ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (43)
  • Articles (OceanRep)  (43)
  • American Chemical Society
  • 2020-2024
  • 2015-2019  (24)
  • 2010-2014  (19)
  • 1
    Publication Date: 2017-11-20
    Description: Marine methane hydrate in sands has huge potential as an unconventional gas resource; however, no field test of their production potential had been conducted. Here, we report the world’s first offshore methane hydrate production test conducted at the eastern Nankai Trough and show key findings toward future commercial production. Geological analysis indicates that hydrate saturation reaches 80% and permeability in the presence of hydrate ranges from 0.01 to 10 mdarcies. Permeable (1–10 mdarcies) highly hydrate-saturated layers enable depressurization-induced gas production of approximately 20,000 Sm3/D with water of 200 m3/D. Numerical analysis reveals that the dissociation zone expands laterally 25 m at the front after 6 days. Gas rate is expected to increase with time, owing to the expansion of the dissociation zone. It is found that permeable highly hydrate-saturated layers increase the gas–water ratio of the production fluid. The identification of such layers is critically important to increase the energy efficiency and the technical feasibility of depressurization-induced gas production from hydrate reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-20
    Description: The guest-exchange method (or replacement) for methane production from gas hydrates has recently received attention because it can be used for both carbon dioxide sequestration and methane production. The structure of gas hydrates is maintained as a structure I (sI) hydrate while methane molecules are exchanged with carbon dioxide. In this study, CH4 + CO2 mixed gas hydrates were examined under terahertz light at various temperatures to simulate CH4–CO2 exchange reactions. Each gas hydrate composition examined was a representative composition at each step of the exchange reaction. The molecular composition was also accurately analyzed by gas chromatography. Refractive indices calculated by the terahertz time-domain spectroscopy (THz-TDS) of gas hydrate samples were correlated to the guest composition, and this novel method was proven to be used to quantify the extent of replacement via optical constant. Furthermore, changes in the water framework from the sI hydrate to ice using THz-TDS were investigated with an increasing temperature. Overall, this study reveals the process of guest exchange and phase transition from a gas hydrate to ice via the optical properties in the terahertz region, and it offers a powerful tool in gas hydrate production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Chemical Society
    In:  The Journal of Physical Chemistry A, 115 (46). pp. 13324-13331.
    Publication Date: 2020-05-11
    Description: Microscopy, confocal Raman spectroscopy and powder X-ray diffraction (PXRD) were used for in situ investigations of the CO2-hydrocarbon exchange process in gas hydrates and its driving forces. The study comprises the exposure of simple structure I CH4 hydrate and mixed structure II CH4–C2H6 and CH4–C3H8 hydrates to gaseous CO2 as well as the reverse reaction, i.e., the conversion of CO2-rich structure I hydrate into structure II mixed hydrate. In the case of CH4–C3H8 hydrates, a conversion in the presence of gaseous CO2 from a supposedly more stable structure II hydrate to a less stable structure I CO2-rich hydrate was observed. PXRD data show that the reverse process requires longer initiation times, and structural changes seem to be less complete. Generally, the exchange process can be described as a decomposition and reformation process, in terms of a rearrangement of molecules, and is primarily induced by the chemical potential gradient between hydrate phase and the provided gas phase. The results show furthermore the dependency of the conversion rate on the surface area of the hydrate phase, the thermodynamic stability of the original and resulting hydrate phase, as well as the mobility of guest molecules and formation kinetics of the resulting hydrate phase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-27
    Description: In the colloidal synthesis of iron sulfides, a series of dialkyl disulfides, alkyl thiols, and dialkyl disulfides (allyl, benzyl, tert-butyl, and phenyl) were employed as sulfur sources. Their reactivity was found to tune the phase between pyrite (FeS2), greigite (Fe3S4), and pyrrhotite (Fe7S8). DFT was used to show that sulfur-rich phases were favored when the C–S bond strength was low in the organosulfurs, yet temperature dependent studies and other observations indicated the reasons for phase selectivity were more nuanced; the different precursors decomposed through different reaction mechanisms, some involving the oleylamine solvent. The formation of pyrite from diallyl disulfide was carefully studied as it was the only precursor to yield FeS2. Raman spectroscopy indicated that FeS2 forms directly without an FeS intermediate, unlike most synthetic procedures to pyrite. Diallyl disulfide releases persulfide (S–S)2– due to the lower C–S bond strength relative to the S–S bond strength, as well as facile decomposition in the presence of amines through SN2′ mechanisms at elevated temperatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-31
