ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (454)
  • Articles (OceanRep)  (454)
  • Elsevier  (359)
  • Wiley  (94)
  • American Meteorological Society
  • Springer Nature
  • 2015-2019  (454)
  • 1995-1999
  • 2019  (454)
Collection
  • Other Sources  (454)
Source
  • Articles (OceanRep)  (454)
Years
  • 2015-2019  (454)
  • 1995-1999
Year
  • 1
    Publication Date: 2020-01-02
    Description: Fouling organisms in bivalve aquaculture cause significant economic losses for the industry. Husbandry strategies to reduce biofouling can involve avoidance, prevention, and treatment. In this way, the type of rope used to collect spat or grow bivalves may prevent or reduce fouling by particularly harmful species but remains largely untested. Further, while a range of eco-friendly control methods exist, their effect on widespread, common biofoulers is poorly known. We tested biofouling accumulation and spat collection for seven commercially used ropes, and evaluated treatments of ambient and heated seawater, acetic and citric acid, and combinations of both applied across a range of exposure times to two commercially grown shellfish (Mytilus galloprovincialis and Ostrea angasi) and three biofouling species (Ectopleura crocea, Ciona intestinalis and Styela clava). Rope types differed significantly in terms of fouling rates and spat collection, with specific rope types clearly advantageous, despite not being used commercially in our study area. Treatments proved variably successful, with E. crocea highly susceptible to all treatments, Ciona intestinalis moderately susceptible, and Styela clava relatively resistant. Excluding S. clava, efficacious treatments were attainable that did not adversely affect shellfish. Combining heat and acid treatments were more successful than individual treatments and provide a useful avenue for further trials. This study provides baseline evidence for treatment efficacy that will tailor longer-term, field trials to validate and streamline biofouling treatments in shellfish aquaculture.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-02
    Description: Sulfate-reducing bacteria (SRB) are a group of diverse anaerobic microorganisms omnipresent in natural habitats and engineered environments that use sulfur compounds as the electron acceptor for energy metabolism. Dissimilatory sulfate reduction (DSR)-based techniques mediated by SRB have been utilized in many sulfate-containing wastewater treatment systems worldwide, particularly for acid mine drainage, groundwater, sewage and industrial wastewater remediation. However, DSR processes are often operated suboptimally and disturbances are common in practical application. To improve the efficiency and robustness of SRB-based processes, it is necessary to study SRB metabolism and operational conditions. In this review, the mechanisms of DSR processes are reviewed and discussed focusing on intracellular and extracellular electron transfer with different electron donors (hydrogen, organics, methane and electrodes). Based on the understanding of the metabolism of SRB, responses of SRB to environmental stress (pH-, temperature-, and salinity-related stress) are summarized at the species and community levels. Application in these stressed conditions is discussed and future research is proposed. The feasibility of recovering energy and resources such as biohydrogen, hydrocarbons, polyhydroxyalkanoates, magnetite and metal sulfides through the use of SRB were investigated but some long-standing questions remain unanswered. Linking the existing scientific understanding and observations to practical application is the challenge as always for promotion of SRB-based techniques.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-02
    Description: Immune recognition of molecular patterns from microorganisms or self-altered cells activate effector responses that neutralize and eliminate these potentially harmful agents. In virtually every metazoan group the process is carried out by pattern recognition receptors, typically constituted by immunoglobulin (Ig), leucine rich repeat (LRR), and/or lectin domains. In order to get insights into the ancestral immune recognition repertoire of animals, we have sequenced the transcriptome of bacterially challenged colonies of the model cnidarian Hydractinia symbiolongicarpus using the Illumina platform. Over 116,000 assembled contigs were annotated by sequence similarity, domain architecture, and functionally. From these, a subset of 315 unique transcripts was predicted as the putative immune recognition repertoire of H. symbiolongicarpus. Interestingly, canonical Toll-like receptors (TLR) were not predicted, nor any transmembrane protein with the Toll/interleukine-1 receptor (TIR) domain. Yet, a variety of predicted proteins with transmembrane domains associated with LRR ectodomains were identified, as well as homologs of the key transduction factor NF-kB, and its associated regulatory proteins. This also has been documented in Hydra, and suggests that recognition and signaling initiation has been decoupled in the TLR system of hydrozoans. In contrast, both canonical and non-canonical NOD-like receptors were identified in H. symbiolongicarpus, showing a higher diversity than the TLR system and perhaps a wider functional landscape. The collection of Ig-like containing putative immune recognition molecules was diverse, and included at least 26 unique membrane-bound predicted proteins and 