ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (70)
  • Articles (OceanRep)  (70)
  • AGU (American Geophysical Union)  (59)
  • Wiley  (13)
  • Springer Nature
  • 1985-1989  (68)
  • 1965-1969  (2)
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 67 (39). pp. 743-755.
    Publication Date: 2017-08-22
    Description: AGU considers only original scientific contributions that have not been accepted or published elsewhere and are not under consideration by another publisher. A contribution is considered previously published if its data and conclusions are offered for sale or are generally available in other ways to the public. Regardless of the original publication medium, including print, magnetic tape, or microform, such contributions are not eligible for republication in AGU journals or books.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Oceans, 94 (C12). pp. 18213-18226.
    Publication Date: 2017-07-20
    Description: Characteristics of water masses were analyzed to study the Kuroshio intrusion into the sea southwest of Taiwan. Hydrographic data were obtained from CTD (conductivity, temperature, and depth) casts during two cruises in May and August 1986. In May, remnants of water intruding from the Kuroshio were found on the continental slope south of the Penghu Channel. By August, these were replaced by water from the South China Sea. During this period, water from the Kuroshio also appeared near the southern tip of Taiwan. The intrusion current reached a depth of at least 500 m and was probably part of a cyclonic circulation in the northern South China Sea. The results support the hypothesis of a seasonal pattern of the intrusion process: intrusion of water from the Kuroshio begins in late summer, intensifies in winter, and ceases by late spring when South China Sea waters again enter this region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research, 70 (14). pp. 3457-3474.
    Publication Date: 2017-12-21
    Description: The possibility of using the 15% excess U234 activity in oceanic uranium for dating pelagic sediments in the age range 100,000 years to more than 1 m.y. has been explored. Results from a series of analyses of bulk samples, mechanical separates, and acid leach fractions indicate that separation of authigenic uranium from detrital uranium by either mechanical or chemical means is impractical. Measurements on totally dissolved samples reveal that the sediments do not form a closed system; post-depositional migration of U234 in the sedimentary column takes place. Based on the experimental data obtained from three red-clay cores with sedimentation rates ranging from 2 to 6 mm/1000 yr, a model depicting diffusion of the U234 generated within the sediments is proposed. The diffusion equation includes three parameters: sedimentation rate, diffusion coefficient for U234, and fraction of the internally produced U234 subject to mobility. If the amount of U234 lost from these cores is typical, a sizeable part of the U234 excess in the sea must be from this source.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 69 (6). pp. 74-86.
    Publication Date: 2017-01-31
    Description: What is the relationship between volcanic eruptions and climate change? More than 200 years after the connection was first proposed, it remains a thorny question. This article provides a brief historical overview of the problem and a review of the various data bases used in evaluating volcanic events and associated climatic change. We use the term “climate” to describe changes in the atmosphere over wide regions for periods of several months and longer. We use “weather” to describe shorter-term, variable atmospheric fluctuations experienced over more restricted areas. We appraise the present state of knowledge and highlight some pitfalls involved in using available information. Cautiously, we suggest future avenues for study, including the possibility of “volcanic winters,” or severe eruption-induced coolings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. , ed. by Sundquist, E. T. and Broecker, W. S. Geophysical Monograph, 32 . AGU (American Geophysical Union), Boulder, pp. 504-529.
    Publication Date: 2017-01-30
    Description: The Stratigraphie record from both deep-sea and shallow-water depositional environments Indicates that during late Aptian through Cenomanian time (1) global climates were considerably warmer than at present; (2) latitudinal gradients of atmospheric and oceanic temperatures were considerably less than at present; (3) rates of accumulation of organic matter of both marine and terrestrial origin were as high as or higher than during any other interval in the Mesozoic or Cenozoic; (4) the rate and volume of accumulation of CaC02 in the deep sea were reduced in response to a marked shoaling of the carbonate compensation depth; (5) seafloor spreading rates were somewhat more rapid than at any other time in the Cretaceous or Cenozoic; (6) off-ridge volcanism was intense and widespread, particularly in the ancestral Pacific Ocean basin; and (7) sea level was relatively high, forming widespread areas of shallow shelf seas. A marked increase in the rate of C02 outgassing due to volcanic activity between about 110 and 70 m.y. ago may have resulted in a buildup of atmospheric C02. A significant fraction of this atmospheric C02 may have been reduced by an increase in the production and burial of terrestrial organic carbon. Some excess C02 may have been consumed by marine algal photosynthesis, but marine productivity apparently was low during the Aptian-Albian relative to terrestrial productivity. Terrestrial productivity also may have been stimulated by increased rainfall that resulted from a warm global climate and increased marine transgression as well as by the higher C02.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 93 (B4). pp. 2857-2874.
