ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (126)
  • Artikel (OceanRep)  (126)
  • AMS (American Meteorological Society)  (113)
  • AGU
  • AGU (American Geological Union)
  • American Meteorological Society
  • Springer Nature
  • 2000-2004  (88)
  • 1990-1994  (36)
  • 1965-1969  (2)
Sammlung
  • Weitere Quellen  (126)
Datenquelle
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 23 (8). pp. 1638-1646.
    Publikationsdatum: 2018-03-23
    Beschreibung: New light is shed on Worthington's concept of the North Atlantic circulation, postulating the existence of two anticyclonic gyres. This concept, which seems to have been laid to rest in the last decade, has now been reinforced by the results of a simple linear Sverdrup circulation model yielding a band of westward transport all across the North Atlantic at about the Azores latitude. This narrow band is called the Azores Countercurrent (AzCC) and matches the position of westward flow required by Worthington's “northern gyre.” An anomaly in the meridional change of the wind-stress curl in the eastern North Atlantic has been identified as the driving mechanism. A comparison with observations shows that the AzCC is verified in many analyses of historical datasets and synoptic surveys. A lack of the AzCC in other analyses is probably due to missing meridional sections, strong smoothing, and the superimposed Ekman flow close to the sea surface directed to the southeast. The AzCC has not been verified in low-resolution general circulation models applying simplified wind-stress fields and large friction coefficients, but there is evidence for its existence in recent high-resolution models driven by realistic wind stresses. Based on these findings, a new pattern for the wind-driven upper ocean circulation of the midlatitude North Atlantic is presented.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 23 (11). pp. 2373-2391.
    Publikationsdatum: 2018-03-07
    Beschreibung: A sigma-coordinate, primitive equation ocean circulation model is used to explore the problem of the remnant generation of trapped waves about a tall, circular, isolated seamount by an incident oscillatory barotropic current. The numerical solutions are used to extend prior studies into the fully nonlinear regime, and in particular to quantify and interpret the occurrence of residual circulation. Specific attention is also devoted to the dependence of the resonance and rectification mechanisms on stratification, forcing frequency, and choice of subgrid-scale viscous closure. Resonantly generated trapped waves of significant amplitude are found to occur broadly in parameter space; a precise match between the frequency of the imposed incident current and the frequency of the trapped free wave is not necessary to produce substantial excitation of the trapped wave. The maximum amplification factors produced in these numerical solutions, O(100) times the strength of the incident current, are consistent with previous studies. In the presence of nonlinear advection, strong residual currents are produced. The time-mean circulation about the seamount is dominated by a strong bottom-intensified, anticyclonic circulation closely trapped to the seamount. Maximum local time-mean current amplitudes are found to be as large as 37% of the magnitude of the propagating waves. In addition to the strong anticyclonic residual flow, there is a weaker secondary circulation in the vertical-radial plane characterized by downwelling over the top of the seamount at all depths. Maximum vertical downwelling rates of several tens of meters per day occur at the summit of the seamount. The vertical mass flux implied by this systematic downwelling is balanced by a slow radial flux of mass directed outward along the flanks of the seamount. Time-mean budgets for the radial and azimuthal components of momentum show that horizontal eddy fluxes of momentum are responsible for transporting net radial and azimuthal momentum from the far field to the upper flanks of the seamount. There, Coriolis and pressure gradient forces provide the dominant balances in the radial direction. However, the Coriolis force and viscous effects provide the primary balance for the azimuthal component.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 (1). pp. 93-104.
    Publikationsdatum: 2018-03-09
    Beschreibung: North Atlantic air-sea heat and freshwater flux data from several sources are used to estimate the conversion rate of water from one density to another throughout the range of sea surface density. This cross-isopycnal mass flux varies greatly over the ocean, with a maximum of 32.2 × 106 m3 s−1 at σ = 26.1 kg m−3 (toward greater densities) and a minimum of −7.6 × 106 m3 s−1 (toward lesser densities) at σ = 23.0 kg m−3. The air-sea fluxes force water to accumulate in three density bands: one at the lowest sea surface densities generated by heating; one centered near the density of subtropical mode water; and one spanning subpolar mode water densities. The transfer of water to the highest and lowest densities is balanced by mixing, which returns water to the middle density range, and also by boundary sources or sinks. Integrating the cross-isopycnal flux over all densities gives an annual average sinking of about 9 × 1O6 m3 s−1, which presumably escapes across the equator and must be balanced by a similar inflow. Comparison with estimates from tracer studies suggests that the renewal of tracer characteristics at a given density may occur without the existence of an annual average mass source at that density, because along- and cross-isopycnal mixing can renew a tracer without supplying mass.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    AGU
    In:  Reviews of Geophysics, 28 (4). pp. 357-380.