88 cytoplasmic/secreted predicted molecules. In addition, 25 and 5 transcripts encoding the Ig-like containing allorecognition determinants ALR1 and ALR2, respectively, were identified. Sequence and phylogenetic analyses suggested the presence of various transcriptionally active alr loci, and the action of recombination-based mechanisms diversifying them. Transcripts encoding at least six lectin families with putative roles in immune recognition were found, including 19 unique C-type lectins and 21 unique rhamnose-binding lectins. Other predicted immune recognition receptors included scavenger receptors from three families, lipopolysaccharide-binding proteins, cell-adhesion molecules and thioester-bond containing proteins. This analysis demonstrated that the putative immune recognition repertoire of H. symbiolongicarpus is large and diverse.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-02
    Description: We evaluated the relationship between interferon-induced transmembrane protein 1 (IFITM1) expression, epithelial–mesenchymal transition (EMT) signature and angiogenesis in lung adenocarcinoma. Additionally, we examined prognostic significance of IFITM1 according to pTNM stage to confirm that IFITM1 can serve as a complement to the pTNM stage. A total of 141 lung adenocarcinoma specimens were evaluated retrospectively by immunohistochemical staining for IFITM1, EMT markers (e-cadherin, β-catenin, and vimentin), and CD31 to measure microvessel density. IFITM1was expressed in 46.8% of the specimens. IFITM1 expression was significantly correlated with increased microvessel density (P = 0.048). However, IFITM1 expression was not associated with three EMT markers. In a multivariate analysis, IFITM1 was an independent prognostic factor for overall survival in a multivariate analysis (hazard ratio: 2.59, P = 0.01). Online database with data from 720 lung adenocarcinoma patients also revealed a negative prognostic significance of IFITM1 (P 〈 0.001). Furthermore, high IFITM1 expression was significantly correlated with decreased OS rates in each pTNM stage. IFITM1 is significantly correlated with angiogenesis and it may be used as a useful additional prognostic marker to aid pTNM classification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-02
    Description: A first phytochemical investigation of apolar natural products of the seagrass Zostera marina L. (Zosteraceae) yielded cymodienol, a cyclic diarylheptanoid so far only known from the seagrass Cymodocea nodosa (Ucria) Asch. (Cymodoceaceae) and a previously undescribed diaryheptanoid, isotedearene A, which is closely related to tedarene A, a natural product previously described from the neotropic sponge Tedania ignis (Duchassaing & Michelotti, 1864) (Tedaniidae). Structures were established by mass spectrometry and extensive 1D and 2D NMR experiments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 236 . p. 110524.
    Publication Date: 2020-08-04
    Description: Aquatic CO2 tensions may exceed 30–60 Torr (ca. 30,000–79,000 μatm, respectively; hypercarbia) in some environments inducing severe acid-base challenges in fish. Typically, during exposure to hypercarbia blood pH (pHe) is initially reduced and then compensated in association with an increase in plasma HCO3– in exchange for Cl−. Typically, intracellular pH (pHi) is reduced and recovery is to some degree coupled to pHe recovery (coupled pH regulation). However, during acute hypercarbia, pHe recovery has been proposed to be limited by an “apparent upper bicarbonate threshold”, restricting complete pHe recovery to below 15 Torr PCO2. At PCO2 values beyond that which fish can compensate pHe, some fish are able to fully protect pHi despite large sustained reductions in pHe (preferential pHi regulation) and can tolerate PCO2 〉 45 Torr. This review discusses pHe and pHi regulation during exposure to hypercarbia starting with modeling the capacity and theoretical limit to pHe compensation in 19 studies. Next, we discuss how fish compensate severe acute hypercarbia exposures beyond the putative limit of pHe compensation using preferential pHi regulation which has recently been observed to be common among fish subjected to severe hypercarbia. Finally, we consider the evolution of pH regulatory strategies in vertebrates, including how the presence of preferential pHi regulation in embryonic reptiles may indicate that it is an embryonic trait that is either lost or retained in adult vertebrates and may have served as an exaptation for key evolutionary transitions during vertebrate evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-02
    Description: Interactions between microorganisms and clay minerals are ubiquitous in nature and are involved in the formation and transformation of clay minerals and the global cycles of many elements. The fungi/actinomyces in microbes are also associated with clay minerals, but bacteria are more widely linked. These interactions are also involved in the adsorption and fixation of heavy metals and the decomposition of organic pollutants in soil. Knowledge of these interactions can be utilised for the refinement and purification of clay minerals in industry. This review provides an overview of recent studies and obtains insights into the interactions between microorganisms and clay minerals. Microorganisms can induce the nucleation and growth of clay minerals. The metabolism of microorganisms can also degrade and transform clay minerals. The