    Publication Date: 2017-07-07
    Description: Magnetic lineation mapping in the western central Pacific has revealed a pair of opposite-sensed, fanned lineation patterns that define the accretionary boundaries of the fossil Magellan microplate. This tectonic synthesis results from extensive magnetic mapping of two new lineation patterns over a large area and extended mapping of previously identified lineations. The entire evolutionary history of the Magellan microplate is well constrained to a 9-m.y. period in the Early Cretaceous by synchronous spreading patterns and associated geologic data. During this period the microplate grew and evolved as a generally rectangular structure to a final size of 700 km×600 km with spreading centers on two opposing sides and transform faults on the other two sides. The lifetime and size of the Magellan microplate are somewhat longer and larger, respectively, than presently active microplates on the East Pacific Rise. However, these modern structures are still evolving and growing, and the tectonic behavior of the modern and Cretaceous systems appears to be similar. Study of both active and fossilized microplates should provide additional insights on their common tectonic histories. In particular, we show that the Magellan Trough spreading center behaved as an asymmetric accretionary plate boundary that can be described with two separate poles of motion very close to this spreading center during much of its history. The Magellan Trough spreading center then failed as a result of a larger ridge reorganization at the triple junction of the Pacific, Farallon, and Phoenix plates at Ml0N time. Microplate activity ceased when the microplate became welded to the Pacific plate at M9 time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 94 (B11). pp. 16023-16035.
    Publication Date: 2018-03-06
    Description: A seismic refraction profile recorded along the geologic strike of the Chugach Mountains in southern Alaska shows three upper crustal high-velocity layers (6.9, 7.2, and 7.6 km/s) and a unique pattern of strongly focussed echelon arrivals to a distance of 225 km. The group velocity of the ensemble of echelon arrivals is 6.4 km/s. Modeling of this profile with the reflectivity method reveals that the echelon pattern is due to peg-leg multiples generated from with a low-velocity zone between the second and third upper crustal high-velocity layers. The third high-velocity layer (7.6 km/s) is underlain at 18 km depth by a pronounced low-velocity zone that produces a seismic shadow wherein zone peg-leg multiples are seen as echelon arrivals. The interpretation of these echelon arrivals as multiples supersedes an earlier interpretation which attributed them to successive primary reflections arising from alternating high- and low-velocity layers. Synthetic seismogram modeling indicates that a low-velocity zone with transitional upper and lower boundaries generates peg-leg multiples as effectively as one with sharp boundaries. No PmP or Pn arrivals from the subducting oceanic Moho at 30 km depth beneath the western part of the line are observed on the long-offset (90-225 km) data. This may be due to a lower crustal waveguide whose top is the high-velocity (7.6 km/s) layer and whose base is the Moho. A deep (~54 km) reflector is not affected by the waveguide and has been identified in the data. Although peg-leg multiples have been interpreted on some long-range refraction profiles that sound to upper mantle depths, the Chugach Mountains profile is one of the few crustal refraction profiles where peg-leg multiples are clearly observed. This study indicates that multiple and converted phases may be more important in seismic refraction/wide-angle reflection profiles than previously recognized.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Wiley
    In:  In: Handbook of Holocene palaeoecology and palaeohydrology. , ed. by Berglund, B. E. Wiley, Chichester, pp. 527-570. ISBN 0-471-90691-3
    Publication Date: 2018-04-18
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Wiley
    In:  In: Marine invertebrate fisheries : their assessment and management. , ed. by Caddy, J. F. A Wiley-interscience publication . Wiley, New York, pp. 559-589. ISBN 0-471-83237-5
    Publication Date: 2020-07-08
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 4 (4). pp. 353-412.
    Publication Date: 2017-03-14
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...