    Publikationsdatum: 2020-06-03
    Beschreibung: Recent developments in side-scan sonar technology have increased the potential for fundamental changes in our understanding of ocean basins. Developed in the late 1960s, “side looking” sonars have been widely used for the last two decades to obtain qualitative estimates of the acoustic properties of the materials of the seafloor. Modern developments in the ability to obtain spatially correct digital data from side-scan sonar systems have resulted in images that can be subsequently processed, enhanced, and quantified. With appropriate processing, these acoustic images can be made to resemble easily recognizable optical photographs. Any geological interpretation of these images requires an understanding of the inherent limitations of the data acquisition system. When imagery is collected, these limitations are largely centered on the concept of resolution. In side-scan sonar images, there are several different types of resolution, including along- and across-track resolution, display resolution, and absolute instrumental resolution. All of these parameters play a critical role in our ability to calibrate and ultimately to interpret the new pictures of the ocean floor. Acoustic image processing is a new application of an old and well-established technique. Digital optical images have benefited from several decades of development in processing techniques. These relatively sophisticated techniques have been applied to photographic images from satellites and spacecraft, images which are “noisy” and difficult to obtain but extremely valuable. Side-scan sonar systems, on the other hand, have only recently been able to produce spatially correct, digital images of the seafloor. The application of digital signal-processing techniques to side-scan sonar data will now allow us to quantify what had been previously very subjective and qualitative interpretations of images of the seafloor. The goal of all this processing of acoustic images remains clear: the development of an interpretable map of the geology of the seafloor.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    AGU
    In:  Reviews of Geophysics, 30 (2). p. 113.
    Publikationsdatum: 2020-06-03
    Beschreibung: Accretionary prisms are composed of initially saturated sediments caught in subduction zone tectonism. As sediments deform, fluid pressures rise and fluid is expelled, resembling a saturated sponge being tectonically squeezed. Fluid flow from the accretionary prism feeds surface biological cases, precipitates and dissolves minerals, and causes temperature and geochemical anomalies. Structural and metamorphic features are affected at all scales by fluid pressures or fluid flow in accretionary prisms. Accordingly, this dynamic tectonic environment provides an accessible model for fluid/rock interactions occurring at greater crustal depths. Porosity reduction and to a lesser degree mineral dehydration and the breakdown of sedimentary organic matter provide the fluids expelled from accretionary prisms. Mature hydrocarbons expulsed along prism faults indicate deep sources and many tens of kilometers of lateral transport of fluids. Many faults cutting accretionary prisms expel fluids fresher than seawater, presumably generated by dehydration of clay minerals at depth. Models of fluid flow from accretionary prisms use Darcy's law with matrix and fractures/faults being assigned different permeabilities. Fluid pressures in accretionary prisms are commonly high but range from hydrostatic to lithostatic. Matrix or intergranular permeability ranges from less than 10−20 m² to 10−13 m². Fracture permeability probably exceeds 10−12 m². A global estimate of fluid flux into accretionary prisms suggests they recycle the oceans every 500 m.y. Fluid flow out of accretionary prisms occurs by distributed flow through intergranular permeability and along zones of focused flow, typically faults. Focused fluid flow is 3 to 4 orders of magnitude faster than distributed flow, probably representing the mean differences in permeability along these respective expulsion paths. During the geological evolution of accretionary prisms, distributed flow through pore spaces decreases as a result of consolidation and cementation, whereas flow along fracture systems becomes dominant. Although thrust faults are most common in the compressional environment of accretionary prisms, normal and strike-slip faults are efficient fluid drains, because they are easier to dilate. Observations from both modern and ancient prisms suggest episodic fluid flow which is probably coupled to episodic fault displacement and ultimately to the earthquake cycle.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 (1). pp. 83-92.
    Publikationsdatum: 2018-03-09
    Beschreibung: Antarctic Bottom Water flows into the western North Atlantic across the equator, shifting from the western side to the eastern side of the trough between the American continents and the Mid-Atlantic Ridge as it continues north. This is puzzling because such large-scale motion is thought to be controlled by dynamics that disallows an eastern boundary current. Previous explanations for the transposition involve a (necessarily small-scale) density current that changes sides because of the change in sign of rotation across the equator, or a topographic effect that changes the sign of the effective mean vorticity gradient and thus requires an eastern boundary current. Here an alternative explanation for the overall structure of bottom flow is given. A source of mass to a thin bottom layer is assumed to upwell uniformly across its interface into a less dense layer at rest. A simple formula for the magnitude of the upwelling and thickness of the layer is derived that depends on the source strength to the bottom layer. For a strong enough source, the bottom layer thickness is zero along a grounding curve that separates the bottom water from the western boundary and confines it to the east. A band of recirculating interior flow occurs, supplied by an isolated northern and western boundary current. Similar structures appear to exist in the Antarctic Bottom Water of the western North Atlantic.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 (11). pp. 1257-1273.