interaction between microorganisms and clay minerals promots the transformation of smectite to illite (S-I) and vice versa (I-S). Such interactions significantly contribute to the global cycles of various elements, such as Al, Si, Mg, Fe, P, S, C, and N. Microorganisms and clay minerals can form complexes and composite materials that adsorb heavy metals such as Cu, Cr, Cd, Pb, Zn, Co, Ni, Ag, and Hg. Microorganism adhesion to clay minerals is involved in the synergistic adsorption and decomposition of organic pollutants in soil and water. This literature review indicates that knowledge of the interactions between microorganisms and clay minerals has been significantly deepened over recent years. However, the interaction between microorganisms and clay minerals under natural geological conditions and the inherent mechanisms involved are not yet well understood. Future work on interactions between microorganisms and clay minerals has great implications for handling atmospheric micro/nano particle pollutants, understanding the formation, alteration and diagenesis of clay minerals and other related minerals, tracking primitive life on Earth and exploring extraterrestrial planets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-02
    Description: Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an important class of natural products that contain antibiotics and a variety of other bioactive compounds. The existing methods for discovery of RiPPs by combining genome mining and computational mass spectrometry are limited to discovering specific classes of RiPPs from small datasets, and these methods fail to handle unknown post-translational modifications. Here, we present MetaMiner, a software tool for addressing these challenges that is compatible with large-scale screening platforms for natural product discovery. After searching millions of spectra in the Global Natural Products Social (GNPS) molecular networking infrastructure against just eight genomic and metagenomic datasets, MetaMiner discovered 31 known and seven unknown RiPPs from diverse microbial communities, including human microbiome and lichen microbiome, and microorganisms isolated from the International Space Station.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-02
    Description: Disinfection byproducts (DBPs) are generated by disinfectants reacting with organic matters. Previous studies have focused on DBPs in drinking water, but they have not paid sufficient attention to DBPs in sewage treatment plants (STPs), where the sources and compositions of DBPs are much more complicated, and there is a likelihood of more toxic DBPs being formed. In this study, the occurrence of DBPs in six STPs in Hong Kong and the potential impact of the effluents from the STPs on the marine environment were investigated. In STPs, the mean concentrations of the total DBPs ranged from 1160 to 17,019 ng/L, 1562 to 20,795 ng/L, and 289 to 1037 ng/L in the influent, effluent, and seawater, respectively. Trihalomethanes, haloacetonitriles, and trihalophenols were the most commonly detected DBPs, whereas hexachloro-1,3-butadiene and halocarbazoles were not detected in the STPs and in the marine environment in Hong Kong. Secondary treatment efficiently removed DBPs and DBP precursors. Regarding disinfection techniques, UV irradiation showed little effect on the concentrations of DBPs, whereas sodium hypochlorite significantly elevated the levels of both traditional and emerging DBPs. The effluents from two selected STPs that use chlorination have an obvious impact on the marine environment. This work presents the potential sources of DBPs in sewage, the influence of the treatment processes and disinfection techniques employed in STPs on the removal/formation of DBPs, and the impact of the effluents from the STPs on the marine environment. This work also highlights the need for investigating the emerging DBPs generated in STPs and their related environmental concerns.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth-Science Reviews, 196 (Article number 102889).
    Publication Date: 2020-01-17
    Description: The Las Cañadas caldera is one of the best exposed volcanic calderas in the world and one of the few known evolved alkaline volcanoes. It truncates the pre-Teide-Pico Viejo central volcanic edifice, the Las Cañadas edifice, which started to take shape at the end of the formation of a large basaltic shield that forms the main part of island of Tenerife. Historically, the origin of the Las Cañadas caldera has been controversial, as it has been interpreted as the result of either multiple vertical collapses or due to a giant sector collapse. The available stratigraphical, structural, volcanological, geochronological, and geophysical data, as well as its comparison to other well-known collapse calderas should not offer any doubt as to its direct relationship with a long history of phonolitic explosive volcanism. However, the existence of large landslide events on Tenerife, which have significantly modified the flanks of the Las Cañadas volcano, have also been used as a potential explanation for the origin of the Las Cañadas depression. This contribution reviews the available information on the Las Cañadas caldera, the causes of this controversy, and rationalises the most plausible explanation for the origin of Las Cañadas caldera based on the current evidence gathered from all previous studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...