ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-06-28
    Description: Three volcanic arcs have been the source of New Zealand's volcanic activity since the Neogene: Northland arc, Coromandel Volcanic Zone (CVZ) and Taupō Volcanic Zone (TVZ). The eruption chronology for the Quaternary, sourced by the TVZ, is well studied and established, whereas the volcanic evolution of the precursor arc systems, like the CVZ (central activity c. 18 to 2 Ma), is poorly known due to limited accessibility to, or identification of, onshore volcanic deposits and their sources. Here, we investigate the marine tephra record of the Neogene, mostly sourced by the CVZ, of cores from IODP Exp. 375 (Sites U1520 and U1526), ODP Leg 181 (Sites 1123, 1124 and 1125), IODP Leg 329 (Site U1371) and DSDP Leg 90 (Site 594) offshore of New Zealand. In total, we identify 306 primary tephra layers in the marine sediments. Multi-approach age models (e.g. biostratigraphy, zircon ages) are used in combination with geochemical fingerprinting (major and trace element compositions) and the stratigraphic context of each marine tephra layer to establish 168 tie-lines between marine tephra layers from different holes and sites. Following this approach, we identify 208 explosive volcanic events in the Neogene between c. 17.5 and 2.6 Ma. This is the first comprehensive study of New Zealand's Neogene explosive volcanism established from tephrochronostratigraphic studies, which reveals continuous volcanic activity between c. 12 and 2.6 Ma with an abrupt compositional change at c. 4.5 Ma, potentially associated with the transition from CVZ to TVZ. Key Points New Zealand's Neogene explosive volcanism based on the marine tephra record Geochemical fingerprinting of marine tephra layers across the study area to establish volcanic events Insights into geochemical variations with time, repose times and spatiotemporal distribution
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-28
    Description: Mapping and sampling four sections of the slow-spreading Reykjanes Ridge provide insight into how tectonic and volcanic activity varies with distance from the Iceland plume. The studied areas are characterized by significant variations in water depth, lava chemistry, crustal thickness, thermal structure, and ridge morphology. For each study area, fault pattern and dimension, tectonic strain, seamount morphology, and density are inferred from 15 m-resolution bathymetry. These observations are combined with geochemical analysis from glass samples and sediment thickness estimations along Remotely Operated Vehicle-dive videos. They reveal that (a) tectonic and volcanic activity along the Reykjanes Ridge, do not systematically vary with distance from the plume center. (b) The tectonic geometry appears directly related to the deepening of the brittle/ductile transition and the maximum change in tectonic strain related to the rapid change in crustal thickness and the transition between axial-high and axial valley (∼59.5°N). (c) Across-axis variations in the fault density and sediment thickness provide similar widths for the neo-volcanic zone except in regions of increased seamount emplacement. (d) The variations in seamount density (especially strong for flat-topped seamounts) are not related to the distance from the plume but appear to be correlated with the interaction between the V-shape ridges (VSR) flanking the ridge and the ridge axis. These observations are more compatible with the buoyant upwelling melting instability hypothesis for VSR formation and suggest that buoyant melting instabilities create many small magma batches which by-pass the normal subaxial magmatic plumbing system, erupting over a wider-than-normal area. Key Points The distance from the plume center is not the only factor controlling tectonic and volcanic activity along the Reykjanes Ridge Fault dimensions are primarily controlled by the variation of crustal thermal structure with distance from the hotspot Flat-topped seamount abundances peak where a V-shaped ridge intersects the axis, consistent with a buoyant upwelling melting instability
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    Publication Date: 2024-06-26
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-26
    Description: When volcanic mountains slide into the sea, they trigger tsunamis. How big are these waves, and how far away can they do damage? Ritter Island provides some answers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-26
