species and Patchiness. - 7.3 Mixing and Growth: The Search for an Ecological Steering Factor. - References. - 5 Stable Isotopes of Fresh and Saline Lakes / J. R. GAT. - 1 Introduction. - 1.1 Isotope Separatio During Evaporation. - 2 Small-Area Lakes. - 2.1 Seasonal and Annual Changes. - 2.2 Deep Freshwater Lakes. - 2.3 Transient Surface-Water Bodies. - 3 Interactive and Feedback Systems. - 3.1 Network of Surface-Water Bodies. - 3.2 Recycling of Reevaporated Moisture into the Atmosphere. - 3.3 Large Lakes. - 3.4 Large-Area Lakes with Restricted Circulation. - 4 Saline Lakes. - 4.1 Isotope Hydrology of Large Salt Lakes. - 4.2 Ephemeral Salt Lakes and Sabkhas. - 5 Isotopie Paleolimnology. - 6 Conclusions: From Lakes to Oceans. - References. - 6 Exchange of Chemicals Between the Atmosphere and Lakes / P. VLAHOS, D. MACKAY, S. J. EISENREICH, and KC. HORNBUCKLE. - 1 Introduction. - 2 Air-Water Partitioning Equilibria. - 3 Diffusion Between Water and Air. - 4 Volatilization and Absorption: Double-Resistance Approach. - 5 Factors Affecting Mass-Transfer Coefficients. - 6 Partitioning of Chemical to Paniculate Matter in Air and Water. - 6.1 Air. - 6.2 Water. - 7 Atmospheric Deposition Processes. - 7.1 Dry Deposition. - 7.2 Wet Deposition. - 8 Specimen Calculation. - 8.1 Step 1: Physicochemical Properties. - 8.2 Step 2: Mass-Transfer Coefficients. - 8.3 Step 3: Sorption in Air and Water. - 8.4 Step 4: Equilibrium Status. - 8.5 Step 5: Volatilization and Deposition Rates. - 9 Role of Air-Water Exchange in Lake Mass Balances. - 10 Case Studies. - 10.1 Mass Balance on Siskiwit Lake, Isle Royale. - 10.2 Mass Balance on Lake Superior. - 10.3 Air-Water Exchange in Green Bay, Lake Michigan. - 10.4 Air-Water Exchange in Lake Superior. - 11 Conclusions. - References. - 7 Atmospheric Depositions: Impact of Acids on Lakes / W. STUMM and J. SCHNOOR. - Abstract. - 1 Introduction: Anthropogenic Generation of Acidity. - 1.1 Genesis of Acid Precipitation. - 2 Acidity and Alkalinity: Neutralizing Capacities. - 2.1 Transfer of Acidity (or Alkalinity) from Pollution Through the Atmosphere to Ecosystems. - 3 Acidification of Aquatic and Terrestrial Ecosystems. - 3.1 Disturbance of H+ Balance from Temporal or Spatial Decoupling of the Production and Mineralization of the Biomass. - 3.2 In Situ H+ Ion Neutralization in Lakes. - 3.3 Krug and Frink Revisited. - 4 Brønsted Acids and Lewis Acids: Pollution by Heavy Metals, as Influenced by Acidity. - 4.1 Cycling of Metals. - 4.2 Pb in Soils. - 5 Impact of Acidity on Ecology in Watersheds. - 5.1 Soils. - 5.2 Lakes. - 5.3 Nitrogen Saturation of Forests. - 6 Critical Loads. - 6.1 Critical Load Maps. - 6.2 Models for Critical Load Evaluation. - 7 Case Studies. - 7.1 Chemical Weathering of Crystalline Rocks in the Catchment Area of Acidic Ticino Lakes, Switzerland. - 7.2 Watershed Manipulation Project at Bear Brooks, Maine. - 8 Summary. - References. - 8 Redox-Driven Cycling of Trace Elements in Lakes / J. HAMILTON-TAYLOR and W. DAVISON. - 1 Introduction. - 2 Major Biogeochemical Cycles and Pathways. - 3 Iron and Manganese. - 3.1 Transformations and Cycling. - 3.2 Iron and Manganese Compounds as Carrier Phases. - 4 Sediment-Water Interface. - 4.1 Diffusive Flux from Sediments. - 4.2 Evidence of Little or No Diffusive Efflux from Sediments. - 4.3 Transient Remobilization. - 4.4 Diffusive Flux into Sediments. - 5 Pathways Involving Redox Reactions Directly: Case Studies. - 5.1 Arsenic. - 5.2 Chromium. - 5.3 239,240Pu. - 5.4 Selenium 6 Pathways Involving Redox Reactions Indirectly: Case Studies. - 6.1 137Cs. - 6.2 Stable Pb, 210Pb, and 210Po. - 6.3 Zinc. - 7 Summary and Conclusions. - References. - 9 Comparative Geochemistry of Marine Saline Lakes / F. T. MACKENZIE, S. VINK, R. WOLLAST, and L. CHOU. - 1 Introduction. - 2 General Characteristics of Marine Saline Lakes. - 3 Comparative Sediment-Pore-Water Reactions. - 3.1 Mangrove Lake, Bermuda. - 3.2 Solar Lake, Sinai. - 4 Conclusions. - References. - 10 Organic Matter Accumulation Records in Lake Sediments / P. A. MEYERS and R. ISHIWATARI. - 1 Introduction. - 1.1 Significance of Organic Matter in Lake Sediments. - 1.2 Origins of Organic Matter to Lake Sediments. - 1.3 Alterations of Organic Matter During Deposition. - 1.4 Similarities and Differences Between Organic Matter in Sediments of Lakes and Oceans. - 1.5 Dating of Lake-Sediment Records. - 2 Indicators of Sources and Alterations of Total Organic Matter in Lake Sediments. - 2.1 Source Information Preserved in C/N Ratios of Sedimentary Organic Matter. - 2.2 Source Information from Carbon-Stable Isotopic Compositions. - 2.3 Source Information from Nitrogen-Stable Isotopic Compositions. - 3 Origin and Alterations of Humic Substances. - 4 Sources and Alterations of Lipid Biomarkers. - 4.1 Alteration of Lipids During Deposition. - 4.2 Changes in Sources vs Selective Diagenesis. - 4.3 Effects of Sediment Grain Size on Geolipid Compositions. - 4.4 Source Records of Alkanes in Lake Sediments. - 4.5 Preserv
    Location: Upper compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...