ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (21)
  • Articles (OceanRep)  (21)
  • AMS (American Meteorological Society)  (13)
  • AGU  (8)
  • AGU (American Geological Union)
  • American Meteorological Society
  • Springer Nature
  • 1985-1989  (19)
  • 1965-1969  (2)
Collection
  • Other Sources  (21)
Source
Years
Year
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 16 (5). pp. 827-837.
    Publication Date: 2016-04-19
    Description: Data from a surface mooring located in the Sargasso Sea at 34°N, 70°W between May 1982 and May 1984 were compared with satellite data to investigate large diurnal sea surface temperature changes. Mooring and satellite measurements are in excellent agreement for those days on which no clouds covered the site at the time of the satellite pass. During the summer half-year at this site, there is a 20% charm of diurnal warming of more than 0.5°C, with values of up to 3.5°C observed in the two-year period. Diurnal warming observed at the mooring has been simulated well by a one-dimensional model driven by local beat and momentum fluxes. Under the conditions of very light wind and strong insolation that produce the Largest surface warming, the surface mixed-layer depth reduces to the convection depth, and wind-mixing becomes unimportant. The thermal response is then limited to depths between 1 and 2 m, making it likely that such events have been underreported in routine ship observations. In all cases observed, the spatial extent of warming events as determined by satellite data are well correlated with the corresponding atmospheric pressure patterns. Conditions giving rise to the largest diurnal warming events are often associated with a westward-extending ridge of the Bermuda high. In the region studied, 57°–75°W and 29°–43°N, diurnal warming of more than 1°C was found on occasion to cover areas in excess of 300 000 km2, with warming of more than 2°C coveting areas in excess of 130 000 km2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 19 (10). pp. 1440-1448.
    Publication Date: 2020-08-04
    Description: Historical data from the region between the Greenwich meridian and the African continental shelf are used to compute the offshore geostrophic transport of the Benguela Current. At 32°S, the Benguela Current is located near the African coast, transporting about 21 Sv (1 Sv = 106 m3 s−1) of surface water toward the north relative to a potential density surface lying between the upper branch of Circumpolar Deep Water and the North Atlantic Deep Watar. Two warm core eddies of probable Agulhas Current origin an observed west of the Benguela Current at 32°S. Near 30°S, the Benguela Current turns toward the northwest and begins to separate from the eastern boundary. It carries about 18 Sv of surface water across 28°S. The current then turns mainly toward the west to flow over a relatively deep segment of the Walvis Ridge south of the Valdivia Bank. A surface current with northward surface of about 10 cm s−1 flows along the western side of the Valdivia Bank, while another northward surface current flows at about 20 cm s−1 some 300 km west of the bank. About 3 Sv of surface now do not leave the Cape Basin south of the Vaidivia Bank, but instead drift northward as a wide. sluggish flow out of the northern end of the Cape Basin. Because of the more southerly seaward extensions of most of the Benguela Current, there are no deep-reaching interactions observed between this current and the cyclonic gyre in the Angola Basin east of the Greenwich meridian. Beneath the surface layer, about 4–5 Sv of Antarctic Intermediate Water are carried northward across 32° and 28°S by the Benguela Current, essentially all of which turns westward to cross the Greenwich meridian south of 24°S.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 3 (1). pp. 75-83.
    Publication Date: 2016-05-10
    Description: An XBT interface is described for use with Commodore and other 6502 based microprocessors. This interface takes the form of a single circuit board mounted inside the microcomputer and is completely software controlled. The application of this digital XBT system to the real-time computation of density and dynamic height, using historical or recent temperature-salinity relationships, is also described. Comparison between XBT and CTD measured temperatures from the Northeast Atlantic yield a mean temperature difference of −0.08°C and an rms temperature difference of 0.33°C for the upper 800 m. Examples of dynamic topography maps and a temperature section computed using this technique are also presented and comparison between objectively analyzed XBT and CTD dynamic topographies demonstrates the reliability of the method for mapping the baroclinic flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 17 (1). pp. 158-163.