    Description: Volcanic flank collapses, especially those in island settings, have generated some of the most voluminous mass transport deposits on Earth and can trigger devastating tsunamis. Reliable tsunami hazard assessments for flank collapse-driven tsunamis require an understanding of the complex emplacement processes involved. The seafloor sequence southeast of Montserrat (Lesser Antilles) is a key site for the study of volcanic flank collapse emplacement processes that span subaerial to submarine environments. Here, we present new 2D and 3D seismic data as well as MeBo drill core data from one of the most extensive mass transport deposits offshore Montserrat, which exemplifies multi-phase landslide deposition from volcanic islands. The deposits reveal emplacement in multiple stages including two blocky volcanic debris avalanches, secondary seafloor failure and a late-stage erosive density current that carved channel-like incisions into the hummocky surface of the deposit about 15 km from the source region. The highly erosive density current potentially originated from downslope-acceleration of fine-grained material that was suspended in the water column earlier during the slide. Late-stage erosive turbidity currents may be a more common process following volcanic sector collapse than has been previously recognized, exerting a potentially important control on the observed deposit morphology as well as on the runout and the overall shape of the deposit. Key Points Landslide emplacement offshore Montserrat included volcanic flank collapses, sediment incorporation, and a late-stage erosive flow Highly erosive flows are likely to be common processes during volcanic flank collapse deposition Pre-existing topography plays a major role in shaping flank collapse-associated mass transport deposits Plain Language Summary Disintegration of volcanic islands can cause very large landslides and destructive tsunamis. To assess the tsunami hazard of such events, it is crucial to understand the processes that are involved in their formation. We present new insights from seismic data and drill cores from a landslide deposit offshore Montserrat, a volcanic island in the Lesser Antilles Arc in the Caribbean. Our analysis reveals the emplacement of landslide material in several stages, including multiple volcanic flank collapses, incorporation of seafloor sediments and an erosive flow that carved channels into the top of the deposit right after its emplacement. We suggest that highly erosive flows are a common process during volcanic flank collapse deposition and that they play a significant role in the shaping of the deposit's appearance.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    Publication Date: 2024-06-24
    Description: The simulation of deep-sea conditions in laboratories is technically challenging but necessary for experiments that aim at a deeper understanding of physiological mechanisms or host-symbiont interactions of deep-sea organisms. In a proof-of-concept study, we designed a recirculating system for long-term culture (〉2 yr) of deep-sea mussels Gigantidas childressi (previously Bathymodiolus childressi). Mussels were automatically (and safely) supplied with a maximum stable level of ~60 μmol L−1 methane in seawater using a novel methane–air mixing system. Experimental animals also received daily doses of live microalgae. Condition indices of cultured G. childressi remained high over the years, and low shell growth rates could be detected, too, which is indicative of positive energy budgets. Using stable isotope data, we demonstrate that G. childressi in our culture system gained energy, both, from the digestion of methane-oxidizing endosymbionts and from digesting particulate food (microalgae). Limitations of the system, as well as opportunities for future experimental approaches involving deep-sea mussels, are discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-24
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-06-24
    Description: Air-sea interaction in late boreal winter is studied over the extratropical North Atlantic (NA) during 1960–2020 by examining the relationship between sea-surface temperature (SST) and total turbulent heat flux (THF). The two quantities are positively correlated on interannual timescales over the central-midlatitude and subpolar NA, suggesting the atmosphere on average drives SST and THF variability is independent of SST. On decadal timescales and over the central-midlatitude NA the correlation is negative, suggesting ocean processes on average drive SST and THF variability is sensitive to SST. The correlation is positive over the subpolar NA. There, interannual and decadal THF variability is governed by the North Atlantic Oscillation (NAO). During the major late 20th and early 21st century SST increase in the subpolar NA diminishing oceanic heat loss associated with a weakening NAO was observed. This study suggests that the atmosphere is more sensitive to SST over the central-midlatitude than subpolar NA. Key Points: - Regional variation in the nature of air-sea interaction over the extratropical North Atlantic (NA) north of 35°N - Timescale dependence in relationship between sea-surface temperature (SST) and turbulent heat flux over the central-midlatitude NA - The atmosphere is more sensitive to SST variability over the central-midlatitude than subpolar NA