    Description: Numerical tools are essential for the prediction and evaluation of conventional hydrocarbon reservoir performance. Gas hydrates represent a vast natural resource with a significant energy potential. The numerical codes/tools describing processes involved during the dissociation (induced by several methods) for gas production from hydrates are powerful, but they need validation by comparison to empirical data to instill con fidence in their predictions. In this study, we successfully reproduce experimental data of hydrate dissociation using the TOUGH+HYDRATE (T+H) code. Methane(CH4)hydrate growth and dissociation in partially water- and gas-saturated Bentheim sandstone were spatially resolved using Magnetic Resonance Imaging (MRI), which allows the in situ monitoring of saturation and phase transitions. All the CH4 that had been initially converted to gas hydrate was recovered during depressurization. The physical system was reproduced numerically, usingboth a simplified 2D model and a 3D grid involving complex Voronoi elements. We modeled dissociation using both the equilibrium and the kinetic reaction options in T+H, and we used a range of kinetic parameters for sensitivity analysis and curve fitting. We successfully reproduced the experimental results, which confirmed the empirical data that demonstrated that heattransport was the limiting factor during dissociation. Dissociation was more sensitive to kinetic parameters than anticipated, which indicates that kinetic limitations may be important in short-term core studies and a necessity in such simulations. This is the first time T+H has been used to predict empirical nonmonotonic dissociation behavior, where hydrate dissociation and reformation occurred as parallel events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Industrial & Engineering Chemistry Research, 49 (11). pp. 5231-5245.
    Publication Date: 2020-07-29
    Description: Methane hydrate, a potential future energy resource, is known to occur naturally in vast quantities beneath the ocean floor and in permafrost regions. It is important to evaluate how much methane is recoverable from these hydrate reserves. This article introduces the theoretical background of HydrateResSim, the National Energy Technology Laboratory (NETL) methane production simulator for hydrate-containing reservoirs, originally developed for NETL by Lawrence Berkeley National Laboratory (LBNL). It describes the mathematical model that governs the dissociation of methane hydrate by depressurization or thermal stimulation of the system, including the transport of multiple temperature-dependent components in multiple phases through a porous medium. The model equations are obtained by incorporating the multiphase Darcy’s law for gas and liquid into both the mass component balances and the energy conservation equations. Two submodels in HydrateResSim for hydrate dissociation are also considered: a kinetic model and a pure thermodynamic model. Contrary to more traditional reservoir simulations, the set of model unknowns or primary variables in HydrateResSim changes throughout the simulation as a result of the formation or dissociation of ice and hydrate phases during the simulation. The primary variable switch method (PVSM) is used to effectively track these phase changes. The equations are solved by utilizing the implicit time finite-difference method on the grid system, which can properly describe phase appearance or disappearance as well as the boundary conditions. The Newton-Raphson method is used to solve the linear equations after discretization and setup of the Jacobian matrix. We report here the application of HydrateResSim to a three-component, four-phase flow system in order to predict the methane produced from a laboratory-scale reservoir. The first results of HydrateResSim code in a peer-reviewed publication are presented in this article. The numerical solution was verified against the state-of-the art simulator TOUGH+Hydrate. The model was then used to compare twodissociation theories: kinetic and pure equilibrium. Generally, the kinetic model revealed a lower dissociation rate than the equilibrium model. The hydrate dissociation patterns differed significantly when the thermal boundary condition was shifted from adiabatic to constant-temperature. The surface area factor was found to have an important effect on the rate of hydrate dissociation for the kinetic model. The deviation between the kinetic and equilibrium models was found to increase with decreasing surface area factor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-05-11
