ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (789)
  • Articles (OceanRep)  (789)
  • Bibliography on Seismology
  • Wiley  (364)
  • Copernicus Publications (EGU)  (270)
  • Nature Publishing Group  (127)
  • Oxford University Press  (28)
  • 2010-2014  (789)
Collection
  • Other Sources  (789)
Source
Years
Year
  • 1
    Publication Date: 2016-12-13
    Description: Micro-Raman spectroscopy has been used on adult bivalve shells to investigate organic and inorganic shell components but has not yet been applied to bivalve larvae. It is known that the organic matrix of larval shells contains pigments, but less is known about the presence or source of these molecules in larvae. We investigated Raman spectra of seven species of bivalve larvae to assess the types of pigments present in shells of each species and how the ratio of inorganic : organic material changes in a dorso-ventral direction. In laboratory experiments, we reared larvae of three clam species in waters containing different organic signatures to determine if larvae incorporated compounds from source waters into their shells. We found differences in spectra and pigments between most species but found less intraspecific differences. A neural network classifier for Raman spectra classified five out of seven species with greater than 85% accuracy. There were slight differences between the amount and type of pigment present along the shell, with the prodissoconch I and shell margin areas being the most variable. Raman spectra of 1-day-old larvae were found to be differentiable when larvae were reared in waters with different organic signatures. With micro-Raman spectroscopy, it may be possible to identify some unknown species in the wild and trace their natal origins, which could enhance identification accuracy of bivalve larvae and ultimately aid management and restoration efforts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-20
    Description: Tephra provides regional chronostratigraphical marker horizons that can link different climate archives with highly needed accuracy and precision. The results presented in this work exemplify, however, that the intermittent storage of tephra in ice sheets and during its subsequent iceberg transport, especially during glacial stages, constitutes a potential source of serious error for the application of tephrochronology to Nordic Seas and North Atlantic sediment archives. The peak shard concentration of the rhyolitic component of the North Atlantic Ash Zone II (NAAZ-II) tephra complex, often used to correlate marine and ice core records in Marine Isotope Stage (MIS) 3, is shown to lag the eruption event by ca. 100–400 years in some North Atlantic and Norwegian Sea cores. While still allowing for a correlation of archives on millennial timescales, this time delay in deposition is a major obstacle when addressing the lead–lag relationship on short timescales (years to centuries). A precise and accurate determination of lead–lag relationships between archives recording different parts of the climate system is crucial in order to test hypotheses about the processes leading to abrupt climate change and to evaluate results from climate models. Copyright # 2011 John Wiley & Sons, Ltd.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Reviews Microbiology, 12 (10). pp. 686-698.
    Publication Date: 2020-06-23
    Description: Marine phytoplankton blooms are annual spring events that sustain active and diverse bloom-associated bacterial populations. Blooms vary considerably in terms of eukaryotic species composition and environmental conditions, but a limited number of heterotrophic bacterial lineages — primarily members of the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria — dominate these communities. In this Review, we discuss the central role that these bacteria have in transforming phytoplankton-derived organic matter and thus in biogeochemical nutrient cycling. On the basis of selected field and laboratory-based studies of flavobacteria and roseobacters, distinct metabolic strategies are emerging for these archetypal phytoplankton-associated taxa, which provide insights into the underlying mechanisms that dictate their behaviours during blooms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Geoscience, 6 (8). pp. 608-612.