    Publikationsdatum: 2018-03-16
    Beschreibung: Results of a three-dimensional primitive equation model are presented simulating turbulent mesoscale motions in the seasonal thermocline on an f plane. The model is based on a hybrid vertical coordinate scheme and conserves isopycnic potential vorticity. Mesoscale turbulence is modeled in terms of an unstable potential vorticity front. The model integration starts from a purely zonal, 60-km-wide geostrophically balanced jet, on which is superimposed a small initial perturbation. The most unstable mode exhibits a wavelength of 85 km and is driven by a mixed type of instability. Characteristic dynamical ingredients of the wave are enhanced cyclonic and anticyclonic relative vorticity in the troughs and the ridges, respectively, due to the curvature of the flow. Vertical motion of up to 10 m d−1 occurring downstream of the ridges (downwelling) and downstream of the troughs (upwelling) is driven by geostrophic advection of relative vorticity. The contrast of static stability across the front is changing during amplification of the instability: in troughs the stability is decreasing whereas in ridges it is increasing. The density field exhibits local anomalies of the isopycnals' depths (bumps) due to the ageostrophic cross-jet advection of potential vorticity streamers wound up in cyclones and anticyclones. Locally, the potential vorticity gradients are enhanced, creating a multiple front structure. The model results support observations and findings of earlier atmospheric and oceanic models. It is emphasized that mesoscale turbulent structures may have a profound influence on primary productivity, mixed-layer, and internal wave dynamics.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Climate, 17 (19). pp. 3761-3774.
    Publikationsdatum: 2017-08-23
    Beschreibung: The decadal-scale variability in the tropical Pacific has been analyzed herein by means of observations and numerical model simulations. The two leading modes of the sea surface temperature (SST) variability in the central western Pacific are a decadal mode with a period of about 10 yr and the ENSO mode with a dominant period of about 4 yr. The SST anomaly pattern of the decadal mode is ENSO like. The decadal mode, however, explains most variance in the western equatorial Pacific and off the equator. A simulation with an ocean general circulation model (OGCM) forced by reanalysis data is used to explore the origin of the decadal mode. It is found that the variability of the shallow subtropical–tropical overturning cells is an important factor in driving the decadal mode. This is supported by results from a multicentury integration with a coupled ocean–atmosphere general circulation model (CGCM) that realistically simulates tropical Pacific decadal variability. Finally, the sensitivity of the shallow subtropical–tropical overturning cells to greenhouse warming is discussed by analyzing the results of a scenario integration with the same CGCM.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2016-09-07
    Beschreibung: Oceanic ecosystems altered by interdecadal climate variability may provide a feedback to the physical climate by phytoplankton affecting heat fluxes into the upper ocean and dimethylsulfide fluxes into the atmosphere
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 34 . pp. 817-843.
    Publikationsdatum: 2020-08-04
    Beschreibung: The current system east of the Grand Banks was intensely observed by World Ocean Circulation Experiment (WOCE) array ACM-6 during 1993–95 with eight moorings, reaching about 500 km out from the shelf edge and covering the water column from about 400-m depth to the bottom. More recently, a reduced array by the Institut für Meerskunde (IfM) at Kiel, Germany, of four moorings was deployed during 1999–2001, focusing on the deep-water flow near the western continental slope. Both sets of moored time series, each about 22 months long, are combined here for a mean current boundary section, and both arrays are analyzed for the variability of currents and transports. A mean hydrographic section is derived from seven ship surveys and is used for geostrophic upper-layer extrapolation and isopycnal subdivision of the mean transports into deep-water classes. The offshore part of the combined section is dominated by the deep-reaching North Atlantic Current (NAC) with currents still at 10 cm s−1 near the bottom and a total northward transport of about 140 Sv (Sv ≡ 106 m3 s−1), with the details depending on the method of surface extrapolation used. The mean flow along the western boundary was southward with the section-mean North Atlantic Deep Water outflow determined to be 12 Sv below the σθ = 27.74 kg m−3 isopycnal. However, east of the deep western boundary current (DWBC), the deep NAC carries a transport of 51 Sv northward below σθ = 27.74 kg m−3, resulting in a large net northward flow in the western part of the basin. From watermass signatures it is concluded that the deep NAC is not a direct recirculation of DWBC water masses. Transport time series for the DWBC variability are derived for both arrays. The variance is concentrated in the period range from 2 weeks to 2 months, but there are also variations at interannual and longer periods, with much of the DWBC variability being related to fluctuations and meandering of the NAC. A significant annual cycle is not recognizable in the combined current and transport time series of both arrays. The moored array results are compared with other evidence on deep outflow and recirculation, including recent models of different types and complexity.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...