    Description: Calculations of the size and density of atmospheric aerosols are complicated by the fact that they can exist at concentrations highly supersaturated with respect to dissolved salts and supercooled with respect to ice. Densities and apparent molar volumes of solutes in aqueous solutions containing the solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl have been critically evaluated and represented using fitted equations from 0 to 50 °C or greater and from infinite dilution to concentrations saturated or supersaturated with respect to the dissolved salts. Using extrapolated densities of high-temperature solutions and melts, the relationship between density and concentration is extended to the hypothetical pure liquid solutes. Above a given reference concentration of a few mol kg−1, it is observed that density increases almost linearly with decreasing temperature, and comparisons with available data below 0 °C suggest that the fitted equations for density can be extrapolated to very low temperatures. As concentration is decreased below the reference concentration, the variation of density with temperature tends to that of water (which decreases as temperature is reduced below 3.98 °C). In this region below the reference concentration, and below 0 °C, densities are calculated using extrapolated apparent molar volumes which are constrained to agree at the reference concentrations with an equation for the directly fitted density. Calculated volume properties agree well with available data at low temperatures, for both concentrated and dilute solutions. Comparisons are made with literature data for temperatures of maximum density. Apparent molar volumes at infinite dilution are consistent, on a single ion basis, to better than ±0.1 cm3 mol−1 from 0 to 50 °C. Volume properties of aqueous NaHSO4, NaOH, and NH3 have also been evaluated, at 25 °C only. In part 2 of this work (ref 1) an ion interaction (Pitzer) model has been used to calculate apparent molar volumes of H2SO4 in 0−3 mol kg−1 aqueous solutions of the pure acid and to represent directly the effect of the HSO4− ↔ H+ + SO42− reaction. The results are incorporated into the treatment of aqueous H2SO4 density described here. Densities and apparent molar volumes from −20 to 50 °C, and from 0 to 100 wt % of solute, are tabulated for the electrolytes listed in the title and have also been incorporated into the extended aerosol inorganics model (E-AIM, http://www.aim.env.uea.ac.uk/aim/aim.php) together with densities of the solid salts and hydrates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Abstracts of Papers of the American Chemical Society, 243 . 536-ENVR.
    Publication Date: 2017-10-24
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Journal of Agricultural and Food Chemistry, 59 (18). pp. 9916-9921.
    Publication Date: 2020-07-27
    Description: A total of 19 naturally occurring bromophenols, with six new and 13 known structures, were isolated and identified from the methanolic extract of the marine red alga Rhodomela confervoides. The new compounds were identified by spectroscopic methods as 3,4-dibromo-5-((methylsulfonyl)methyl)benzene-1,2-diol (1), 3,4-dibromo-5-((2,3-dihydroxypropoxy)methyl)benzene-1,2-diol (2), 5-(aminomethyl)-3,4-dibromobenzene-1,2-diol (3), 2-(2,3-dibromo-4,5-dihydroxyphenyl)acetic acid (4), 2-methoxy-3-bromo-5-hydroxymethylphenol (5), and (E)-4-(2-bromo-4,5-dihydroxyphenyl)but-3-en-2-one (6). Each compound was evaluated for free radical scavenging activity against DPPH (α,α-diphenyl-β-dipicrylhydrazyl) and ABTS [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt] radicals. Most of them exhibited potent activities stronger than or comparable to the positive controls butylated hydroxytoluene (BHT) and ascorbic acid. The results from this study suggest that R. confervoides is an excellent source of natural antioxidants, and inclusion of these antioxidant-rich algal components would likely help prevent the oxidative deterioration of food.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-04-23
    Description: Implantable endovascular devices such as bare metal, drug eluting, and bioresorbable stents have transformed interventional care by providing continuous structural and mechanical support to many peripheral, neural, and coronary arteries affected by blockage. Although effective in achieving immediate restoration of blood flow, the long-term re-endothelialization and inflammation induced by mechanical stents are difficult to diagnose or treat. Here we present nanomaterial designs and integration strategies for the bioresorbable electronic stent with drug-infused functionalized nanoparticles to enable flow sensing, temperature monitoring, data storage, wireless power/data transmission, inflammation suppression, localized drug delivery, and hyperthermia therapy. In vivo and ex vivo animal experiments as well as in vitro cell studies demonstrate the previously unrecognized potential for bioresorbable electronic implants coupled with bioinert therapeutic nanoparticles in the endovascular system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...