    Publication Date: 2020-08-04
    Description: The existence of energetic anticyclonic mid-depth vortices of Mediterranean Water (meddies) questions the validity of a conventional advective–diffusive balance in the eastern Atlantic subtropical gyre. A mesoscale experiment in the Azores–Madeira region reveals a link of these meddies to large-scale subsurface meanders. For the first time it is shown that meddies may have strong surface vorticity, indicative of a generation process involving the Azores Current—a deep reaching near-surface jet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 18 . pp. 320-338.
    Publication Date: 2018-04-05
    Description: We examine the diffusive behavior of the flow field in an eddy-resolving, primitive equation circulation model. Analysis of fluid particle trajectories illustrates the transport mechanisms, which are leading to uniform tracer and potential vorticity distributions in the interior of the subtropical thermocline. In contrast to the assumption of weak mixing in recent analytical theories, the numerical model indicates the alternative of tracer and potential vorticity homogenization on isopycnal surfaces taking place in a nonideal fluid with strong, along-isopycnal eddy mixing. The eastern, ventilated portion of the gyre appears to be sufficiently homogeneous to allow the concept of an eddy diffusivity to apply. A break in a random walk behavior of particle statistics occurs after about 100 days when along-flow dispersion sharply increases, indicative of mean shear effects. During the first months of particle spreading, eddy dispersal and mean advection are of similar magnitude. Eddy kinetic energy is of O(60–80 cm2 s−2) in the model thermocline, comparable to the pool of weak eddy intensity found in the eastern parts of the subtropical oceans. Eddy diffusivity in the model thermocline (Kxx = 8 × 107, Kyy = 3 × 107 cm2 s−1) seems to be higher by a factor of about 3 than oceanic values estimated for these area. Below the thermocline, model diffusivity decreases substantially and becomes much more anisotropic, with particle dispersal preferentially in the zonal direction. The strong nonisotropic behavior, prominent also in all other areas of water eddy intensity, appears as the major discrepancy when compared with the observed behavior of SOFAR floats and surface drifters in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-23
    Description: A high-resolution near-bottom survey has been conducted of the Clipperton transform fault and adjoining segments of the East Pacific Rise (EPR), using the Sea MARC I side-looking sonar system and the Lamont-Doherty Geological Observatory Olympus-based camera system. The transform fault zone (TFZ) is a narrow, well-defined belt of transform-parallel lineaments, which varies along strike from a single, sharp-edged notch to a complex band of subparallel lineaments up to 1 km wide. The TFZ is set within a 5-km-wide band of unusually fine-grained side scan texture, which could indicate nonbasaltic seafloor and/or pervasively sheared and mass-wasted basaltic crust The fine-grained swath is surrounded by constructional volcanic terrain with no hint of strike-slip motion; this observation puts an upper limit of 5 km on the extent of lateral migration of the TFZ in the last 1.5 m.y. Both ridge transform intersections (RTIs) are dominated by bathymetric highs located on the old plate opposite the spreading center. A mantling of fresh-looking constructional volcanic terrain on side scan images suggests that the highs are built in part by recent extrusive and intrusive volcanism; thermal expansion may also play a part. The EPR south of Clipperton has recently experienced extrusion of high effusion rate basalts, burial of faults and fissures by lava flows, and development of vigorous hydrothermal circulation. On the EPR north of Clipperton, the axial zone of faults and fissures tapers toward the transform fault; this may reflect a change in the shape or size of the underlying shallow level magma feeders as a function of distance from the site of magma upwelling or distance toward the transform fault.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU
    In:  Journal of Geophysical Research: Solid Earth, 90 (B8). p. 6709.