    Publication Date: 2017-10-24
    Description: Owing to the turbulent nature of the ocean, mesoscale eddies are omnipresent. The impact of these transitory and approximately circular sea surface temperature fronts on the overlying atmosphere is not well known. Stationary fronts such as the Gulf Stream have been reported to lead to pronounced atmospheric changes1, 2. However, the impact of transient ocean eddies on the atmosphere has not been determined systematically, except on winds and to some extent clouds3, 4, 5, 6. Here, we examine the atmospheric conditions associated with over 600,000 individual eddies in the Southern Ocean, using satellite data. We show that ocean eddies locally affect near-surface wind, cloud properties and rainfall. The observed pattern of atmospheric change is consistent with a mechanism in which sea surface temperature anomalies associated with the oceanic eddies modify turbulence in the atmospheric boundary layer. In the case of cyclonic eddies, this modification triggers a slackening of near-surface winds, a decline in cloud fraction and water content, and a reduction in rainfall. We conclude that transient mesoscale ocean structures can significantly affect much larger atmospheric low-pressure systems that swiftly pass by at the latitudes investigated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-03-27
    Description: An influence of solar irradiance variations on Earth’s surface climate has been repeatedly suggested, based on correlations between solar variability and meteorological variables1. Specifically, weaker westerly winds have been observed in winters with a less active sun, for example at the minimum phase of the 11-year sunspot cycle2, 3, 4. With some possible exceptions5, 6, it has proved difficult for climate models to consistently reproduce this signal7, 8. Spectral Irradiance Monitor satellite measurements indicate that variations in solar ultraviolet irradiance may be larger than previously thought9. Here we drive an ocean–atmosphere climate model with ultraviolet irradiance variations based on these observations. We find that the model responds to the solar minimum with patterns in surface pressure and temperature that resemble the negative phase of the North Atlantic or Arctic Oscillation, of similar magnitude to observations. In our model, the anomalies descend through the depth of the extratropical winter atmosphere. If the updated measurements of solar ultraviolet irradiance are correct, low solar activity, as observed during recent years, drives cold winters in northern Europe and the United States, and mild winters over southern Europe and Canada, with little direct change in globally averaged temperature. Given the quasiregularity of the 11-year solar cycle, our findings may help improve decadal climate predictions for highly populated extratropical regions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-20
    Description: The anaerobic oxidation of methane (AOM) with sulphate, an area currently generating great interest in microbiology, is accomplished by consortia of methanotrophic archaea (ANME) and sulphate-reducing bacteria1, 2. The enzyme activating methane in methanotrophic archaea has tentatively been identified as a homologue of methyl-coenzyme M reductase (MCR) that catalyses the methane-forming step in methanogenic archaea3, 4. Here we report an X-ray structure of the 280 kDa heterohexameric ANME-1 MCR complex. It was crystallized uniquely from a protein ensemble purified from consortia of microorganisms collected with a submersible from a Black Sea mat catalysing AOM with sulphate4. Crystals grown from the heterogeneous sample diffract to 2.1 Å resolution and consist of a single ANME-1 MCR population, demonstrating the strong selective power of crystallization. The structure revealed ANME-1 MCR in complex with coenzyme M and coenzyme B, indicating the same substrates for MCR from methanotrophic and methanogenic archaea. Differences between the highly similar structures of ANME-1 MCR and methanogenic MCR include a F430 modification, a cysteine-rich patch and an altered post-translational amino acid modification pattern, which may tune the enzymes for their functions in different biological contexts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-15
    Description: INTRODUCTION: Lichens are self-sustaining partnerships comprising fungi as shape-forming partners for their enclosed symbiotic algae. They produce a tremendous diversity of metabolites (1050 metabolites described so far). OBJECTIVES: A comparison of metabolic profiles in nine lichen species belonging to three genera (Lichina, Collema and Roccella) by using an optimised extraction protocol, determination of the fragmentation pathway and the in situ localisation for major compounds in Roccella species. METHODS: Chemical analysis was performed using a complementary study combining a Taguchi experimental design with qualitative analysis by high-performance liquid chromatography coupled with mass spectrometry techniques. RESULTS: Optimal conditions to obtain the best total extraction yield were determined as follows: mortar grinding to a fine powder, two successive extractions, solid:liquid ratio (2:60) and 700 rpm stirring. Qualitative analysis of the metabolite profiling of these nine species extracted with the optimised method was corroborated using MS and MS/MS approaches. Nine main compounds were identified: 1 β-orcinol, 2 orsellinic acid, 3 putative choline sulphate, 4 roccellic acid, 5 montagnetol, 6 lecanoric acid, 7 erythrin, 8 lepraric acid and 9 acetylportentol, and several other compounds were reported. Identification was performed using the m/z ratio, fragmentation pathway and/or after isolation by NMR analysis. The variation of the metabolite profile in differently organised parts of two Roccella species suggests a specific role of major compounds in developmental stages of this symbiotic association. CONCLUSION: Metabolic profiles represent specific chemical species and depend on the extraction conditions, the kind of the photobiont partner and the in situ localisation of major compounds.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-07-17