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-24
    Description: The disturbance of marine organism phenology due to climate change and the subsequent effects on recruitment success are still poorly understood, especially in migratory fish species, such as the Atlantic herring (Clupea harengus; Clupeidae). Here we used the commercial catch data from a local fisher over a 50-year period (1971–2020) to estimate western Baltic spring-spawning (WBSS) herring mean arrival time Q50 (i.e., the week when 50% of the total fish catches had been made) at their spawning ground within the Kiel Fjord, southwest Baltic Sea, and the duration of the spawning season for each year. The relationship between the seawater temperature in the Kiel Bight and other environmental parameters (such as water salinity, North Atlantic and Atlantic multidecadal oscillations) and Q50 was evaluated using a general linear model to test the hypothesis that fish arrived earlier after warm than cold winters. We also estimated the accumulated thermal time to Q50 during gonadal development to estimate the effects of seawater temperature on the variations of Q50. The results of this study revealed a dramatic decrease in herring catches within the Kiel Fjord since the mid-1990s, as documented for the whole southwestern Baltic Sea. Warmer winter seawater temperature was the only factor related to an earlier arrival (1 week for one January seawater temperature degree increase) of herring at their spawning ground. The relationship was found for the first time on week 52 of the year prior to spawning and was the strongest (50% of the variability explained) from the fourth week of January (8 weeks before the mean Q50 among the studied years). A thermal constant to Q50 (~316°C day) was found when temperatures were integrated from the 49th week of the year prior to spawning. These results indicate that seawater temperature enhanced the speed of gonadal maturation during the latest phases of gametogenesis, leading to an early fish arrival under warm conditions. The duration of the spawning season was elongated during warmer years, therefore potentially mitigating the effects of trophic mismatch when fish spawn early. The results of this study highlight the altering effects of climate change on the spawning activity of a migratory fish species in the Baltic Sea where fast global changes presage that in other coastal areas worldwide
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-06-20
    Description: The Black Sea is a permanently anoxic, marine basin serving as model system for the deposition of organic-rich sediments in a highly stratified ocean. In such systems, archaeal lipids are widely used as paleoceanographic and biogeochemical proxies; however, the diverse planktonic and benthic sources as well as their potentially distinct diagenetic fate may complicate their application. To track the flux of archaeal lipids and to constrain their sources and turnover, we quantitatively examined the distributions and stable carbon isotopic compositions (delta 13C) of intact polar lipids (IPLs) and core lipids (CLs) from the upper oxic water column into the underlying sediments, reaching deposits from the last glacial. The distribution of IPLs responded more sensitively to the geochemical zonation than the CLs, with the latter being governed by the deposition from the chemocline. The isotopic composition of archaeal lipids indicates CLs and IPLs in the deep anoxic water column have negligible influence on the sedimentary pool. Archaeol substitutes tetraether lipids as the most abundant IPL in the deep anoxic water column and the lacustrine methanic zone. Its elevated IPL/CL ratios and negative delta 13C values indicate active methane metabolism. Sedimentary CL- and IPL-crenarchaeol were exclusively derived from the water column, as indicated by non-variable delta 13C values that are identical to those in the chemocline and by the low BIT (branched isoprenoid tetraether index). By contrast, in situ production accounts on average for 22% of the sedimentary IPL-GDGT-0 (glycerol dibiphytanyl glycerol tetraether) based on isotopic mass balance using the fermentation product lactate as an endmember for the dissolved substrate pool. Despite the structural similarity, glycosidic crenarchaeol appears to be more recalcitrant in comparison to its non-cycloalkylated counterpart GDGT-0, as indicated by its consistently higher IPL/CL ratio in sediments. The higher TEX86, CCaT, and GDGT-2/-3 values in glacial sediments could plausibly result from selective turnover of archaeal lipids and/or an archaeal ecology shift during the transition from the glacial lacustrine to the Holocene marine setting. Our in-depth molecular-isotopic examination of archaeal core and intact polar lipids provided new constraints on the sources and fate of archaeal lipids and their applicability in paleoceanographic and biogeochemical studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...