    Publication Date: 2020-07-23
    Description: Heat flow in the Imperial Valley and adjacent crystalline rocks is very high (∼140 mW m−2). Gravity and seismic studies suggest the crust is about 23.5 km thick with the lower half composed of gabbro and the upper fourth composed of low-density sediments. Conduction through such a crust resting directly on asthenosphere would give the observed heat flow if there were no extension or sedimentation. However, both processes must have been active, as the Imperial Valley is part of the Salton Trough, a pull-apart sedimentary basin that evolved over the past 4 or 5 m.y. To investigate the interrelations of these factors, we consider a one-dimensional model of basin formation in which the lower crustal gabbro and upper crustal sediments accumulated simultaneously as the crust extended and sedimentation kept pace with isostatic subsidence. For parameters appropriate for the Salton Trough, increasing the extension rate has little effect on surface heat flow because it increases effects of heating by intrusion and cooling by sedimentation in a compensating manner; it does, however, result in progressively increasing lower crustal temperatures. Analytical results suggest that the average extensional strain rate during formation of the trough was ∼20–50%/m.y. (∼1014 s−1); slower rates are inadequate to account for the present composition of the crust, and faster rates would probably cause massive crustal melting. To achieve the differential velocities of the Pacific plate at one end of the trough and North American plate at the other with this strain rate, extension must have, on the average, been distributed (or shifted about) over a spreading region ∼150 km wide. This is about 10 times wider than the present zone of active seismicity, suggesting that the seismic pattern is ephemeral on the time scale for the trough's formation. Narrow spreading zones are typical where sustained spreading is compensated by basaltic intrusion to form the thin oceanic crust, but where such spreading occurs in thicker continental crust, broader zones of distributed extension (with smaller strain rates) may be required for heat balance. The Salton Trough model suggests that distributed extension can be associated with substantial magmatic additions to the crust; their effect on crustal buoyancy has important implications for the relation between crustal extension and subsidence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU
    In:  Journal of Geophysical Research: Oceans, 91 (C12). pp. 14192-14206.
    Publication Date: 2020-07-23
    Description: In the western tropical Atlantic, seasonal variations in the surface winds and in the ocean are dominated by an annual harmonic. A simulation with a general circulation model indicates that the response in the western side of the basin is an equilibrium one practically in phase with the local winds. It includes the following: large vertical excursions of the thermocline that have a 180° change in phase across 8°N approximately; a change in the direction of the North Brazilian Coastal Current, which flows continuously along the coast between December and May but which veers offshore near 5°N to feed the North Equatorial Countercurrent during the other months; and a seasonal reversal of the countercurrent. To the east of 30°W, seasonal changes in the model have a prominent semiannual harmonic in phase with the local winds but only partially attributable to forcing at that frequency. The transients excited by the abrupt intensification of the southeast tradewinds in May happen to have a phase essentially the same as that of the semiannual forcing. These transients decay by the end of the calendar year, so that the seasonal cycle that starts with the intensification of the winds in May can be treated as an initial value problem as far as the upper ocean, above the thermocline, is concerned. The winds along the equator determine the response of the surface equatorial layer in the Gulf of Guinea but play a minor role in the seasonal upwelling along the coast near 5°N. That upwelling is strongly influenced by changes in both components of the wind, and in the curl of the wind, over the Gulf of Guinea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU
    In:  Journal of Geophysical Research: Oceans, 90 (C4). pp. 6953-6970.
    Publication Date: 2020-07-23
    Description: Water column inventories are calculated for bomb radiocarbon at all the stations occupied during the GEOSECS and NORPAX expeditions and for the available TTO stations. The pattern of global inventories obtained in this way suggests that a sizable portion of the bomb radiocarbon that entered the Antarctic, the northern Pacific, and the tropical ocean has been transported to the adjacent temperate zones. A strategy for utilizing these inventory anomalies as constraints on global ocean circulation models is presented. Essential to this strategy are the improvement of our knowledge of the pattern of wind speed over the ocean, the establishment of the wind speed dependence of the rate of gas exchange between the atmosphere and sea, and the continued mapping of the distribution of bomb-produced radiocarbon in the sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU
    In:  Journal of Geophysical Research: Oceans, 90 (C4). pp. 6940-6944.
    Publication Date: 2020-07-23
    Description: Comparison of the 1973 GEOSECS expedition results from the deep eastern basin of the North Atlantic with those for 1981 TTO expedition reveal no firm evidence for change in NO3, PO4, or a H4SiO4. concentration. While a 2–3 μmol/kg difference is seen for O2, it is more likely experimental than temporal in origin. The combined TTO-GEOSECS data sets reveal no evidence for ventilation of the bottom waters of the eastern basin by waters from the north.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...