    Description: In order to test the influences of ocean acidification on the ocean pelagic ecosystem, so far the largest CO2 manipulation mesocosm study (European Project on Ocean Acidification, EPOCA) was performed in Kings Bay (Kongsfjorden), Spitsbergen. During a 30 day incubation, bacterial diversity was investigated using DNA fingerprinting and clone library analysis of bacterioplankton samples. Terminal restriction fragment length polymorphism (T-RFLP) analysis of the PCR amplicons of the 16S rRNA genes revealed that general bacterial diversity, taxonomic richness and community structure were influenced by the variation of productivity during the time of incubation, but not the degree of ocean acidification. A BIOENV analysis suggested a complex control of bacterial community structure by various biological and chemical environmental parameters. The maximum apparent diversity of bacterioplankton (i.e., the number of T-RFs) in high and low pCO2 treatments differed significantly. A negative relationship between the relative abundance of Bacteroidetes and pCO2 levels was observed for samples at the end of the experiment by the combination of T-RFLP and clone library analysis. Our study suggests that ocean acidification affects the development of bacterial assemblages and potentially impacts the ecological function of the bacterioplankton in the marine ecosystem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Dynamics, 5 (2). pp. 383-397.
    Publication Date: 2018-03-15
    Description: The Atlantic meridional overturning circulation (AMOC) carries large amounts of heat into the North Atlantic influencing climate regionally as well as globally. Palaeo-records and simulations with comprehensive climate models suggest that the positive salt-advection feedback may yield a threshold behaviour of the system. That is to say that beyond a certain amount of freshwater flux into the North Atlantic, no meridional overturning circulation can be sustained. Concepts of monitoring the AMOC and identifying its vicinity to the threshold rely on the fact that the volume flux defining the AMOC will be reduced when approaching the threshold. Here we advance conceptual models that have been used in a paradigmatic way to understand the AMOC, by introducing a density-dependent parameterization for the Southern Ocean eddies. This additional degree of freedom uncovers a mechanism by which the AMOC can increase with additional freshwater flux into the North Atlantic, before it reaches the threshold and collapses: an AMOC that is mainly wind-driven will have a constant upwelling as long as the Southern Ocean winds do not change significantly. The downward transport of tracers occurs either in the northern sinking regions or through Southern Ocean eddies. If freshwater is transported, either atmospherically or via horizontal gyres, from the low to high latitudes, this would reduce the eddy transport and by continuity increase the northern sinking which defines the AMOC until a threshold is reached at which the AMOC cannot be sustained. If dominant in the real ocean this mechanism would have significant consequences for monitoring the AMOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-28
    Description: Iron limits phytoplankton growth and hence the biological carbon pump in the Southern Ocean1. Models assessing the impacts of iron on the global carbon cycle generally rely on dust input and sediment resuspension as the predominant sources2, 3. Although it was previously thought that most iron from deep-ocean hydrothermal activity was inaccessible to phytoplankton because of the formation of particulates4, it has been suggested that iron from hydrothermal activity5, 6, 7 may be an important source of oceanic dissolved iron8, 9, 10, 11, 12, 13. Here we use a global ocean model to assess the impacts of an annual dissolved iron flux of approximately 9×108 mol, as estimated from regional observations of hydrothermal activity11, 12, on the dissolved iron inventory of the world’s oceans. We find the response to the input of hydrothermal dissolved iron is greatest in the Southern Hemisphere oceans. In particular, observations of the distribution of dissolved iron in the Southern Ocean3 (Chever et al., manuscript in preparation; Bowie et al., manuscript in preparation) can be replicated in our simulations only when our estimated iron flux from hydrothermal sources is included. As the hydrothermal flux of iron is relatively constant over millennial timescales14, we propose that hydrothermal activity can buffer the oceanic dissolved iron inventory against shorter-term fluctuations in dust deposition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...